Mn/TiO_2催化氧化NO联合CaSO_3浆液吸收的烟气脱硝新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物是烟气中的主要污染物之一,氧化吸收脱硝技术是脱除固定源烟气氮氧化物的重要方法。本文围绕Mn/TiO2催化氧化NO联合CaSO3浆液吸收的脱硝新工艺展开了系统的研究。文中通过制备方法的改进和掺杂改性等手段提高了Mn/TiO2对NO氧化的催化活性,获得了较高的NO转化率,并通过原位红外等手段揭示了NO催化氧化的反应机理,为催化剂性能的进一步改善提供了指导。在NO催化氧化的基础上,本文还对脱硝吸收剂进行了筛选比较,并通过加入添加剂等手段改善吸收剂的性能,为该工艺的应用奠定了基础。
     首先,本文比较了制备方法对Mn/TiO2催化氧化NO活性的影响,发现沉淀沉积法相比于浸渍法可以大大提高催化剂的活性(250℃时的NO转化率从40%提高到89%)。表征结果表明,沉淀沉积法能显著提高活性相的分散性,制得的MnOx以高活性的Mn(3+)为主,有利于NO2的生成和释放。工艺操作参数研究结果表明,Mn/TiO2对NO氧化具备持久稳定的高催化活性。动力学研究表明,该NO催化氧化反应对NO和02均为0.5级反应,催化剂的表观反应活化能约为20 kJ/mol。
     其次,本文深入研究了Mn/TiO2对NO氧化的催化反应过程和机理。研究发现,亚硝酰和硝酸盐(尤其单齿型硝酸盐)是NO催化氧化中两类重要的中间产物。NO催化氧化遵循Mars-van Krevelen机理,即NO先吸附在Mn活性位上,形成亚硝酰,之后亚硝酰被催化剂表面的晶格氧氧化成硝酸盐,硝酸盐随之分解而释放出N02,消耗的晶格氧则通过气相O2的吸附得到补充。Fe掺杂改性的相关研究也部分印证了该反应机理。测试分析结果表明,Fe的加入能进一步提高Mn/TiO2对NO氧化的催化活性,主要原因在于Fe掺杂既改善了催化剂对NO的吸附性能,又提高了其持续氧化还原能力。
     最后,本文针对氮氧化物吸收过程进行了研究。通过比较不同吸收剂对氧化后氮氧化物的吸收特性,发现CaSO3是一种合适的脱硝吸收剂,其脱硝效率高于水和碱性吸收剂,同时消耗速率远低于Na2SO3,且能在脱硝的同时被氧化成石膏,为实现联合脱硫脱硝提供了可能。在此基础上,进一步考察了MgSO4、Na2SO4和MgCl2等添加剂对CaSO3浆液吸收NO2过程的影响,发现MgSO4对NO2吸收的促进作用最为明显,能使脱硝效率从71%显著提高至86%。同时,MgSO4的加入还会加速CaSO3的氧化,并改变NO2液相吸收产物的组成。实验分析结果表明,MgSO4添加剂发生作用的原因在于,Mg2+和SO42-都能提高CaSO3浆液中溶解态的亚硫酸盐的含量(CDSS),且CDSS中的MgSO30也是一种有效的还原性脱硝吸收剂,在NO2吸收过程中能发挥与SO32-类似的作用。
NOx is one of the key air pollutants from flue gas, and the combined oxidation-absorption process is an important method for denitrification of flue gas from stationary sources. In this paper, a new combined denitrification process of NO catalytic oxidation over Mn/TiO2 catalysts and absorption with CaSO3 slurry was investigated systematically. The activity of Mn/TiO2 for NO oxidation was promoted by improving the preparation method and modification with doped elements, and a high NO conversion was obtained. The mechanism of NO catalytic oxidation over the specific catalyst was subsequently revealed by DRIFTS study, which would be able to provide some directions for further improving the catalyst's performance. On the basis of NO catalytic oxidation, NOx absorption was also studied and absorbents were screened, and then different additives were used to improve the performance of the chosen absorbent, which could lay a foundation for the application of the combined process.
     Firstly, the effect of preparation method on the activity of Mn/TiO2 was investigated, and deposition-precipitation (DP) method seemed to be much more favorable than the conventional wet impregnation (WI) method (NO conversion was promoted from 40% to 89% at 250℃by DP). From the results of characterizations, it could be seen that MnOx was better dispersed in the catalyst prepared by DP, and the active phase of Mn(3+) was the main component. Thus, the generation and release of NO2 were significantly promoted. Further investigation on the influence of operating parameters indicated the high activity of Mn/TiO2 was persistent. Additionally, the results of dynamic study showed that the reaction of NO catalytic oxidation was 0.5 order with respect to both NO and O2, and the apparent activation energy was calculated to be about 20 kJ/mol.
     Secondly, the reaction mechanism of NO catalytic oxidation over Mn/TiO2 was studied thoroughly. Nitrosyls and nitrates (especially monodentate nitrate) were found to be the key intermediates for NO oxidation, and the reaction followed a Mars-van Krevelen mechanism as follows:NO was first adsorbed on Mn sites to form nitrosyls, and then nitrosyls were readily oxidized to nitrates by active lattice oxygen. Subsequently, nitrates were decomposed to the final product NO2, and the consumed lattice oxygen was supplemented by gaseous O2. Such a mechanism was partly verified by the study of the effect of Fe modification. Experimental results showed that the doped Fe improved the activity of Mn/TiO2 obviously, because it could not only favor the adsorption of NO but also promote the persistent reoxidation capability of the catalyst.
     Finally, the absorption of NOx into liquid phase was studied. By comparing the absorption characteristics of different absorbents towards the pre-oxidized NOx, it was found that CaSO3 was the most appropriate absorbent. It was more efficient than H2O and alkali, and its consumption rate was much lower than that of Na2SO3. Besides, CaSO3 could be oxidized to gypsum in the process of denitrification, which provided a possibility for achieving the combined desulfurization and denitrification. On the basis of absorbent screening, the effect of MgSO4, Na2SO4 and MgCl2 additives on the NO2 absorption into CaSO3 slurry was investigated further. MgSO4 seemed to be the most effective additive, and the absorption efficiency increased significantly from 71% to 86%. At the same time, the addition of MgSO4 would also accelerate the CaSO3 oxidation and influence the liquid phase composition. Experimental results revealed that the enhancement of NO2 absorption by MgSO4 could be ascribed to the promotion of the capacity of dissolved sulfite species (CDSS). Both SO42- and Mg2+ contributed to the CDSS promotion. As one of the main components of CDSS, MgSO30 ion pair was also an effective absobent, which played the same role in the NO2 absorption as dissociated SO32-.
引文
[1]H. Tsukahara, T. Ishida, M. Mayumi. Gas-phase oxidation of nitric oxide:chemical kinetics and rate constant. Nitric Oxide:Biology and Chemistry,1999,3(3):191-198.
    [2]吴忠标主编.大气污染控制工程.北京:科学出版社,2002,325-328.
    [3]T. Castro, S. Madronich, S. Rivale, A. Muhlia, B. Mar. The influence of aerosols on photochemical smog in Mexico City. Atmospheric Environment,2001,35(10):1765-1772.
    [4]D.D. Davis, G. Smith, G. Klauber. Trace gas analysis of power plant plumes via aircraft measurement:O3, NOx, and SO2 chemistry. Science,1974,186(4165):733-736.
    [5]S. Morin, J. Savarino, M.M. Frey, N. Yan, S. Bekki, J.W. Bottenheim, J.M.F. Martins. Tracing the origin and fate of NOx in the arctic atmosphere using stable isotopes in nitrate. Science,2008,322(5902):730-732.
    [6]C.L. Weber, P. Jaramillo, J. Marriott, C. Samaras. Life cycle assessment and grid electricity: What do we know and what can we know? Environmental Science and Technology,2010, 44(6):1895-1901.
    [7]L. Jourdain, S.S. Kulawik, H.M. Worden, K.E. Pickering, J. Worden, A.M. Thompson. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model. Atmospheric Chemistry and Physics,2010,10(1):107-119.
    [8]T.B. Ryerson, M. Trainer, J.S. Holloway, D.D. Parrish, L.G. Huey, D.T. Sueper, G.J. Frost, S.G. Donnelly, S. Schauffler, E.L. Atlas, W.C. Kuster, P.D. Goldan, G. Hubler, J.F. Meagher, F.C. Fehsenfeld. Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science,2001,292(5517):719-723.
    [9]M. Radojevic. Reduction of nitrogen oxides in flue gases. Environmental Pollution,1998, 102(1):685-689.
    [10]J.N. Armor. Catalytic solutions to reduce pollutants. Catalysis Today,1997,38(2):163-167.
    [11]金瑞奔.负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究:[博士学位论文].杭州:浙江大学,2010.
    [12]Z.M. Liu, S.I. Woo. Recent advances in catalytic DeNOx science and technology. Catalysis Reviews:Science and Engineering,2006,48(1):43-89.
    [13]M.T. Javed, N. Irfan, B.M. Gibbs. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management,2007,83(3): 251-289.
    [14]Y. Kong, C.Y. Cha. NOx adsorption on char in presence of oxygen and moisture. Carbon, 1996,34(8):1027-1033.
    [15]S.G. Chang, D.K. Liu. Removal of nitrogen and sulfur oxides from waste gas using a phosphorus/alkali emulsion. Nature,1990,343(11):151-152.
    [16]D.K. Liu, D.X. Shen, S.G. Chang. Removal of NOx and SO2 from flue gas using aqueous emulsions of yellow phosphorus and alkali. Environmental Science & Technology,1991, 25(1):55-60.
    [17]S.G. Chang, G.C. Lee. LBL phosNOx process for combined removal of SO2 and NOx from flue gas. Environmental Progress,1992,11(1):66-73.
    [18]Y.S. Mok. Absorption-reduction technique assistant by ozone injection and sodium sulfite for NOx removal from exhaust gas. Chemical Engineering Journal,2006,118(1-2):63-67.
    [19]M.M. Collins, Pilot scale study for control of industrial boiler:nitrogen oxide emissions using hydrogen peroxide treatment coupled with wet scrubbing-system design, Ph. D. Dissertation, The University of Central Florida, Orlando, Florida,1998.
    [20]J.M. Haywood, C.D. Cooper. The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases. Journal of the Air & Waste Management Association,1998,48(3):238-246.
    [21]H.F. Hartmann, G.M. Brown, B. Kean. Use of chlorine dioxide to reduce vapor phase gum in town gas. Journal of the Institute of Fuel,1966,39:325-335.
    [22]C. Brogren, H.T. Karlsson, I. Bjerle. Absorption of NO in an aqueous solution of NaClO2. Chemical Engineering & Technology,1998,21(1):61-70.
    [23]B.R. Deshwal, S.H. Lee, J.H. Jung, B.H. Shon, H.K. Lee. Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution. Journal of Environmental Sciences, 2008,20(1):33-38.
    [24]王琼,胡将军,邹鹏.NaClO2湿法烟气脱硫脱硝技术研究.电力环境保护,2005,21(2):4-6.
    [25]H. Chu, T.W. Chien, S.Y. Li. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions. The Science of the Total Environment,2001,275(1-3):127-135.
    [26]H.Q. Wang, Z.B. Wu, W.R. Zhao, B.H. Guan. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. Chemosphere,2007,66(1):185-190.
    [27]Z.B. Wu, H.Q. Wang, Y. Liu, B.Q. Jiang, Z.Y. Sheng. Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides. Chemical Engineering Journal,2008,144(2):221-226.
    [28]Z.Y. Sheng, Z.B. Wu, Y. Liu, H.Q. Wang. Gas-phase photocatalytic oxidation of NO over palladium modified TiO2 catalysts. Catalysis Communications,2008,9(9):1941-1944.
    [29]S. Barman, L. Philip. Integrated system for the treatment of oxides of nitrogen from flue gases. Environmental Science & Technology,2006,40(3):1035-1041.
    [30]D. Bhatia, R.W. McCabe, M.P. Harold, V. Balakotaiah. Experimental and kinetic study of NO oxidation on model Pt catalysts. Journal of Catalysis,2009,266(1):106-119.
    [31]H. Li, X.L. Tang, H.H. Yi, L.L. Yu. Manganese-based catalysts supported on titania for the oxidation of nitric oxide.2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan,2009,10.1109/APPEEC.2009.4918472.
    [32]D.L. Baulch, D.D. Drysdale, D.G. Home. Homogeneous gas phase reactions of the H2-N2-O2 system. London:Butterworths,1973,2:285-300.
    [33]J. Despres, M. Elsener, M. Koebel, O. Krocher, B. Schnyder and A. Wokaun. Catalytic oxidation of nitrogen monoxide over Pt/SiO2. Applied Catalysis B:Environmental,2004, 50(2):73-82.
    [34]童志权,莫建红.催化氧化法去除烟气中NOx的研究进展.化工环保,2007,27(3):193-199.
    [35]P.J. Schmitz, R.J. Kudla, A.E. Drews. NO oxidation over supported Pt. Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation. Applied catalysis B:Environmental,2006,67(3-4):246-256.
    [36]E. Xue, K. Seshan, J. Ross. Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO, and of SO2 to SO3. Applied catalysis B:Environmental,1996,11(1):65-79.
    [37]鲁文质,赵秀阁,王辉等.NO的催化氧化.催化学报,2000,21(5):423-427.
    [38]J. Dawody, M. Skoglundh, E. Fridell. The effect of metal oxide additives (WO3, MoO3, V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 catalysts. Journal of Molecular catalysis A:Chemical,2004,209(1-2):215-225.
    [39]L. Olsson, E. Fridell. The influence of Pt oxide formation and Pt dispersion on the reactions NO2=NO+1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3. Journal of catalysis,2002,210(2): 340-353.
    [40]L.D. Li, Q. Shen, J. Cheng, Z.P. Hao. Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties. Applied Catalysis B:Environmental,2010,93(3-4):259-266.
    [41]W.H. Zhang, Z.Y. Li, Y. Luo, J.L. Yang. A first-principles study of NO adsorption and oxidation on Au(111) surface. Journal of Chemical Physics,2008,129(13):134708.
    [42]J. Jelic, K. Reuter, R. Meyer. The role of surface oxides in NOx storage reduction catalysts. ChemCatChem,2010,2(6):658-660.
    [43]H. Arai, H. Tominaga, J. Tsuchiya. Oxidation of nitrogen monoxide over transition-metal ion-exchanged zeolites. Proceedings,6th International Congress on Catalysis. Letchworth: Chemical Society,1977,997-1006.
    [44]J. Brandin, L. Andersson, C. Odenbrand. Catalytic reduction of nitrogen oxides on mordenite some aspects on the mechanism. Catalysis Today,1989,4(2):187-203.
    [45]J. Despres, M. Koebel, O. Krocher, M. Elsener, A. Wokaun. Adsorption and desorption of NO and NO2 on Cu-ZSM-5. Microporous and Mesoporous Materials,2003,58(2):175-183.
    [46]高安正躬,安念芳昭,神崎恭一等.金属氧化物催化剂上NO的氧化及CO对反应的影响.燃料协会志,1975,54(577):314-318.
    [47]H.T. Karlsson, H.S. Rosenberg. Flue gas denitrification. Selective catalytic oxidation of NO to NO2. Industrial & Engineering Chemistry Process Design and Development,1984,23(4): 808-814.
    [48]M.F. Irfan, J.H. Goo, S.D. Kim. Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Applied Catalysis B:Environmental,2008,78(3-4):261-274.
    [49]M.M. Yung, E.M. Holmgreen, U.S. Ozkan. Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide. Journal of Catalysis,2007, 247(2):356-367.
    [50]Q. Wang, S.Y. Park, J.S. Choi, J.S. Chung. Co/KxTi2O5 catalysts prepared by ion exchange method for NO oxidation to NO2. Applied Catalysis B:Environmental,2008,79(2): 101-107.
    [51]Y.X. Wen, C.B. Zhang, H. He, Y.B. Yu, Y. Teraoka. Catalytic oxidation of nitrogen monoxide over La1-xCexCoO3 perovskites. Catalysis Today,2007,126(3-4):400-405.
    [52]H.Q. Wang, J. Wang, Z.B. Wu, Y. Liu. NO catalytic oxidation behaviors over CoOx/TiO2 catalysts synthesized by sol-gel method. Catalysis Letters,2010,134(3-4):295-302.
    [53]G. Qi, R.T. Yang. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B:Environmental,2003, 44(3):217-225.
    [54]J.H. Huang, Z.Q. Tong, Y. Huang, J.F. Zhang. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B:Environmental,2008,78(3-4):309-314.
    [55]H. Li, X.L. Tang, H.H. Yi, L.L. Yu. Low-temperature catalytic oxidation of NO over Mn-Ce-Ox catalyst. Journal of Rare Earths,2010,28(1):64-68.
    [56]莫建红,童志权,张俊丰.Mn/Co-Ba-Al-O催化氧化NO性能研究.环境科学学报,2007,27(11):1793-1798.
    [57]郑足红,童华,童志权,张俊丰,黄妍.低温高活性NO氧化催化剂Mn-V-Ce/TiO2的制备与性能.过程工程学报,2008,8(6):1204-1212.
    [58]L.D. Li, Q. Shen, J. Cheng, Z.P. Hao. Catalytic oxidation of NO over TiO2 supported platinum clusters. Ⅱ:Mechanism study by in situ FTIR spectra. Catalysis Today,2009, 158(3-4):361-369.
    [59]L. Olsson, H. Persson, E. Fridell, M. Skoglundh, B. Andersson. A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Physical Chemistry B, 2001,105(29):6895-6906.
    [60]B.M. Weiss, E. Iglesia. NO oxidation catalysis on Pt clusters elementary steps, structural requirements, and synergistic effects of NO2 adsorption sites. Journal of Physical Chemistry C,2009,113(30):13331-13340.
    [61]M. Crocoll, S. Kureti, W. Weisweiler. Mean field modeling of NO oxidation over Pt/Al2O3 catalyst under oxygen-rich conditions. Journal of Catalysis,2005,229(2):480-489.
    [62]L.J. Lobree, I.C. Hwang. J.A. Reimer, A.T. Bell. An in situ infrared study of NO reduction by C3H8 over Fe-ZSM-5. Catalysis Letters,1999,63(3-4):233-240.
    [63]L. Olsson, H. Sjovall, R.J. Blint. Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Applied Catalysis B:Environmental,2009,87(3-4):200-210.
    [64]王辉.NO选择催化氧化的催化剂和反应机理研究:[博士学位论文].上海:华东理工大学,1999.
    [65]M. Iwamoto, Y. Yoda, M. Egashira, T. Seiyama. Study of metal catalysts by temperature programmed desorption.1. Chemisorption of oxygen on nickel oxide. The Journal of Physical Chemistry,1976,80(18):1989-1994.
    [66]M. Iwamoto, Y. Yoda, N. Yamazoe, T. Seiyama. Study of metal catalysts by temperature programmed desorption.4. Oxygen adsorption on various metal oxides. The Journal of Physical Chemistry,1978,82(24):2564-2570.
    [67]B.L. Newman, G. Carta. Mass transfer in the absorption of nitrogen oxides in alkaline solutions. AIChE Journal,1988,34(7):1190-1199.
    [68]M.P. Pradhan, J.B. Joshi. Absorption of NOx gases in aqueous NaOH solutions:selectivity and optimization. AIChE Journal,1999,45(1):38-50.
    [69]J.A. Patwardhan, J.B. Joshi. Unified model for NOx absorption in aqueous alkaline and dilute acidic solutions. AIChE Journal,2003,49(11):2728-2748.
    [70]D. Thomas, J. Vanderschuren. Nitrogen oxides scrubbing with alkaline solutions. Chemical Engineering & Technology,2000,23(5):449-455.
    [71]L.K. Chen, J.W. Lin, C.L. Yang. Absorption of NO2 in a packed tower with Na2SO3 aqueous solution. Environmental Progress,2002,21(4):225-230.
    [72]R.M. Counce, J.J. Perona. Scrubbing of gaseous nitrogen oxides in packed towers. AIChE Journal,1983,29(1):26-32.
    [73]B. Hupen, E.Y. Kenig. Rigorous modelling of NOx absorption in tray and packed columns. Chemical Engineering Science,2005,60(22):6462-6471.
    [74]Y.S. Mok. Absorption-reduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas. Chemical Engineering Journal,2006,118(1-2):63-67.
    [75]G. Carta. Role of HNO2 in the absorption of nitrogen oxides in alkaline solutions. Industrial & Engineering Chemistry Fundamentals,1984,23(2):260-264.
    [76]Y. Kameoka, R.L. Pigford. Absorption of nitrogen dioxide into water, sulfuric acid, sodium hydroxide, and alkaline sodium sulfite aqueous solutions. Industrial & Engineering Chemistry Fundamentals,1977,16(1):163-169.
    [77]H. Takeuchi, M. Ando, N. Kizawa. Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solutions. Industrial & Engineering Chemistry Process Design and Development,1977,16(3):303-308.
    [78]C.L. Clifton, N. Altstein, R.E. Huie. Rate constant for the reaction of NO2 with sulfur (IV) over the pH range 5.3-13. Environmental Science & Technology,1988,22(5):586-589.
    [79]T. Nash. The effect of nitrogen dioxide and of some transition metals on the oxidation of dilute bisulphite solutions Atmospheric Environment,1979,13(8):1149-1154.
    [80]D. Littlejohn, Y. Wang, S.G. Chang. Oxidation of aqueous sulfite ion by nitrogen dioxide. Environmental Science & Technology,1993,27(10):2162-2167.
    [81]H. Takeuchi, K. Takahashi, N. Kizawa. Absorption of nitrogen dioxide in sodium sulfite solution from air as a diluents. Industrial & Engineering Chemistry Process Design and Development,1977,16(4):486-490.
    [82]C.H. Shen, G.T. Rochelle. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite. Environmental Science & Technology,1998,32(13):1994-2003.
    [83]H. Takeuchi, Y. Yamanaka. Simultaneous absorption of SO2 and NO2 in aqueous solutions of NaOH and Na2SO3. Industrial & Engineering Chemistry Process Design and Development,1978,17(4):389-393.
    [84]M.K. Van der Lee, A.J. Van Dillen, J.H. Bitter, K.P. De Jong. Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts. Journal of the American Chemical Society,2005,127(39):13573-13582.
    [85]W.C. Li, M. Comotti, F. Schuth. Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. Journal of Catalysis,2006, 237(1):190-196.
    [86]I. Puente-Lee, R. Nares, J. Ramirez, P.S. Schabes-Retchkiman. Electron microscopy characterization of Ni/Hβ-zeolite catalyst prepared by deposition-precipitation methods. Revista Mexicana De Fisica,2004,50(S1):69-71.
    [87]G. Martra, H.M. Swaan, C. Mirodatos, M. Kermarec, C. Louis. Sintering of Ni/SiO2 catalysts prepared by impregnation and deposition-precipitation during CO hydrogenation. Studies in Surface Science and Catalysis,1997,111:617-624.
    [88]H. Jensen, A. Soloviev, Z. Li, E.G. Sogaard. XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Applied Surface Science,2005, 246(1-3):239-249.
    [89]C.M. Julien, M. Massot, C. Poinsignon. Lattice vibrations of manganese oxides-Part 1. Periodic structures. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2004,60(3):689-700.
    [90]K. Ramesh, L.W. Chen, F.X. Chen, Z.Y. Zhong, J.H. Chin, H.W. Mook, Y.F. Han. Preparation and characterization of coral-like nanostructured alpha-Mn2O3 catalyst for catalytic combustion of methane. Catalysis Communications,2007,8(9):1421-1426.
    [91]J. Trawczynski, B. Bielak, W. Mista. Oxidation of ethanol over supported manganese catalysts-effect of the carrier. Applied Catalysis B:Environmental,2005,55(4):277-285.
    [92]H.Y. Chen, A. Sayari, A. Adnot, F. Larachi. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B:Environmental,2001, 32(3):195-204.
    [93]I. Atribak, A. Bueno-Lopez, A. Garcia- Garcia, P. Navarro, D. Frias, M. Montes. Catalytic activity for soot combustion of birnessite and cryptomelane. Applied Catalysis B: Environmental,2010,93(3-4):267-273.
    [94]A. Cimino, V. Indovina. Catalytic activity of Mn3+ and Mn4+ ions dispersed in MgO for CO oxidation. Journal of Catalysis,1974,33(3):493-496.
    [95]G. Qi, R.T. Yang, R. Chang. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental,2004,51(2):93-106.
    [96]H.Y. Huang, R.Q. Long, R.T. Yang. Kinetics of selective catalytic reduction of NO with NH3 on Fe-ZSM-5 catalyst. Applied Catalysis A:General,2002,235(1-2):241-251.
    [97]J.F. Liu, Y.B. Yu, Y.J. Mu, H.He. Mechanism of heterogeneous oxidation of carbonyl sulfide on Al2O3:an in situ diffuse reflectance infrared Fourier transform spectroscopy investigation. Journal of Physical Chemistry B,2006,110(7):3225-3230.
    [98]M. Kantcheva. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. Journal of Catalysis,2001,204(2):479-494.
    [99]K.I. Hadjiivanov. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catalysis Reviews-Science and Engineering,2000,42(1-2):71-144.
    [100]Z.B. Wu, B.Q. Jiang, Y. Liu, H.Q. Wang, R.B. Jin. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environmental Science & Technology,2007,41(16):5812-5817.
    [101]N. Apostolescu, T. Schroder, S. Kureti. Study on the mechanism of the reaction of NO2 with aluminium oxide. Applied Catalysis B:Environmental,2004,51(1):43-50.
    [102]W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3.1. Adsorption and desorption of the single reaction components. Journal of Catalysis,1997,171(1):208-218.
    [103]G. Ramis, G. Busca, V. Lorenzelli, P. Forzatti. Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase. Applied Catalysis,1990,64:243-257.
    [104]Y.H. Yeom, B. Wen, W.M.H. Sachtler, E. Weitz. NOx reduction from diesel emissions over a nontransition metal zeolite catalyst:A mechanistic study using FTIR spectroscopy. Journal of Physical Chemistry B,2004,108(17):5386-5404.
    [105]R. Zhang, H. Alamdari, S. Kaliaguine. SO2 poisoning of LaFe0.8Cu0.22O3 perovskite prepared by reactive grinding during NO reduction by C3H6. Applied Catalysis A:General,2008, 340(1):140-151.
    [106]M. Waqif, P. Bazin, O. Saur, J.C. Lavalley, G. Blanchard, O. Touret. Study of ceria sulfation. Applied Catalysis B:Environmental,1997,11(2):193-205.
    [107]B.Q. Jiang, Z.B. Wu, Y. Liu, S.C. Lee, W.K. Ho. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. Journal of Physical Chemistry C,2010, 114(11):4961-4965.
    [108]H. Abdulhamid, E. Fridell, J. Dawody, M. Skoglundh. In situ FTIR study of SO2 interaction with Pt/BaCO3/Al2O3 NOx storage catalysts under lean and rich conditions. Journal of Catalysis,2006,241(1):200-210.
    [109]J.C.S. Wu, Y.T. Cheng. In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. Journal of Catalysis,2006,237(2):393-404.
    [110]M.M. Kantcheva, V.P. Bushev, K.I. Hadjiivanov. Nitrogen dioxide adsorption on deuteroxylated titania (anatase). Journal of the Chemical Society, Faraday Transactions, 1992,88(20):3087-3089.
    [111]R. Xu, W. Wei, W.H. Li, T.D. Hu, Y.H. Sun. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas:Effect of calcination temperature, Journal of Molecular Catalysis A:Chemical,2005,234(1-2):75-83.
    [112]S.S. Lim, H.J. Lee, D.J. Moon, J.H. Kim, N.C. Park, J.S. Shin, Y.C. Kim. Autothermal reforming of propane over Ce modified Ni/LaAlO3 perovskite-type catalysts. Chemical Engineering Journal,2009,152(1):220-226.
    [113]M. Pisarek, M. Lukaszewski, P. Winiarek, P. Kedzierzawski, M. Janik-Czachor. Catalytic activity of Cr- or Co-modified Ni-based rapidly quenched alloys in the hydrogenation of isophorone. Applied Catalysis A:General,2009,358(2):240-248.
    [114]V. Parvulescu, Cr. Tablet, C. Anastasescu, B.L. Su. Activity and stability of bimetallic Co (V, Nb, La)-modified MCM-41 catalysts. Catalysis Today,2004,93-95:307-313.
    [115]Z.B. Wu, R.B. Jin, Y. Liu, H.Q. Wang. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications,2008,9(13): 2217-2220.
    [116]Y. Yang, H.W. Xiang, L. Tian, H. Wang, C.H. Zhang, Z.C. Tao, Y.Y. X, B. Zhong, Y.W. Li. Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2. Applied Catalysis A:General,2005,284(1-2):105-122.
    [117]G.C. Maiti, R. Malessa, M. Baerns. Iron/manganese oxide catalysts for fischer-tropsch synthesis:Part I:structural and textural changes by calcination, reduction and synthesis. Applied Catalysis,1983,5(2):151-170.
    [118]N.K. Jaggi, L.H. Schwartz, J.B. Butt, H. Papp, M. Baerns. Phase characterization of iron/manganese fischer-tropsch catalysts:effect of compositon and reduction conditions. Applied Catalysis,1985,13(2):347-361.
    [119]M. Baldi, V.S. Escribano, J.M.G. Amores, F. Milella, G. Busca. Characterization of manganese and iron oxides as combustion catalysts for propane and propene. Applied Catalysis B:Environmental,1998,17(3):L175-L182.
    [120]I.R. Leith, M.G. Howden. Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide. Applied Catalysis,1988,37:75-92.
    [121]M. Jiang, N. Koizumi, M. Yamada. Adsorption properties of iron and iron manganese catalysts investigated by in-situ diffuse reflectance FTIR spectroscopy. Journal of Physical Chemistry B,2000,104(32):7636-7643.
    [122]W.P. Bronikowska, T. Bronikowski, M. Ulejczyk. Mechanics and kinetics of autoxidation of calcium sulfite slurries. Environmental Science & Technology,1992,26(10):1976-1981.
    [123]S. Uchida, K. Koide, M. Shindo. Gas absorption with fast reaction into a slurry containing fine particles. Chemical Engineering Science,1975,30(5-6):644-646.
    [124]W.A. Cronkright, W.J. Leddy. Improving mass transfer characteristics of limestone slurries by use of magnesium sulfate. Environmental Science & Technology,1976,10(6):569-572.
    [125]R.N. Roy, J.Z. Zhang, F.J. Millero. The ionization of sulfurous acid in Na-Mg-Cl solutions at 25℃. Journal of Solution Chemistry,1991,20(4):361-373.
    [126]G.T. Rochelle, C.J. King. The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases. Industrial & Engineering Chemistry Fundamentals, 1977,16(1):67-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700