湖北栝楼种子、驳骨丹和鱼腥草化学成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为三部分,第一部分为驳骨丹化学成分研究,第二部分为湖北栝楼种子不皂化部分化学成分研究,第三部分为鱼腥草化学成分研究。
     第一部分驳骨丹化学成分研究
     驳骨丹(Gendarussa vulgaris Nees.)为爵床科(Acanthaceae)驳骨草属(Gendarussa)植物,以茎、叶入药,味辛、苦,性平,归肝、肾、肺经。生于丘陵草坡,路旁村边或灌丛中。分布于台湾、广东、海南、广西、云南等地。具有祛风湿,散淤血,续筋骨的功效,主治风湿痹痛,月经不调,产后腹痛,跌打损伤,骨折。驳骨丹作为一种民族传统用药,有着广泛的临床应用。为了更好的阐明其有效成分和药用机理,作者对驳骨丹(Gendarussa vulgaris Nees.)化学成分进行了研究。
     本部分共分两章:
     第一章爵床科植物文献综述
     查阅了近50年来有关爵床科植物的国内外文献研究资料,对爵床科植物的化学成分和药理作用的研究现状进行了分析和整理,为本课题研究方案的制定和顺利实施提供了有益的借鉴。
     第二章驳骨丹化学成分研究
     药材以溶剂提取,通过硅胶柱色谱分离,利用质谱、核磁共振等现代波谱技术鉴定化合物结构。从中共分离并鉴定了5个单体物质,鉴定出3个化合物,分别是:硝酸钾(potassium nitrate,BGD-1),β-谷甾醇(β-sitosterol,BGD-2),BGD-3,BGD-4,胡萝卜苷(daucosterol,BGD-5)。BGD-1,BGD-5为首次从驳骨丹中分离。
     第二部分湖北栝楼种子不皂化部分化学成分研究
     湖北栝楼(Trichosanthes hupehensis C.Y Cheng et Yueh)系葫芦科(Cucurbitaceae)栝楼属(Trichosanthes L)植物,分布于湖北,湖南,江西,四川,山东,果小瓤绿,皮薄味苦,又名苦瓜蒌。在产地以其果、果皮、种子和根分别作中药瓜蒌、瓜蒌皮、瓜蒌子和天花粉入药。湖北栝楼的根服后有恶心、呕吐现象,属天花粉的混淆品。果实中含有棕榈酸、棕榈油酸、亚麻酸、亚油酸等脂肪酸成分。为了更好的利用药用资源,作者对湖北栝楼种子脂肪油部分进行了提取和皂化,获得不皂化部分,进而对该部分化学成分进行了系统的分离和鉴定。
     本部分共分两章:
     第一章葫芦科栝楼属植物文献综述
     系统地查阅了近30年来有关葫芦科栝楼属植物的国内外文献研究资料,对葫芦科栝楼属植物的化学成分和药理作用的研究现状进行了分析和整理,为本课题研究方案的制定和顺利实施提供了有益的借鉴。
     第二章湖北栝楼种子不皂化部分化学成分研究
     作者通过对湖北栝楼种子脂肪油的提取和皂化,获得不皂化部分。该部分经硅胶柱色谱,分离、纯化,并利用质谱、核磁共振等现代波谱技术鉴定了9个化合物。分别是:栝楼仁二醇(karounidiol,HBGL-1),异栝楼仁二醇(isokarounidiol,HBGL-2),5-脱氢栝楼仁二醇(5-dehydrokarounidiol,HBGL-3),7-氧代二氢栝楼仁二醇(7-oxodihydrokarounidiol,HBGL-4),豆甾-7-烯-3β-醇(stigmast-7-en-3β-ol,HBGL-5),豆甾-7,22-二烯-3β-醇(stigmast-7,22-dien-3β-ol,HBGL-6),10α-葫芦二烯醇(10α-cucurbitadienol,HBGL-7),β-谷甾醇(β-sitosterol,HBGL-8),豆甾-7,22二烯-3β-O-β-D-葡萄糖苷(stigmast-7,22-dien-3β-O-β-D-glucoside,HBGL-9)。这些化合物为首次从该植物分离获得。
     第三部分鱼腥草化学成分研究
     鱼腥草系三白草科(Saururaceae)蕺菜属(Houttuynia Thunb)植物蕺菜(Houttuynia cordata Thunb.),以新鲜全草或干燥地上部分入药,性辛,味寒,生于丘陵草坡,路旁村边或灌丛中。具清热解毒,消痈排脓,利尿通淋的功能,主要用于肺痈吐脓、痰热喘咳、热痢、热淋、痈肿疮毒。鱼腥草中有效成分属于醛类或甲基酮类,具有抗菌、抗病毒等作用,临床应用广泛。但是,近来发现鱼腥草注射液在临床使用中存在过敏性休克、全身过敏等临床不良反应,为了进一步探明药效物质基础,作者对该类成分进行了研究。
     第一章鱼腥草中醛类和甲基酮类化学成分及其加成物文献综述
     系统地查阅了近30年来有关鱼腥草中醛类和甲基酮类化学成分的国内外文献研究资料,对鱼腥草中醛类和甲基酮类化学成分和药理作用的研究现状进行了分析和整理,为本课题研究方案的制定和顺利实施提供了有益的借鉴。
     第二章鱼腥草化学成分研究
     亚硫酸氢钠在不需要催化剂的条件下,与醛和某些活泼的酮发生羰基的亲核加成反应,生成稳定的亚硫酸氢钠加成物。这个反应对醛一般可以应用,但酮则要取决于它的结构,特别是烃基的空间位阻。在羰基旁需要有一个甲基,即所谓的甲基酮,才能发生加成反应。反应时用一定浓度的亚硫酸氢钠溶液与醛和甲基酮反应,使平衡尽量的向右进行,产物是一个盐,不溶于乙醚,但溶于水,由于这一反应是一个可逆体系,把存在于体系中的亚硫酸氢钠用酸或碱不断除去,其结果是加成物又分解为原来的醛或甲基酮。
     鱼腥草中有效成分主要是癸酰乙醛(鱼腥草素),甲基正壬酮。癸酰乙醛常温条件下不稳定,容易氧化成甲基正壬酮。作者采用乙醚提取鱼腥草干粉,浓缩提取液。提取液中加入15%的亚硫酸氢钠溶液,生成稳定的亚硫酸氢钠加成物。亚硫酸氢钠溶液经少量乙醚洗涤后,加入同体积的乙醚和过量碳酸氢钠,充分反应。取乙醚层,少量蒸馏水洗涤,浓缩,得乙醚提取物。提取物通过硅胶柱色谱分离,利用质谱鉴定化合物结构。从中分离并鉴定出:methyl nonyl ketone(甲基正壬酮,YXC-1)和decanoyl acetaldehyde(癸酰乙醛,YXC-2),并经亚硫酸氢钠加成反应得到稳定的加成物sodium houttuyfonate(鱼腥草素钠,YXC-3)。
     总之,本论文在认真分析和总结文献的基础上,对驳骨丹和湖北栝楼种子不皂化部分进行了系统的化学成分研究,从中分离出14个化合物,其中2个化合物为首次从驳骨丹中分离鉴定,9个化合物为首次从湖北栝楼种子中分离鉴定。同时,采用亚硫酸氢钠萃取法提取鱼腥草中醛类和甲基酮类化合物,从中分离出2个化合物并得到1个加成衍生物,证明了采用亚硫酸氢钠加成反应,能够使脂溶性天然醛类化合物与其他脂溶性杂质达到分离,为天然产物中醛类化合物的提取与分离提供了一条可行的方法。
The article is composed of three parts, the first part studied on chemical constituents of the stems and leaves of Gendarussa vulgaris; the second part studied on chemical constituents of unsaponifiable matter from the seeds of Trichosanthes hupehensis; the third part studied on chemical constituents from the leaves of Houttuynia cordata.
     Part 1: studies on chemical constituents of the stems and leaves of Gendarussa vulgaris
     Bo-Gu-Dan, the stems and leaves of Gendarussa vulgaris Nees. (Acanthaceae), growing in hills and scrub next to the village, mainly distributes in Taiwan, Guangdong, Hainan, Guangxi, Yunnan provinces of China. As a traditional Chinese herb, this plant, possessing the actions in removing beriberoid disease, dissipating blood stasis, os symplecticum, has been used for treatment of rheumatic arthralgia, irregular menstruation, postpartum abdominalgia, wound and cataclasis for many years. For the better of illuminating the active chemnical compositions, a systematical investigation on the chemical components of Gendarussa vulgaris has been performed.
     This part includes two chapters:
     Chapter 1: Review on the research progress of Acanthaceae.
     The correlative researching literature (nearly 40 years) about Acanthaceae plants, including chemical components and pharmacological effects, have been presented and summarized.
     Chapter 2: Studies on Chemical Constituents.
     From the 75 % alcoholic extracts of the plant, 5 chemical materials have been isolated by column chromatographies with silica gel. and 3 compounds were identified by NMR, MS spectrum. They are: potassium nitrate (BGD-1) , p-sitosterol(BGD-2) , BGD-3, BGD-4, daucosterol (BGD-5) . Among them, BGD-1, BGD-5 were isolated from the plant for the first time.
     Part 2: Studies on chemical constituents of unsaponifiable matter from the seeds of Trichosanthes hupehensis.
     Hu-Bei-Gua-Lou, Trichosanthes hupehensis. (Cucurbitaceae), mainly distributes in Hubei, Hunan, Jiangxi, Sichuan, Shandong provinces of China. The fruits, pericarps, seeds, and roots are respective as fructus trichosanthis, semen trichosanthis, pericarpium trichosanthis, radix trichosanthis in China. The root of Hu-Bei-Gua-Lou is adulterant of radix trichosanthis, because of occurring emesis, nausea. Hexadecanoic acid, palmitoleic acid, linoleic acid, linoleic acid were discovered in the pericarp. For the better use of the Hu-Bei-Gua-Lou, a systematical investigation on the unsaponiflable matter from the seeds of Trichosanthes hupehensis has been performed.
     This part includes two chapters:
     Chaper 1: Review on the research progress of seeds of Trichosanthes L
     The correlative researching literature (nearly 30 years) about seeds of Trichosanthes hupehensis, including chemical components and pharmacological effects, have been presented and summarized.
     Chapter 2: Studies on chemical constituents of unsaponifiable matter of seeds of Trichosanthes L
     The fatty oil from the seeds of T. hupehensis was extracted with petroleum ether. The saponification was carried out with potassium hydroxide. The unsaponifiable matter was isolated and purified by silica gel column chromatography. 9 compounds were elucidated by means of MS, IR, UV, and H-NMR. They are: karounidiol (HBGL-l),isokarounidiol (HBGL-2) , 5-dehydrokarounidiol (HBGL-3) , 7-oxodihyd-rokarounidiol(HBGL-4) , stigmast-7-en-3β-ol (HBGL-5) , stigmast-7,22-dien-3β-ol (HBGL-6) , 10α-cucurbitadienol (HBGL-7) ,β-sitosterol (HBGL-8) , stigmast-7, 22-dien-3β-O-β-D-glucoside (HBGL-9) . These compounds were isolated from the plant for the first time.
     Part 3: Studies on chemical constituents from the leaves of Houttuynia cordata.
     Yu Xin-Cao, the stems and leaves of Houttuynia cordata Thunb (Saururaceae), grows in hills and scrub next to the village. As a traditional Chinese herb, this plant, possessing the actions in heat-clearing, detoxicating, treating boils, apocenosis, inducing diuresis, has been used for treatment of lung anthracoma, pyemesis, dyspnea with cough, dysentery, pyretic stranguria, carbuncle, sore. Aldehyde and methyl ketone constituents, possessing antibiosis, antivirus etc, are effective constituent. Recently, shock anaphylacticus, systemic anaphylaxis were discovered in the clinical application. For reseaching adverse reaction and better use of the Yu-Xin-Cao, a systematical investigation on the Aldehyde and methyl ketone constituents from the leaves of Houttuynia cordata Thunb has been performed.
     This part includes two chapters:
     Chaper 1: Review on the research progress of aldehyde and methyl ketone constituents of Houttuynia cordata Thunb.
     The correlative researching literature (nearly 30 years) about Aldehyde and methyl ketone constituents of Houttuynia cordata Thunb., including chemical components and pharmacological effects, have been presented and summarized.
     Chapter 2: Studies on aldehyde and methyl ketone constituents of Houttuynia cordata Thunb.
     Lipid-soluble Aldehyde and methyl ketone constituents are formed into water-soluble sodiumα-hydroxyalkanesulfonate derivatives by the addition reaction of sodium bisulfite, and are separated in sodium bisulfite-diethyl ether-water two-phase solvent systems formed into other lipid-soluble materials by adding hydrochloric acid or sodium bicarbonate.
     Decanoyl acetaldehyde, methyl nonyl ketone are active constituents of Houttuynia cordata Thunb. The diethyl ether extracts of Houttuynia cordata Thunb, are formed into a-hydroxyalkanesulfonate derivatives by the addition reaction of sodium bisulfite, and are separated by adding sodium bicarbonate formed into other lipid-soluble materials. 3 compounds were elucidated by means of MS. They are: decanoyl acetaldehyde(YXC-3) , sodium houttuyfonate(YXC-2) , methyl nonyl ketone(YXC-1) .
     To sum up, systematical investigations on the chemical components of Gendarussa vulgaris, Trichosanthes hupehensis and Houttuynia cordata Thunb have been performed, 17 compounds have been isolated. Among them, 11 compounds were isolated from this plant for the first time.
引文
[1] 中国药材公司.中国中药资源志要.科学出版社,1994,1164-1176.
    [2] Huo CH, Wang B, Lin WH, et al. Benzoxazinones from Acanthus ilicfolius. Biochemical Systematics and Ecology, 2005,33(6): 643-645.
    [3] Wahidulla S, Bhattacharjee JJ. Benzoxazinoids from Acanthus illicifolius. Journal of the Indian Institute of Science. 2001,81(4): 485-489.
    [4] Huo CH, An DG, Wang B, et al. Structure elucidation and complete NMR spectral assignments of a new benzoxazolinone glucoside from Acanthus ilicifolius. Magnetic Resonance in Chemistry, 2005, 43(4): 343-345.
    [5] Kanchanapoom T, Kamel MS, Kasai R, et al. Benzoxazinoid glucosides from Acanthus ilicifolius. Phytochemistry, 2001.58(4): 637-640.
    [6] D'Souza L, Wahidulla S, Mishra PD. Bisoxazolinone from the mangrove Acanthus ilicifolius. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 1997, 36B(11): 1079-1081.
    [7] Kokpol U, Chittawong V, Miles DH. Chemical constituents of the roots of Acanthus illicifolius. Journal of Natural Products, 1986, 49(2): 355-356.
    [8] Abd El-Megeed, Hashem. F, Ahmed Elsawi S. Isoquinoline and quinazoline alkaloids of Adhatoda vasica. Pharmaceutical and Pharmacological Letters, 1998, 8(4): 167-169.
    [9] Thappa RK, Agarwal SG, Dhar KL, et al. Two pyrroloquinazolines from Adhatoda vasica. Phytochemistry, 1996, 42(5): 1485-1488.
    [10] Joshi BS, Bai Yl, Puar MS, et al. 1H-and 13C-NMR assignments for some pyrrolo[2,1-b]quinazoline alkaloids of Adhatoda vasica. Journal of Natural Products, 1994, 57(7): 953-962.
    [11] Sharma DN, Khosa RL, Joshi VK. Content and seasonal variation of alkaloids of Indian Vasaka from Varanasi. Indian Drugs, 1990, 27(5): 328.
    [12] Poi R, Adityachaudhury N. Occurrence of (+)-vasicinone in Adhatoda vasica Nees. Journal of the Indian Chemical Society, 1988, 65(11): 814.
    [13] Johne S, Groeger D, Hesse M. Alkaloids. New alkaloids from Adhatoda vasica. Helvetica Chimica Acta, 1971,54(3): 826-34.
    [14] Xie HH, Wei HH, Yashikawa M, el al. Benzoxazinoid glucosides from Baphicacanthus cusia. Biochemical Systematics and Ecology, 2005, 33(5): 551-554.
    [15] Honda G. Tabata M. Isolation of antifungal principle tryptanthrin fiom Strobilanthes cusia. Kuntze. Planta Medica, 1997, 36(1): 85-86.
    [16] Reddy VLN, Reddy SM, Ravikanth V, et al. A new bis-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Natural Product Research, 2005,19(3): 223-230.
    [17] 胡昌奇,周炳南.穿心莲中两种新的二萜内酯甙的分离和结构鉴定.药学学报,1982,17(6):435-440
    [18] Matsuda T, Kuroyanagi M, Sugiyama S. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem Pharm Bull, 1994, 42(6): 1216-1225.
    [19] 张树军,安东政义.穿心莲中一种新内酯的立体结构研究.中国药物化学杂志,1997,7(4):270-273
    [20] Jantan I, Waterman PG. Ent-14β-hydroxy-8(17),12-labdadien-16,15-olide-3, 19-oxide: a diterpene from the aerial parts of Andrographis paniculata. Phytochemistry, 1994, 37 (5): 1477-1479.
    [21] Balmain A, Connolly JD. Minor diterpenoid constituents of Andrographis paniculata Nees. J Chem Soc Perkin Trans. 1973, 1(12): 1247-1251.
    [22] Reddy MK, Reddy MV, Gunasekar, D, et al. A flavone and an unusual 23-carbon terpenoid from Andrographis paniculata, phytochemistry, 2003, 62(8): 1271-1275.
    [23] Suksamrarn S, Wongkrajang K, Kirtikara K, et al. Iridoid glucosides from the flowers of Barleria lupulina. Planta Medica, 2003, 69(9): 877-879.
    [24] Kanchanapoom T, Kasai R, Yamasaki K. Iridoid glucosides from Barleria lupulina. Phytochemistry, 2001,58(2): 337-341.
    [25] Tuntiwachwuttikul P, Pancharoen O, Taylor WC. Iridoid glucosides of Barleria lupulina. Phytochemistry, 1998, 49(1): 163-166.
    [26] Purushothaman KK, Saraswathy A, Sarada A, et al. Structural studies of iridoids fiom Barleria prionitis L. Indian Drugs, 1988, 26(3): 97-100.
    [27] Jensen HFW, Jensen SR, Nielsen BJ. Eranthemoside, a new iridoid glucoside from Eranthemum pulchellum (Acanthaceae). Phytochemistry, 1987, 26(12): 3353-3354.
    [28] Shen CC, Ni CL, Huang YL, et al. Furanolabdane Diterpenes from Hypoestes purpurea. Journal of Natural Products, 2004, 67(11): 1947-1949.
    [29] Yuan XH, Li BG, Zhang XY, et al. Two Diterpenes and Three Diterpene Glucosides from Phlogacanthus curviflorus. Journal of Natural Products, 2005,68(1): 86-89.
    [30] Damtoft S, Frederiksen LB, Rosendal JS. Alatoside and thunaloside, two iridoid glucosides from Thunbergia alata. Phytochemistry, 1994, 35(5): 1259-1261.
    [31] Ismail LD, El-Azizi MM, Khalifa TI, et al. Iridoid glycosides from Thunbergia grandiflora. Phytochemistry, 1996,42(4): 1223-1225.
    [32] Wun J, Zhang S, Xiao Q, et al. Megastigmane and flavone glycosides from Acanthus ilicifolius. Pharmazie, 2003, 58(5): 363-364.
    [33] Nair AGR, Pouchaname V. Methylapigenin 7-O-β-D-glucuronate-a new flavone glycoside from Acanthus ilicifolius. Journal of the Indian Chemical Society. 1987, 64(4): 228-229.
    [34] Minocha PK, Tiwari KP. Chemical constituents of Acanthus illicifolius Linn. Polish Journal of Chemistry, 1980, 54(10): 2089-90.
    [35] Bhartiya HP, Gupta PC. A chalcone glycoside from the flowers of Adhatoda vasica. Phytochemistry, 1982, 21 (1): 247.
    [36] Rangaswami S, Seshadri TR. Crystalline chemical components of the flowers of Adhatoda vasica. Current Science, 1971,40(4): 84-85.
    [37] Reddy VLN, Reddy SM, Ravikanth V, et al. A new bis-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Natural Product Research, 2005, 19(3): 223-230.
    [38] Rao YK, Vimalamma G, Rao CV, et al. Flavonoids and andrographolides fiom Andrographis paniculata. Phytochemistry, 2004, 65(16): 2317-2321.
    [39] Reddy MK, Reddy MVB, Gunasekar D, el al. A flavone and an unusual 23-carbon terpenoid from Andrographis paniculata. Phytochemistry, 2003, 62(8): 1271-1275.
    [40] Gupta KK, Taneja SC, Dhar KL. Flavonoid glycoside of Andrographis paniculata. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 1996, 35(5): 512-513.
    [41] Kuroyanagi M, Sato M, Ueno A, et al. Flavonoids from Andrographis paniculata. Chemical & Pharmaceutical Bulletin, 1987, 35(11): 4429-4435.
    [42] Gupta KK, Taneja SC, Dhar KL, et al. Flavonoids of Andrographis paniculata. Phytochemistry, 1983, 22(1): 314-315.
    [43] Govindachari TR, Pai BR, Srinivasan M, et al. Investigation of Andrographis paniculata. Indian Journal of Chemistry, 1969, 7(3): 306.
    [44] Harborne JB. Comparative biochemistry of flavonoids. Ⅰ. Distribution of chalcone and aurone pigments in plants. Phytochemistry, 1966, 5(1): 111-5.
    [45] El-Emary NA, Makboul MA, Abdel-Hafiz MA, et al. Phytochemical study of Barleria cristata L. and Barleria prionitis L. cultivated in Egypt. Bulletin of Pharmaceutical Sciences, 1990, 13(1): 65-72.
    [46] Subramanian SS, Nair AGR. Flavonoids of Ruellia prostrata and Barleria cristata. Journal of the Indian Chemical Society, 1972, 49(8): 825-826.
    [47] Gupta HM, Saxena VK. A new acylated luteolin-7-O-β-D-glucoside from the roots of Barleria prionitis (Linn.). National Academy Science Letters, 1984, 7(6): 187-189.
    [48] Teshima KI, Kaneko T, Ohtani K, et al. C-glycosyl flavones from Clinacanthus nutans. Natural Medicines, 1997, 51 (6): 557.
    [49] Subramanian NS, Nagarajan S. Phytochemical studies on the flowers of Rhinacanthus nasuta. Journal of the Indian Chemical Society, 1981, 58(9): 926-927.
    [50] Huang J, Tu ML, Xie JX. Chemical constituents of the Chinese herb Hong-ze-lan, Strobilanthes japonicus (Thunb.) Miq. Yaoxue Xuebao, 1987, 22(4): 264-268.
    [51] Nair AGR. Subramanian SS. Apigenin glycosides from Thunbergia fragrans and Ruellia tuberosa. Current Science, 1974, 43(15): 480.
    [52] Subramanian SS. Nair AGR. Flavonoids of Thunbergia grandiflora and Asystasia travancorica. Current Science, 1971, 40(15): 404.
    [53] Kokpol U, Chittawong V, Miles DH. Chemical constituents of the roots of Acanthus illicifolius. Journal of Natural Products, 1986, 49(2): 355-356.
    [54] Minocha PK, Tiwari KP. Chemical constituents of Acanthus illicifolius Linn. Polish Journal of Chemistry, 1980, 54(10): 2089-2090.
    [55] Rahman AU, Sultana N, Akhter, F, et al. Phytochemical studies on Adhatoda vasica. Natural Product Letters, 1997, 10(4): 249-256.
    [56] Jain MP, Koul SK, Dhar KL, et al. Novel nor-harmal alkaloid from Adhaioda vasica. Phytochemistry, 1980, 19(8): 1880-1882.
    [57] El-Emary NA, Makboul MA, Abdel-Hafiz MA, et al. Phytochemical study of Barleria cristata L. and Barleria prionitis L. cultivated in Egypt. Bulletin of Pharmaceutical Sciences, 1990, 13(1): 65-72.
    [58] Lin JT, Li HM, Yu JG. Studies on the chemical constituents of Niu Xu Hua (Clinacanthus nutans). Zhongcaoyao, 1983, 14(8): 337-8,340.
    [59] Zhang XL, Yu ZW, Guo FQ, et al. Studies on chemical constituents of Gendarussa ventricosa. Tianran Chanwu Yanjiu Yu Kaifa, 2004, 16(2): 131-132.
    [60] Yadava RN. A new biologically active triterpenoid saponin from the leaves of Lepidagathis hyalina Nees. Natural Product Letters, 2001, 15(5): 315-22.
    [61] Wang CC, Kuoh CS, Wu TS. Constituents of Peritrophe japonica (Thunb.) Bremk. Journal of the Chinese Chemical Society, 1992, 39(4): 351-353.
    [62] Wu j, Zhang S, Li QX, et al. Two new cyclolignan glycosides from Acanthus ilicifolius. Zeitschrift fuer Naturforschung, B: Chemical Sciences. 2004, 59(3): 341-344.
    [63] Kanchanapoom T, Kamel MS, Kasai R, et al. Lignan glucosides from Acanthus ilicifolius. Phytochemistry, 2001, 56(4): 369-372.
    [64] Shen CC, Ni CL, Huang YL, et al. Furanolabdane Diterpenes from Hypoestes purpurea. Journal of Natural Products, 2004, 67(11): 1947-1949.
    [65] Kernan MR, Sendl A, Chen JL, et al. Two new lignans with activity against influenza virus from the medicinal plant Rhinacanthus nasutus. Journal of Natural Products, 1997, 60(6): 635-637.
    [66] Weng JR, Ko HH, Yeh TL, et al. Two new arylnaphthalide lignans and antiplatelet constituents from Justicia procumbens. Archivder Pharmazie (Weinheim, Germany), 2004, 337(4): 207-212.
    [67] Chen CC, Hsin WC, Huang YL. Six New Diarylbutane Lignans from Justicia procumbens. Journal of Natural Products. 1998, 61(2): 227-229.
    [68] Chen CC, Hsin WC, Ko FN, et al. Antiplatelet arylnaphthalide lignans from Justicia procumbens. Journal of Natural Products. 1996, 59(12): 1149-1150.
    [69] Okigawa M, Maeda T, Kawano N. Isolation and structure of three new lignans from Justicia procumbens var. Leucantha. 1970, 26( 18):4301 -4305.
    [70] Okigawa M, Maeda T, Kawano N. Isolation of neojusticin from Justicia procumbens. Chemical & Pharmaceutical Bulletin. 1970, 18(4): 862-863.
    [71] Ohta K, Munakata K. Justicidin C and D, the l-methoxy-2,3-naphthalide lignans, isolated from Justicia procumbens. Tetrahedron Letters, 1970, 12, 923-925.
    [72] Ganga Raju SV, Naidu KC, Chakradhar V, et al. Anthraquinones from Barleria prionitis. Indian Drugs, 2002, 39(7): 400-401.
    [73] Wu TS, Hsu HC, Wu PL, et al. Rhinacanthin-Q, a naphthoquinone from Rhinacanthus nasutus and its biological activity. Phytochemistry, 1998, 49(7): 2001-2003.
    [74] Sendl A, Chen JL. Jolad SD, et al. Two new naphthoquinones with antiviral activity from Rhinacanthus nasutus. Journal of Natural Products, 1996, 59(8): 808-811.
    [75] Wu TS, Tien HJ, Yeh MY, et al. Isolation and cytotoxicity of rhinacanthin A and B, two naphthoquinones, from Rhinacanthus nasutus. Phytochemistry, 1988, 27(12): 3787-3788.
    [76] Wu J, Zhang S, Huang JS, et al. New aliphatic alcohol and (Z)-4-coumaric acid glycosides from Acanthus ilicifolius. Chemical & Pharmaceutical Bulletin, 2003,51(10): 1201-1203.
    [77] Singh RS, Misra TN, Pandey HS, et al. A new aliphatic alcohol from Adhatoda vasica. Fitolerapia, 1992, 63(3): 262-263.
    [78] Babu B H; Shylesh B S; Padikkala J. Tumour reducing and anticarcinogenic activity of Acanthus ilicifolius in mice. Journal of ethnopharrnacology, 2002, 79(1): 27-33.
    [79] Cheung HY, Cheung SH, Li J, et al. Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells. Planta Med, 2005, 71 (12): 1106-1111.
    [80] Kumar RA, Sridevi K, Kumar NV, et al. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol, 2004, 92 (3): 291-295.
    [81] Rajagopal S, Kumar RA, Deevi DS, et al. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol, 2003, 3 (3): 147-158.
    [82] Chakraborty, A.; Brantner, A.H. Study of alkaloids from Adhatoda vasica Nees on their antiinflammatory activity. Phytotherapy Research, 2001, 15(6), 532-534.
    [83] Ji LL, Wang Z, Dong F, et al. Andrograpanin, a compound isolated from anti-inflammatory traditional Chinese medicine Andrographis paniculata, enhances chemokine SDF-lalpha-induced leukocytes chelnotaxis. J Cell Biochem, 2005, 95 (5): 970-978.
    [84] Burgos RA, Seguel K, Perez M, et al. Andrographolide inhibits IFN-gamma and IL-2 cytokine production and protects against cell apoptosis. Planta Med, 2005, 71 (5): 429-434.
    [85] Hidalgo MA, Romero A, Figueroa J, et al. Andrographolide interferes with binding of nuclear factor-kappa B to DNA in HL-60-derived neutrophilic cells. Br J Pharmacol, 2005, 144 (5): 680-686.
    [86] Iruretagoyena MI, Tobar JA, Gonzalez PA, et al. Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Ther, 2005, 312 (1): 366-372.
    [87] Chen JH, Hsiao G, Lee AR, et al. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway. Biochem Pharmacol, 2004, 67 (7): 1337-1345.
    [88] Batkhuu J, Hattori K, Takano F, et al. Suppression of NO production in activated macrophages in vitro and ex vivo by neoandrographolide isolated from Andrographis paniculata. Biol Pharm Bull, 2002, 25 (9): 1169-1174.
    [89] Babu B H; Shyiesh B S; Padikkala J. Antioxidant and hepatoprotective effect of Acanthus ilicifolius. Fitoterapia, 2001, 72(3), 272-277.
    [90] Kapil A, Koul IB, Baneriee SK, et al. Antihepatotoxic effects of major diterpenoid constituents of Andrographis paniculata. Biochem Pharmacol, 1993, 46 (1): 182-185.
    [91] Shukla B, Visen PK, Patnaik GK, et al. Choleretic effect of andrographolide in rats and guinea pigs. Planta Med, 1992, 58 (2): 146-149.
    [92] 吴基良,刘叔珍,李立中,等.穿心莲内酯对大鼠实验性心肌缺血的保护作用.中医药研究,1996,12(4):61,64.
    [93] Amroyan E, Gabrielian E, Panossian A, et al. Inhibitory effect of andrographolide from Andrographis paniculata on PAF-induced platelet aggregation. Phytomedicine, 1999, 6 (1): 27-31.
    [94] Yu BC, Hung CR, Chen WC, et al. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats. Planta Med, 2003, 69 (12): 1075-1079.
    [95] Akbarsha MA, Murugarian P. Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spen-natozoa. Phytother Res, 2000, 14 (6): 432-435.
    [1] 中国药材公司.中国中药资源志要.科学出版社,1994,1164-1176.
    [2] Wahi, SP; Wahi, AK; Kapoor, R. Chemical study of the leaf of Justicia gendarussa Burm. Journal of Research in Indian Medicine, 1974, 9(1), 65-66.
    [3] 中华人民共和国卫生部.中华人民共和国药典二部(1995年版),1995,附录15-16.
    [4] 阚连娣,胡全,巢志茂,等.木鳖子脂肪油不皂化物质的化学成分研究.中国中药杂志,2006,31(17):1441-1444.
    [5] 崔益泠,穆青,胡昌奇.红花锦鸡儿化学成分的研究.中国药学杂志,39(3):173-175.
    [1] 乐崇禧.瓜蒌子的生药学研究.中国中药杂志,1992,17(3):133-140.
    [2] 和祥久,邱峰,姚新生.栝楼属植物化学成分[J].国外医药.植物药分册,2002,17(1):11-13.
    [3] Homberg E E, Seher A. Sterine in Trichosanthes kirilowii. Phytochemistry. 1977, 16(2): 288-290.
    [4] Akihisa T, Yasukawa K, Kimura Y, et al. 7-Oxo-10-cucurbitadienol from the seeds of Trichosanthes kirilowii and its anti-inflammatory effect Phytochemistry, 1994, 36 (1): 153-157.
    [5] Kimura Y, Akihisa T, Yasukawa K, et al. Cyclokirilodiol and isocyclokirilodiol: two novel cycloartanes from the seeds of Trichosanthes kirilowii Maxim.. Chem Pharm Bull, 1997, 45(2): 415-417.
    [6] Akihisa T, Tamura T, Matsumoto T. Karounidiol [D:C-fiiedo-oleana-7,9(11)- diene-3,29-diol] and its 3-O-benzoate: novel pentacyclic triterpenes from Frichosanthes kirilowii. X-ray molecular structure of karounidiol diacetate. J Chem Soc Perkin Trans I, 1988, (3): 439-443.
    [7] Akihisa T, Kokke W C M C, Tamura T, et al. 7-Oxodihydrokarounidiol [7-oxo- D:C-friedo-olean-8-ene-3α,29-diol], a novel triterpene from Trichosanthes kirilowii. Chem Pharm Bull, 1992, 40(5): 1199-1202.
    [8] Akihisa T, Kokke W C M C, Krause J A, et al. 5-Dehydrokarounidiol [D:C-friedo-oleana-5,7,9(11)-triene-3α,29-diol], a novel triterpene from Trichosanthes kirilowii Maxim. Chem Pharm Bull, 1992, 40(12): 3280-3283.
    [9] Akihisa T, Kokke W C M C, Kimura Y et al. Isokarounidiol [D:C-friedooleana -6,8-diene-3α,29-diol]: the first naturally occurring triterpene with a Δ~(6,8)-conjugated diene system. Iodine-mediated dehydrogenation and isomerization of its diacetate. J Org Chem, 1993, 58, 1959-1962.
    [10] Akihisa T, Yasukawa K, Kimura Y, et al. Five D:C-friedo-oleananes from the seeds of Trichosanthes kirilowii Maxim. and their anti-inflammatory effects. Chem Pharm Bull, 1994, 42(5): 1101-1105.
    [11] Kimura Y, Akihisa T, Yasukawa K, et al. Structures of five hydroxylated sterols from the seeds of Triehosanthes kirilowii Maxim. Chem Pharm Bull, 1995, 43 (10): 1813-1817.
    [12] 巢志茂,何波:双边栝楼种子中不皂化类脂的化学成分研究,中国药学杂志,2001,36(3):157-159.
    [13] 巢志茂,何波,张颖,秋久俊搏:栝楼种子中不皂化类脂的化学成分研究中国药学杂志,2000,35(11):733-736.
    [14] 时岩鹏,姚庆强,刘拥军,等.栝楼化学成分的研究及其α-菠菜甾醇的含量测定(Ⅰ).中草药,2002,33(1):14-16.
    [15] 邰宁文,李丰,李臻,等。栝楼种子中一种新型小分子核糖体失活蛋白S-tricliokirin的纯化和部分性质.生物化学与生物物理学报,2000,32(5):495-498.
    [16] 李丰,杨欣秀,胡维国。栝楼籽中一种新的具有蛋白质生物合成抑制活 性的多肽-Trichokirin S_1的分离、纯化和性质.生物化学与生物物理学报,2003,35(9):841-846.
    [17] Casellas P, Dussossoy D, Falasca AI, et al. Trichokirin, a ribosome-inactivating protein from the seeds of Trichosanthes kirilowii Maxim. purification, partial characterization and use for preparation of immunotoxins. Eur J Biochem, 1988, 176 (3): 581-588.
    [18] 王润华,郑硕,沈倍奋.栝楼素的纯化及其免疫毒素的制备.生物化学杂志.1993,9(5):586-589.
    [19] Dong T X, Ng T B, Yeung H W, et al. Isolation and characterization of a novel ribosome-inactivating protein, β-kirilowin, from the seeds of Trichosanthes kirilowii. Biochem Biophys Res Commun, 1994:199(1): 387-393.
    [20] Wong R N S, Dong T X, Ng T B, et al. α-Kirilowin, a novel ribosome-inactivating protein from the seeds of Trichosanthes kirilowii (family Cucurbitaceae): a comparison with β-kirilowin and other related proteins. Int J Pept Protein Res, 1996, 47(12): 103-109.
    [21] Falasca A I, Abbondanza A, Barbieri L, et al. Purification and partial characterization of a lectin from the seeds of Trichosanthes kirilowii Maximowicz. FEBS Lett, 1989, 246(12): 159-162.
    [22] 巢志茂,刘静明,王伏华.五种瓜蒌子的微量元素分析.微量元素与健康研究,1993,10(2):39-40.
    [23] 凌宏,鲁翔,董传仁,等.瓜蒌心得安对血小板体外聚集和TXA_2合成的影响.湖北医学院学报,1988,9(2):138.
    [24] 黄美兰,贝伟剑.大子栝楼和栝楼的药理作用比较.湖南中医药导报,1996,2(1):37-39.
    [25] 王红光,孙喜杭,金惠铭等.瓜蒌注射液对微血管作用的实验研究.中草药,1984,15(1):29.
    [26] 上海市化工“七·二一”工人大学有机系中草药组,上海中医药工业药物实验厂,上海第十八制药厂,等.栝楼的研究Ⅲ 栝楼有效成分的研究初 报——有效部位分离、药理及临床观察.医药工业,1975,(1):21.
    [27] 上海市中医药工业药物实验厂,上海市化工“七·二一”工人大学有机系中草药组,上海第一制药厂,等.栝楼的研究Ⅳ 栝楼药理作用的初步研究.医药工业,1975,(7):17.
    [28] 吴波,曹红,陈思维,等.瓜蒌提取物对缺血缺氧及缺血后再灌注损伤心肌的保护作用.沈阳药科大学学报,2000,17(6):450-451.
    [29] 秦林,高伟良.瓜蒌对子宫颈癌细胞和巨噬细胞的影响.山东中医学院学报,1995,19(6):414.
    [30] Yasukawa K, Akihisa T, Tamura T, et al. Inhibitory effect of karounidiol on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Biol Pharm Bull, 1994, 17 (3): 460.
    [31] Kimura Y, Kasukawa K, Takido M, et al. Inhibitory effect of some oxygenated stigrnastane-type sterols on 12-O-tetradecanoylphorbol-13-acetate-induced inflamma-tion in mice. Biol Pharm Bull, 1995, 18(11): 1617.
    [32] 阴健,郭力弓.中药现代研究与临床应用(1).北京学苑出版社,1993,260.
    [33] 药学系中药研究小组.抗癌中药的研究Ⅰ.中药的抗癌作用.北京医学院学报,1959,(1):104.
    [34] 中医研究院中药研究所肿瘤研究组.科技资料选编,1972,136.
    [35] Takano F, Yoshizaki F, Suzuki K, el al. Anti-ulcer effects of Trichosanthes fruits. Chem Pharm Bull, 1990, 38 (5): 1313.
    [36] 陈思义,任丽娟,马双和.栝楼抗癌成分的研究.南京药学院学报,1959,(4):1.
    [1] 乐崇熙,诚静荣.栝楼属药用植物初报.植物分类学报,1974,17(4):415.
    [2] 周凤琴,徐凌川,张永清,等.山东瓜蒌生产情况调查.山东中医药大学 学报,2002,26(5):379-381.
    [3] 黄璐琦,姚三桃.湖北栝楼根化学成分研究.中国中药杂志,1993,18(8):491-492.
    [4] 巢志茂,刘静明,王伏华,等.五种瓜楼皮挥发性有机酸的分析.中国中药杂志,1992,17(11):673.
    [5] 巢志茂,刘静明.湖北栝楼果皮挥发油化学成分的研究.中国药学杂志,1996,31(3):140-141.
    [6] AkihisaT, Tamura T, Matsumoto T, etal. Karounidiol [D: C-friedo-oleana-7, 9(11)-diene-3α, 29-diol] and its 3-O-benzoate: novel pentacyclic triterpenes from Trichosanthes kirilowi, X-ray molecular structure of karounidiol diacetate. J Chem Soc Perkin Trans I, 1988, (3): 439-443.
    [7] 巢志茂,何波,张颖,等.栝楼种子中不皂化类脂的化学成分研究.中国药学杂志,2000,35(11):733-736.
    [8] 阚连娣,胡全,巢志茂,等.木鳖子脂肪油不皂化物质的化学成分研究.中国中药杂志,2006,31(17):1441-1444.
    [9] Akihisa T, Kokke WCMC. Tamura T, et al. 7-Oxodihydrokarounidiol [7-oxo-D: C-friedo-olean-8-ene-3α-29-diol]: a novel triterpene from Trichosanthes kirilowii. Chem Pharm Bull, 1992, 40(5): 1199-1202.
    [1] 中国药材公司.中国中药资源志要.科学出版社,1994,347-348.
    [2] 罗琥捷,李临生,王军.干品鱼腥草挥发油成分分析.陕西中医,2005,26(2):170-172.
    [3] 曾虹燕,蒋丽娟,张英超.鱼腥草挥发油的化学成分.植物资源与环境学报,2003,12(3):50-52.
    [4] 赖闻玲,么小江,张杰,鱼腥草注射液化学成分研究.赣南师范学院学报,2005,3:47-49.
    [5] 卫生部五七干校制药厂.合成鱼腥草素的生产工艺与临床疗效.医药工业,1972,8:5.
    [6] 杨劲松,程纯儒,李举联.鱼腥草素钠的合成.华西药学杂志,2005,20(1):31-33.
    [7] 朱仁发,何勇,於奇等.新鱼腥草素钠的新合成研究.安徽医药,2004,9(2):89-90.
    [8] 张辉,田英.鱼腥草中癸酰乙醛含量的测定.光谱实验室,2003,20(4):583-585.
    [9] 吴少尉,董延奎.光度法测定鱼腥草中有效成分的质量分数.湖北民族学院学报(自然科学版),2002,20(2):59-60.
    [10] 谭宝秀,段林东,王放银等.鱼腥草挥发油的提取及其抑菌效果研究.邵阳学院学报(自然科学版).2005,2(1):80-81.
    [11] 程训民,沈继录,徐元宏等.鱼腥草素钠(粉针剂)体外抗菌活性的初步研究.时珍国医国药,2005,16(5):465-466.
    [12] 郭惠,姚灿,何士勤.鱼腥草抗流感病毒诱导细胞凋亡的研究.赣南医学院学,2003,23(6):615-616
    [13] Havashi K, Kamiya M, Hayashi T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med, 1995, 61 (3): 237-241.
    [14] 王大勇,毕秀丽,周园等.合成鱼腥草素对巨噬细胞呼吸爆发、细胞内游离钙离子浓度及T细胞分泌白细胞介素-2的影响.2003,20(3):210-214.
    [15] 邵兰,于庆海,吴红艳等.合成鱼腥草素对小鼠免疫功能的影响.沈阳药科大学学报.1999,16(3):209-211.
    [16] 李爽,于庆海,张劲松.合成鱼腥草素的抗炎镇痛作用.沈阳药科大学学报,1998,15(4):272-274.
    [17] 陈世林.浅淡鱼腥草的临床应用.四川中医,1997,15(11):14.
    [18] 张晓云,赵文,方中,等.鱼腥草注射液治疗急性感染型疾病315例临床疗效总结.中国中医急症,1995,4(6):226.
    [19] 马淙.鱼腥草用于雾化吸入治疗急性咽炎的观察护理.中国中西医结合耳鼻咽喉科杂志,2002,10(4):201.
    [20] 连明珍.鱼腥草注射液治疗小儿急性呼吸道感染150例.天滓中医,2001,18(1):47.
    [21] 陈勘玲,陈强.999鱼腥草注射液治疗小儿肺炎疗效观察.江西中医学院学报,2000,12(4):158.
    [22] 李晓霞.鱼腥草雾化吸入治疗小儿肺炎36例.陕西中医,2002,23(11):991.
    [23] 秦大军.鱼腥草治疗单纯疤疹性角膜炎.中国中医眼科杂志,1995,5(3):181.
    [24] 曾自明,喻京生,李被.鱼腥草注射液治疗急慢性角结膳炎临床观察.中国中医急症,2000,9(1):18.
    [25] 叶美娇.鱼腥草根治疗早期麦粒肿.中西医结合眼科杂志,1995,13(1):34.
    [26] 唐勋伦.板蓝根和鱼腥草滴眼治疗红眼病.中西医结合眼科杂志,1995,13(4):256.
    [27] 陈志强,张鹏.鱼腥草注射液超声雾化治疗急性卡他性结膜炎145例.山西中医,2002,18,(1):41.
    [28] 张燕.鱼腥草注射液鼻窦灌注疗法治疗慢性鼻窦炎300例.新中医,2002,34(11):53.
    [29] 胡思琪.鱼腥草液治疗口腔炎50例.湖北中医杂志,1993,15(6):40.
    [30] 许文红.鱼腥草注射液冷喷法治疗面部激素依赖性皮炎.中国医药科技,1999,6(3):198.
    [31] 许红构,朱朝耀.鱼腥草注射液治疗儿章流行性脑膜炎49例.中国中医急症,2000,9(3):110.
    [32] 王玲飞.鱼腥草注射液治疗带状疱疹54例观察.实用中医药杂志,2001,17(1):26.
    [33] 张健,张双禄,阳家材.鱼腥草注射液尿道灌注治疗淋菌性尿道炎.中国中医急症,2000,9(1):19.
    [34] 秦海光,于佐文,张春光.鱼腥草注射液配合西药局部封闭治疗21例急性化脓性睾丸炎.中国中医急症,2000,9(1):19.
    [35] 滑秀云.穴位封闭治疗盆腔炎76例.新乡医学院学报,1995,12(4):44.
    [36] 常玉清.中西医结合治疗输卵管炎性不孕50例.中国中西医结合杂志,1993,13(9):557.
    [37] 谢志耀,赵恒侠,杜少辉,等.鱼腥草注射液治疗妊娠期急性尿路感染疗效观察.江西中医药,1999,30(5):32.
    [38] 吴红卫.107例鱼腥草注射液不良反应的文献分析.广东药学院学报.2003,19(1):46-47.
    [1] 刑其毅,许瑞秋,周政等.基础有机化学(第二版)上册.高等教育出版社,1993,460-461.
    [2] 苗永,丌平言,雷文,等.亚硫酸氢钠反萃取法提取香兰素工艺特性研究,精细化工,1999,16(6):37-40.
    [3] 张亚中,张彤,徐莲英.HPLC法测定复方四季青片中鱼腥草素的含量.上海中医药杂志,2005,39(11),56-57.
    [4] 曾志,石建功,曾和平,等.有机质谱学在中药鱼腥草研究中的应用.分析化学,2003,31(4):399-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700