石灰石—石膏湿法脱硫过程的吸收、氧化及结晶机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着国家对二氧化硫排放标准的日趋严格,我国引进了当前世界范围内使用较多的石灰石-石膏湿法烟气脱硫技术,应用在大型燃煤电厂上进行排放二氧化硫控制。我国发电机组普遍存在煤种不稳定、机组参与调峰等本国国情,因此在国外机组上应用情况良好的湿法脱硫工艺在国内应用过程中出现了投运率不足及脱硫性能不达标等问题。由于石灰石-石膏湿法脱硫工艺涉及到的传质及化学反应机理十分复杂,尤其是吸收段碱性液滴与二氧化硫间的气液传质机理、塔内二氧化硫浓度场的分布、脱硫过程中亚硫酸盐的氧化及硫酸盐结晶等直接关系到系统运行的稳定性和脱硫性能,有必要对此加以深入研究。
     本文通过深入分析石灰石浆液吸收二氧化硫过程中的物理及化学反应过程,建立了石灰石-石膏湿法吸收二氧化硫模型,通过对模型求解得出了化学反应对二氧化硫吸收的增强影响。结果表明,二氧化硫吸收化学反应增强因子随着石灰石浆液pH值的升高而增大,随着二氧化硫传质驱动力的增大呈对数关系衰减。基于模型计算结果进行了石灰石-石膏湿法二氧化硫吸收过程的数值模拟,并结合实验对数值模拟结果进行了验证,得出了进口二氧化硫浓度、烟速和喷淋量对塔内二氧化硫浓度场分布和脱硫效率的影响,研究结果可为实际喷淋塔优化设计提供指导。
     采用数值模拟和粒子成像技术(PIV)研究了氧气在液相中的动态传质过程。结果表明,在相同搅拌速度下,圆盘涡轮式搅拌器产生的湍流动能分布范围要大于桨式搅拌器产生的湍流动能,而且湍流动能分布更均匀,湍流强度更大,圆盘涡轮式搅拌器更有助于氧气的传质。
     研究了亚硫酸盐的氧化反应涉及到气液界面的动力学性质,给出了亚硫酸盐氧化反应动力学特性和传质机理。分析了亚硫酸钙由固相到液相的溶解、氧从气相到液相的扩散、液相中的化学反应对亚硫酸根氧化速率的影响,并对亚硫酸根氧化速率控制步骤进行了推断。采用铁锰金属离子作为添加剂,通过改变pH值、浆液浓度、空气流量、温度等参数,研究了石灰石-石膏湿法脱硫工艺条件对亚硫酸盐氧化速率的影响,得出了氧化速率与工艺条件的关系。结果表明在一定的pH值和亚硫酸根的浓度条件下,铁锰金属离子的存在可提高亚硫酸根氧化速率达到10-30倍。
     研究了石灰石-石膏湿法脱硫结晶过程对二水硫酸钙晶体的诱导时间、结晶速率、晶体尺寸分布以及形态的影响,为进一步量化金属离子对石膏晶体脱水性能的影响,开发了对SEM电镜照片的边缘检测程序。在结合离子活度的基础上,给出了湿法脱硫条件下金属离子对固相石膏晶体表面能及结晶速率的影响,实验结果表明金属离子的存在提高了结晶的诱导时间,抑制了晶体在特定方向的增长。同时金属离子对不同结晶面的生长速率影响各不相同,从而使固相石膏晶体由板状结构变为针状结构。
In recent years, the emission standards of sulfur dioxide have been increasingly stricted.In carrying out to control the emissions of sulfur dioxide, limestone-gypsum wet FGD has been introduced and applied to the large-scale coal-fired power plant.Due to the prevalence of coal instability and the shaving peak for the national power plant, the local problem has occurred in application of wet FGD technology, such as the decreased operation hours and the removal efficiency.As a result of limestone-gypsum wet FGD technology involved in mass transfer and chemical reaction mechanism is very complex, especially the mass transfer mechanism in the absorption of sulfur dioxide by the falling alkaline droplets and the distribution of sulfur dioxide gas concentration field in the tower, the process of the oxidation of sulfite and the crystallization of sulfate were directly bearing on the operation of the system stability and desulfurization performance. These factors are very important for designing the reaction devices, reducing initial investment and operation cost, operating stably and maintaining easily and it is worth of research in depth.
     Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed, and a model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented, in the model. The calculations show that the enhancement factor exponentially grows with an increasing value of pH and logarithmically decays with an increasing value of the resistance force. To verify the accuracy of the model, experiments were also carried out, and the results suggest that the model, after combining the physical performance of the spray and the enhancement factor, can more precisely describe SO2 absorption in a spray scrubber. Furthermore, including the effects of the concentration of inlet SO2, flue gas velocity and spry on the fileld distribution and desulfurization performance, several simulations were launched which describe and clarify the effects of variables on SO2 absorption. The results of numerical simulation can provide a basis for further design and optimization of the scrubber.
     The process of oxygen transfer in a vessel was presented by CFD simulations and PIV (Particle Image Velocity). The logarithmical expression has been found which successfully describe the relation between the concentration of oxygen and the dissolution time. The disc impeller which can bring the larger turbulent kinetic energy dissipation than the narrow impeller and the dissolution concentration of oxygen grows faster with an increasing value of impeller speed.
     To further look through the oxidation mechanism of sulfite, mathematical models of the general oxidation of calcium sulfite were presented,which included the dissolution of calcium sulfite from solid to liquid,diffusion of oxygen from gas to liquid,and chemical reaction in liquid.Based on the experimental results of characterized kinetics,the rate control step of macroscopical kinetics was inferred. The effects of manganese and ferric ions on the rate of the sulfite oxidation was studied which is similar to the conditions of WFGD. It is shown that the combined effect of both manganese and ferric ions has 10-30 times acceleration.
     The influence of the presence of magnesium and ferric ions at different ratios on the rate of gypsum crystallization was explored which is similar to the conditions of WFGD. The results show that addition of both Mg2+ and Fe3+ increased induction time and decreased the growth efficiency compared with the baseline(without impurity) depending on the concentration and type of impurity. The effects of the presence of Mg2+ and Fe3+ on the surface energy and the rate of nucleation are estimated by employing the classical nucleation theory. Furthermore, an edge detection program was developed to quantify the effects of impurity on the filtration rate of gypsum product. The presence of Mg2+ and Fe3+, have a much greater reduction on the growth rate of the special faces of gypsum crystal, which leads to the formation of needle crystals compared to the baseline which favors the formation of plate or flakes.
引文
1. 《中国电力年鉴》编辑委员会,中国电力年鉴(2004),北京,中国电力出版社,2005.
    2. 中电联,<2008年全国电力工业统计快报>.2008.
    3. 国家环保总局网站,中国二氧化硫排放量env.people.com.cn,2008.
    4. 国家发改委网站,2008年度火电厂烟气脱硫产业有关信息.http://www.ndrc.gov.cn/gzdt/t20090220_262130.htm,2009.
    5. 周玉昆,欧美诸国的烟道气脱硫(FGD)现状和趋势.大气环境,1989.4(2):p.3-9.
    6.沈迪新,杨晓葵,中、日、美三国烟气脱硫技术的发展和现状.环境科学进展,1993.1(3):p.12-25.
    7. 曾汉才,我国燃煤电厂的烟气脱硫问题.电站系统工程,1994.10(5):p.27-32.
    8. 张齐,杨萍,燃煤工业锅炉除尘脱硫脱氮技术.大气环境,1989.4(6):p.1-35.
    9.程峰,高翔,骆仲泱,方梦祥,施正伦,岑可法,湍流式湿法烟气脱硫除尘技术的试验研究及工程应用.热力发电,2002.31(6).
    10.骆仲泱,高翔,钙基吸收剂脱硫反应特性的研究.燃烧科学与技术,1998.4:p.369-373.
    11.曾庭华,杨华,马斌,王力.湿法烟气脱硫系统的安全性及优化[M].北京: 中国电力出版社,2004.
    12. Amedeo Lancia, Dino Musmarra and Francesco Pepe, Model of Oxygen Absorption into Calcium Sulfte Solutions. Chem Eng J.,1997.66:p.123-129.
    13.任学杰,管一明,李仁刚,刘明辉,周启宏,孙大伟,孙祥志,高流速强化湿式石灰石烟气脱硫工艺的中试及其经济性分析.电力环境保护,2002.9:p.8-11.
    14. Jones A.F., Use of Sulfur From Liquid Redox Processes as an Oxidation Inhibitor in WFGD systems in Place of Emusified sulfur. SO2 Control symposium Book 1,Session,1995.
    15. Karlsson H.T., Technical Aspects of Lime/Limestone Scrubbers for Coal-Fired Power Plants, Part I:Process Chemistry and Scrubber Systems, Journal of the Air Pollution Control Association.30,1980.6:p.710-714.
    16. Owens D.R., Adding Sulfur to FGD Absorber Reduces Scale. UPS Performance Power,1988.5:p.15-17.
    17. T. R.Rehm, A.J.Moll, A.L. Babb, Unsteady state absorption of carbon dioxide by dilute sodium hydroxide solutions. AICHE J.,1963.9:p.760-765.
    18. Bontozoglou V. Kar and Belas A. J., Simultaneous absorption of H2S and CO2 in NaOH solutions. Industrial & engineering chemistry research,1993.32(1):p.165-172.
    19. Juvekar V. A. And Sharma M. M., Absorption of CO2 in a Suspension of Lime. Chem.Eng.Sci.,1973.28:p. 825-837.
    20.滕斌,高翔,刘海蛟,骆仲泱,倪明江,岑可法,添加剂对消石灰结构特性和脱硫性能的影响.浙江大学学报工学版,2004.38(2):p.101-110.
    21.高翔,骆仲泱,陈亚非,钙基吸收剂脱硫反应特性的研究.燃烧科学与技术,1998.4(4):p.369-372.
    22. Danckwerts, Ind. Eng. Chem. Significance of Liquid-Film Coefficients in Gas Absorption,1951.43:p. 1460-1467.
    23. Hikita H. Asia, S. and Takatsuka T., Gas absorption with a two step instantaneous chemical reaction. Chem. Eng J.,1972.4:p.31-40.
    24. Fabrizio Scala and Michele Dascenzo, Absorption with instantaneous reaction in a droplet with sparingly soluble fines. AIChE Journal,1969.48(8):p.1719-1726.
    25. Bjerle, Absorption of SO2 in CaCO3 slurry in a laminar jet absorber. Chem. Eng. Sci.,1972.27:p.1853-1861.
    26. Uchida S. And Wen, C.Y., Rate of gas absorption into a slurry accompanied by instantaneous reaction. Chemical Engineering Science,1977.32:p.1277-1281.
    27. Uchida S. Ariga O., Absorption of sulfur dioxide into. limestone slurry in a stirred tank. J. Chem. Eng.,1985.63: p.778-783.
    28. Mehra A., Gas absorption in reactive slurries:particle dissolution near gas-liquid interface. Chemical Engineering Science,1996.51:p.461-477.
    29. Epstein M., EPA Alkali scrubbing test facility:summary of testing through October 1974. U.S.EPA600/7-7-105.,1977.
    30. Olander D.R., simultaneous mass transfer and equilibrium chemical reaction. AICHE J.,1960.6:p.233.
    31. Hikita H. Et. Al, Absorption of sulfur dioxide into water. AICHE J.,1978.24(1):p.147.
    32. Sada. E. H. Kumazawa, Absorption of sulfur dioxide into aqueous double slurries containing limestone and magnesium hydroxide. AICHE J.,1983.1:p.60.
    33. Chang C.S., G.T.Rochelle, Sulfur dioxide absorption into sodium hydroxide and sodium sulfite aqueous solutions. Ind. Eng.Chem.Fundam,1985.24(7).
    34. Dirk Eden and Miehael Luekas, A Heat and Mass Transfer Model for the Simulation of the Wet Limestone Flue Gas Scrubbing proeess. Chem.Eng.Technol,1998.21:p.56-60.
    35. Whiteman W.G., The two-film theory of gas absorption. Chemistry and Metal Engineering,1923.29(1):p. 147-157.
    36. Kiil S., Michelsen M, and Dam-Johansen K., Experimental and theoretical investigations of wet flue gas desulphurisation pilot plant. Ind Eng Chem Res 1998.37(7):p.2792-2806.
    37. Higbie R., Trans. AIChE,1935.31:p.365.
    38. Sherwood T.K. Shipley G.H., Holloway F.A.L.,, Flooding Velocities in Packed Columns. Ind.Eng.Chem.,,1938. 30(7):p.765-769.
    39. Weisnicht W.L. and Overman, Calcium sulfite oxidation in a slurry reactor. Chem. Eng. Sci.,1980.35:p. 463-468
    40. Pasiuk-Browska W. Ziajka J., Kinetics of Aqueous SO2 Oxidation at Different Rate Controlling Steps. Chemical engineering science,1989.44(4):p.915-920.
    41. Lancia A., Musmarra D., and Pepe F., Uncatalyzed Heterogeneous Oxidation of Calcium Bisulfite. Chem. Eng. Sci.,1996.16:p.3889-3896.
    42. Linek V. and Vacek V., Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas-liquid contactors. Chem.Eng.Sci.,1981.36:p.1747-768.
    43.彭朝辉,童志权,亚硫酸钙氧化为石膏的研究.中国计量学院学报,2002.13:p.139-157.
    44.钟秦,亚硫酸钙非均相氧化动力学的研究.南京理工大学学报,2004.24(2):p.173-174.
    45. Klaus Hjuler Kim Dam-Johansen, Wet oxidation of residual product from spray absorption of sulphur dioxide. Chemical Engineering Science,1994 49(24):p.4515-4521.
    46. Abdullah Shaikh S. Zaidi, KINETICS OF CATALYTIC OXIDATION OF AQUEOUS. SODIUM SULFITE Reaction Kinetics and Catalysis Letters,1998.64(2):p.343-349.
    47.汪黎东,烟气脱硫添加剂对正盐生成促进的实验研究[D].华北电力大学工学博士学位论文,2005.
    48.赵博,湿法脱硫中亚硫酸盐强制氧化反应动力学与传质机理研究[D].清华大学工学博士学位论文,2007.
    49. Barron C.H., and Ohern H.A., Reaction kinetics of sodium sulfite oxidation by the rapid-mixing method. Chemical Engineering and Science,1966.21:p.397.
    50. Mishra G.C., and Srivastava R.S., Homogeneous kinetics of potassium sulfite oxidation. Chemical Engineering and Science,1976.31:p.969.
    51. Yagi S., and Inoue H., The absorption of oxygen into sodium, sulphite solution. Chemical Engineering and Science,1962.
    52. Bengtsson S., and Bjerle I., Catalytic oxidation of sulfite in diluted aqueous solutions. Chemical Engineering and Science,1975.30:p.1429.
    53. Sathyamurtha N., Degaleesan T.E., Chandrasekharn, Study on the Reaction Rate of Sulfite Oxidation with cobalt ion Can.J.Chem.Eng,1979.57:p.145.
    54.罗捷,湿法烟气脱硫过程亚硫酸钙氧化研究,重庆大学硕士论文.2006.
    55.杜谦,吴少华,朱群益,湿法烟气脱硫锰催化对亚硫酸钙氧化的影响.哈尔滨工业大学学报,2004.36(3)p.391-394.
    56. Ebrahimi S., Chem. Eng. Sci,2003.58:p.3589-3600.
    57. Nagel Dominik, Chem. Eng. Sci,2002.57:p.4883-4893.
    58. Bausach M., Water-Induced Rearrangement of Ca(OH)2 reacted with SO2. AIChE Journal,2006. Vol.52,No.8:p. 2876-2886.
    59. Altwicker E.R., and Lindhjem C.E., Absorption of gases into drops. AIChE Journal,1988.34(329-332).
    60. Saboni S., Alexandrova, Sulfur dioxide absorption and desorption by water drops. Che.Eng.J.,2001.84:p. 577-580.
    61. Bergeles M. Kadja; G., Modelling of slurry droplet drying. Applied Thermal Engineering 2003.23:p.829-844.
    62. Amokrane H., Caussade B., Gas absorption into a moving spheroidal water drop. Journal of the Atmospheric Sciences,1999.56:p.1808-1829.
    63. Brogren C., and Karlsson H. T., Modeling the absorption of SO2 in a spray scrubber using the penetration theory. Chem. Eng. Sci,1997.52(18):p.3085-3099.
    64. Lancia A., Et.Al, SO2 absorption in a bubbling reactor using limestone suspensions. Chem. Eng. Sci.,1994.49: p.4523 4532.
    65. Xiao Sheng, Yu Liu and Wen De, Modeling and Simulation of a Bubbling SO2 absorber with Granular Limestone Slurry and an Organic Acid Additive. Chem. Eng. Technol.,2006.29(No.10):p.1167-1173.
    66. G.T.Rochelle Norman K.Yeh And, Liquid-Phase Mass Transfer in Spray Contactors. AIChE Journal,2003.49(9): p.2363-2373.
    67. Alexandrova S., Mass transfer modeling of SO2 into large drops. Che. Eng. and Technology,2004.27(676-680).
    68. Noblett J.G., Hebets M.J., Moser R.E., EPRl's FGD Process Model. EPA/EPRI Symposium on FGD New Orleans,1990.
    69. Eden D. and Luckas M., A heat and mass transfer model for simulation off flue gas treatment by the limestone scrubbing process. Chem Ing Tech,,1998.70(1,2):p.160-164.
    70. Fabrizio Scala, Michele Ascenzo and Amedeo Lancia, Modeling flue gas desulfurization by spray-dry absorption. Separation and Purification Technology 2004.34:p.143-153.
    71. Kota K. and Langrish T.A.G, Prediction of wall deposition behaviour in a pilot-scale spray dryer using deposition correlations for pipe flows Journal of Zhejiang University-Science A,2007.8(2):p.301-312.
    72. Retieba S. Guiraudc P., Angelovb G., and Gourdona C., Hold-up within two-phase countercurrent pulsed columns via Eulerian simulations;. Chemical Engineering Science,2007.62:p.4558-4572.
    73.曾芳陈力,李晓芸,湿式脱硫塔流场数值计算.华北电力大学学报,2002.02.
    74.张红蓉,湿法脱硫立式圆形吸收塔内过程的数值模拟.2002,华北电力大学:北京.
    75.李铁军,喷淋式脱硫塔内流场的试验研究和数值模拟.[D];华北电力大学,2006.
    76.汪洋,湿法脱硫喷淋塔数值模拟.2006,华北电力大学:北京.
    77.钟毅,基于WFGD系统的硫、氮、汞污染物协同脱除的理论与实验研究.浙江大学工学博士学位论文[D],2008.
    78.郭瑞堂,石灰石活性和塔内流场对湿法烟气脱硫效率的影响研究.浙江大学工学博士学位论文[D],2008.
    79. Antonio G. Norberto F., Alfredo T., Detailed modelling of a flue-gas desulfurisation plant Computers and Chemical Engineering,2007.31(11):p.1419-1431.
    80.岩月元臣,石坂浩,吉川博文,湿式排烟脱硫装置的性能预测模拟.日立公司资料.
    81.林永明,大型石灰石—石膏湿法喷淋脱硫技术研究及工程应用.[D].杭州:浙江大学,2006.
    82.项光明,液柱喷射烟气脱硫研究.[D]清华大学博士学位论文,北京.,2002.
    83. Akbar M.K. Yan J., and Ghiaasiaan S.M., Mechanism of gas absorption enhancement in a slurry droplet containing reactive, sparingly soluble micro particles. International Journal of Heat and Mass Transfer,2003.46: p.4561-4571.
    84. Levenspiel A. Haider and O., Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology,1989.58:p.63-70.
    85. Gerbec M.,and Stergarsek A., Simulation model of WFGD plant. Computers Chem. Eng.,1995.19:p.283-286.
    86. Musinstein A., Fichman M., and Gutfinger C., gas absorption in a moving drop containing suspended solids;. international Journal of multiphase flow,2001.27:p.1079-1094.
    87. Lancia Amedeo, Modeling of SO2 Absorption into Limestone Suspensions. Ind.Eng.Chem.Res,1997.36:p. 197-203.
    88. Pinsent R. W., Pearson L., and Roughton F. J. W., The kinetics of the combination of carbondioxide with hydroxide ions. Trans. Faraday Soc.,1956.52:p.1512-1520.
    89. Stromberg A.M., Prospects for further development of spray-scrubbing. Ph.D. Thesis, University of Lund, Sweden,1992.
    90. Stefan Olausson, Mats Wallin and Ingemar Bjerle, A model for absorption of sulphur dioxide into a limestone slurry. The Chemical Engineering Journal,1993.51:p.99-108.
    91. Bird R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena,2nd Ed ition. Wiley, New York.2002
    92. Lopez De B. Lee S. T., Lahey, R. T., & Drew, D. A., The prediction of 2-phase turbulence and phase distribution phenomena using a Reynolds stress model. Journal of Fluids Engineering,2003.112:p.107-113.
    93. Han K.S. Chung, M.K., and Sung, H.J., Application of Lumley's drag reduction model to two-phase gas-particles flow in pipe. Journal of Fluid Engineering 1991.113:p.130-136.
    94. Despina Karatza Marina Prisciandaro and Amedeo Lanciaa, Kinetic and Reaction Mechanisms of Calcium Bisulfite Catalytic Oxidation. Chemical Engineering Science.,2005.60:p.1497-1502.
    95. T.Rochelle Cynthia L. Gleason and Gary, Nucleation and Crystal Growth of Calcium Sulfite Hemihydrate. Environmental Progress,1991. Vol.10.(3):p.225-233.
    96. Amedeo Lancia Dino Musmarra and Francesco Pepe, Uncatalyzed Heterogeneous Oxidation of Calcium Bisulfite. Chemical Enqineering Science,1996. Vol.51No(16):p.3889-3896.
    97. Bernard Michael D. Johnson. And Jonathan, Kinetics and Mechanism of the Ferrate Oxidation of Sulfite and Selenite in Aqueous Media. Inorg. Chem.,1992.31:p.5140-5142.
    98. Johan Berglund Sture Fronaeus, and Lars I. Elding.,, Kinetics and Mechanism for Manganese-Catalyzed Oxidation of Sulfur(Ⅳ) by Oxygen in Aqueous Solution. Inorg. Chem.,1993.32:p.4521-4538.
    99. B. Gourich C. Vial, N. El Azher, M. Belhaj Soulami, M. Ziyad, Improvement of oxygen mass transfer estimation from oxygen concentration measurements in bubble column reactors. Chemical Engineering Science 2006.61:p. 6218-6222.
    100.Yannick Fayolle Arnaud Cockx, Sylvie Gillot,Michel Roustan, and Alain Heduit, Oxygen transfer prediction in aeration tanks using CFD. Chemical Engineering Science 2007.62:p.7163-7171.
    101. Vickie L. Burris Daniel F. Mcginnis, and John C. Little, Predicting oxygen transfer and water flow rate in airlift aerators Water Research 2002.36:p.4605-4615.
    102.Chandavimol Maethee, Experimental and simulation studies of two-phase flow in a stirred tank.2003:p. Phd dissertation, University of Missouri-rolla.
    103.王福军编著[M],CFD软件原理与应用.2004.:p.北京:清华大学出版社.
    104.Kerdouss F., Bannari A., and Proulx P., CFD Modeling of Gas Dispersion and BubbleSize in a Double. Chemical Engineering Science,2006.61:p.3313-3322.
    105.Fluent 6.1.2004.User's Manual to Fluent 6.1. Fluent Inc.
    106.Haider A., and Levenspiel O., Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology,1989.58:p.63-70.
    107.H.Hikita S.Asai, Tanicawa, The Volumetric Liquid-Phase Mass Thransfer Coefficient in Bubble Columns...The Chemical Engineering Journal,1981.22:p.61-69.
    108.Gambit 2004. User's Manual to Gambit 2. Fluent Inc.
    109.Kaoru Miyazaki, Gang Chen, Fujio Yamamoto, Jun-Ichi Ohta, Yuichi Murai, and Kiyoshi Horii, PIV measurement of particle motion in spiral gas-solid two-phase flow. Experimental Thermal and Fluid Science, 1999.19(4):p.194-203.
    110.Wolfgang Lindken Ralph, Gui Lichuan, Merzkirch, Velocity measurements in multiphase flow by means of particle image velocimetry. Chemical Engineering and Technology,1999.22(3):p.202-206.
    111.魏名山,马朝臣,李向荣,杜巍,用PIV进行静电旋风除尘器流场的测定.北京理工大学学报,2000.20(4):p.496-499.
    112.Lackermeier U. Rudnick C., Werther J., Bredebusch A., Burkhardt H., Visualization of flow structures inside a circulating fluidized bed by means of laser sheet and image processing. Powder Technology,2001.114(1-3):p. 71-83.
    113.石惠娴,循环流化床流动特性piv测试和数值模拟,2003,浙江大学博士论文.
    114.周强,方形卧式分离器的试验与理论研究及其在循环流化床锅炉中的应用.浙江大学博士论文,2004.
    115.康琦,申功忻,全场测速技术进展.力学进展,1997.31(11):p.46-50.
    116.孙鹤泉,康海贵,李广伟,基于图像互相关的PIV技术及其领域实现.中国海洋平台,2002.12((6)):p.1-4.
    117.段俐,康琦,申功炘,PIV技术的粒子图像处理方法.北京航空航天大学学报,2000.Vol.26,No.1:p.pp.79-82.
    118. Lancia A., and Musmarra D., Catalytic oxidation of calcium bisulfite in the wet gypsum flue gas desulfurization process. Chem.Eng.Sci,1999.54(16):p.3019-3026.
    119.钟秦,亚硫酸钙非均相氧化动力学的研究.南京理工大学学报,2000.24:p.172-176.
    120.吴晓琴,吴忠标,均相/非均相体系中亚硫酸钙非催化氧化过程.环境科学学报,2004.24(3):p.535-536.
    121.赵毅,汪黎东,王小明,马双忱,秦冬莉,烟气脱硫产物—亚硫酸钙非催化氧化的宏观反应动力学研究.中国电机工程学报,2005.25(8):p.117-123.
    122.Backstrom H., The Chain Reaction Theory o f Negative Catalysis. J. Am. Chern. Soc,1927.49:p.1460.
    123.Freiberg J., The mechanism of Iron Catalyzed Oxidation of SO2 in Oxygenated Solutions. Atmospheric Environment,1975.9:p.661-672.
    124. A Huss Jr., PK Lim,and CA Eckert., Oxidation of aqueous sulfur dioxide..Phys.Chem.J,1982.86:p.4224-4233.
    125.Kraft J., Eldik R.Van., Kinetics and Mechanism of the Iron(III)-Catalyzed Autoxidation of Sulfur(IV)Oxides in Aqueous Solution. Inorganic Chemistry,1989.28:p.2297-2312.
    126.L.R.Martin, M.W. Hill and AF Tai., The iron catalyzed oxidation of sulfur in aqueous solution:differing effects of organics at high and low pH. Journal of Geophysical Research,1991.96:p.3085-3097.
    127.Conklin M H, and Hoffmannn M R., Metal ion-sulfur(IV)chemistry Thermmodynamics and kinetics of transient iron(III)-sulfur(IV)complexes. Environ.Sci.Technol.,1988.22:p.899-907.
    128.Christian Brandt Istvan Fabian, and Rudi Van Edik., Kinetics and Mechanism of the Iron(III)-Catalyzed Autoxidation of sulfur(IV)Oxides in Aqueous Solution. Inorg.Chem.,1994.33:p.687-701.
    129.Milko Novi, Irena Grgi, Mateja Poje and Vida Hudnik, Iron-catalyzed oxidation of s(IV) species by oxygen in aqueous solution:Influence of pH on the redox cycling of iron. Atmospheric Environment,1996.30(24):p. 4191-4196
    130.陈晋南[M],传递过程原理.化学工业出版社,北京,2004:p.252-256.
    131.高翔,骆仲泱,倪明江等,喷钙脱硫系统中增湿活化装置的脱硫性能研究—模型的建立.中国电机工程学报[J].1999.19(1)::p.26-30.
    132.Linek V., and Mayrhoferova J., The kineties of oxidation of aqueous sodium sulfite solution. Chem. Eng. Sci., 1970.25:p.787 - 800.
    133.K.J.A. De Waal and J.C. Okeson, The oxidation of aqueous sodium sulphite solutions. Chem. Eng. Sci.,1966.21: p.559-572.
    134.F.Vidal B.Ollero P A kinetic study of the oxidation of S(IV) in seawater. Environmental Science and Technology, 2001.35:p.2792-2796.
    135.K.J.Rudzinski and W.Pasiuk-Bronikowska, Absortion of SO2 into aqueous systems.. Chem. Eng. Sci.,1991.46: p.2281-2291.
    136.Sudmalis M. and Sheikholeslami R., Precipitation and co-preciptation of CaC03 and CaS04. Canadian jounal of Chemieal Engineering,2000.78:p.21-31.
    137.莫建松,双碱法烟气脱硫工艺的可靠性研究及工业应用.浙江大学工学博士学位论文[D],2006.
    138.Vorbach M Marr R, and Siebenhofer M., Catalytic oxidation of sulfite/bisulfite in a falling-film absorption column.. In 3rd International Symposium on Reaction Kinetics and the Development and Operation of Catalytic Processes, Oostende,2001:p.575-580
    139.M.M.Rashad, Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions,.Journal of Crystal Growth,2004.267:p. 372-379.
    140.Hamdona Samia K., Crystallization of calcium sulfate dihydrate in the presence of some metal ions Journal of Crystal Growth 2007.299 p.146-151.
    141.E.A.Abdel-Aal, M.M.Rashad, H. El-Shall, Crystallization of calcium sulfate dihydrate at different supersaturation ratios and different free sulfate concentrations. Cryst. Res. Technol,2004.39No.4:p.313-321.
    142. Jiang Wenge, Dual Roles of Borax in Kinetics of Calcium Sulfate Dihydrate Formation. Langmuir,2007.23:p. 5070-5076.
    143.H.El-Shall M.M.Rashad, and E.A.Abdel-Aal, A study of primary nucleation of calcium oxalate monohydrate. Cryst. Res. Technol,2002.37:p.1264-1273.
    144.M.M.Rashad H.M.Baioumy, and E.A.Abdel-Aal, Structural and spectral studies on gypsum crystals under simulated conditions of phosphoric acid production with and without organic and inorganic additives. Cryst.Res.Technol,2003.38:p.433-439.
    145.M.H.Mahmoud M.M.Rashad, I.A.Ibrahim, and E.A.Abdel-Aal, Crystal modification of calcium sulfate dihydrate in the presence of some surface-active agents. J.Coll.Interf.Sci.,2004.270:p.99-105.
    146.B.R.Smith and F.Sweet, The Crystallization of Calcium Sulfate Dihydrate J. Colloid and Interface Science,1971. 37(3):p.612-618.
    147.P.G.Koutsoukos and P.G.Klepetsanis, Spontaneous precipitation of calcium sulfate at conditions of sustained supersaturation. J. Colloid and Interface science,1991.143(2):p.299-308.
    148.Natarajan V. Bishnoi P.R., and Kalogerakis N., Induction phenomena in gas hydrate nucleation. Chem ical Engineering Science,1994.49:p.2075-2087.
    149.李洁,过饱和铝酸钠溶液结构及分解机理的研究.[D].博士学位论文.长沙:中南大学,2002
    150.F.Adams Jeffrey, gypsum scale formation and control during continuous sulphuric acid neutralizaiton. PHD thesis, Chem. Dept. University of Toronto,2004.
    151.Krishnam U.G.Raju and Gordon Atkinson, The thermodynamics of "scale" mineral solubilities. Journal of Chemical and Engineering Data,1990.35:p.361-367.
    152.唐睿康,表面能与晶体生长/溶解动力学研究的新动向PROGRESS IN CHEMISTRY,2005.17(2):p. 368-376.
    153.He S., J.E.Oddo, and Tomson M.B., The nucleation kinetics of calcium sulphate dehydrate in NaCl solutions up to 6 m and 90℃ J.Colloid Interface Sci.,1994.162:p.297-303.
    154.A. Lancia D. Musmarra, and M. Prisciandaro, Measure induction period for calcium sulfate dihydrate precipition. AIChE J,1999.45:p.390-397.
    155.J.W.Mullin, Crystallization,Fourth Edition. Butter worth-Heinemann,2001:p.182-189.
    156.A.S.Myerson, Butterworth-Heinemann Series in Chemical Engineering. Butter worth-Heinemann USA,1993.
    157. W. Stumm, Chemistry of the Solid Water Interface. New York:Wiley,1992.
    158.Guo Xiong Hua, Lishuping, and Hou Wan Guo, Layered Double Hydroxides with Hydrotalcite type Structrure Containing Fe3+,Al3+and Mg2+. CHEM.RES CHINESE U.,2003.19(2):p.211-215.
    159.Samia K.Hamdona and Umaima A.Al Hadad, Crystallization of calcium sulfate dihydrate in the presence of some metal ions. Journal of Crystal Growth,2007.299:p.146-151.
    160.A.Poggio Vincent Torre and Tomaso, On Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence,1986.8(2):p.147-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700