碳钢在含氯离子溶液中的孔蚀早期电化学行为特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳钢是最重要的工程材料之一,局部腐蚀穿孔则是钢结构的主要破坏形式之一,然而关于碳钢孔蚀早期阶段的研究目前还较少。本文主要研究A3碳钢在含Cl~-的NaNO_2和NaHCO_3溶液中慢速电位极化下的电流波动曲线,并结合回扫极化曲线、交流阻抗及扫描电镜等手段,研究碳钢发生亚稳孔和稳定孔时的电化学行为,以及表面所造成的孔蚀损伤情况。
     1.研究了A3碳钢在NaNO_2+NaCl溶液中的电流波动,发现,电流波动具有明显的快速上升、缓慢下降的特点,表明碳钢表面活性点溶解较快,再钝化速率较慢。电流波动的结果,造成碳钢表面微米级的亚稳孔发生,每个小孔均是由若干更小的小孔构成。Cl~-浓度增加,亚稳孔电位E_m往负方向移动,说明Cl~-促进亚稳小孔的发生。恒电位极化时,电位升高,电流波动峰的峰值和峰频均增加,说明电位升高促使孔活性溶解速率增加,并能激活更多的活性点,使孔诱发速率增加。
     2.研究发现,A3碳钢在NaHCO_3+NaCl溶液中发生亚稳态孔蚀时电流波动也具有明显的快速上升、缓慢下降的特点。亚稳孔开始出现电位E_m和稳定孔蚀电位E_b均服从正态分布。恒电位极化时,当电位高于E_m而大大低于E_b时,电流波动保持一定时间后会最终消失,产生微米级的小蚀孔。而当电位接近E_b极化时,一段时间的波动后电流会迅速上升,亚稳孔最终转变为稳定蚀孔。亚稳态孔蚀产生的频率随时间延长逐渐降低,与电位变化关系不大。
     3.研究了NO_3~-、SO_4~(2-)、CO_3~(2-)、NO_2~+、MoO_4~(2-)和PO_4~(3-)6种阴离子对碳钢在NaHCO_3+NaCl溶液中孔蚀及亚稳态孔蚀的影响。发现,NO_3~-大大促进碳钢孔蚀的发生,SO_4~(2-)、CO_3~(2-)、NO_2~-、MoO_4~(2-)和PO_4~(3-)5种离
The electrochemical behaviors of early stage of pitting on A3 carbon steel in NaNO_2 and NaHCO_3 solutions were studied. The current-time measurement, polarization curve measurement and EIS were employed. SEM was also used to observe the corrosion morphology of carbon steel surface. The main results are as follows:1. The current fluctuations of A3 carbon steel in NaNO_2 + NaCl solutions were studied. The current fluctuations showed the feature of quick rise and relatively slow decay, indicating quick breakdown and slow repassivation of the passive film on the surface. The current fluctuations resulted in observable pits on sample surface. A larger pit may be composed of several smaller pits. The occurring potential for metastable pits E_m decreased with the increase of chloride concentration, indicating that Cl- promotes nucleation of metastable pits. Under potentiostatic control, the average peak current and number of fluctuations all increased when applied
    potential was raised. This indicates that the potential increase may accelerate the active dissolution and make more active sites, hence the induction rate of pitting increase.2. Metastable pitting behavior was observed for carbon steel in NaHCO3 + NaCl solution, which was represented by current fluctuations with the characteristic of quick increase and slow decrease. Em and Eb all obey normal distribution. In potentiostatic test, when potential was above Em and far below Eb, the current fluctuations remained for a period then disappeared, resulting in small pits with diameters of microns. When potential was close to Eb, the current may finally rise continuously after a certain time of fluctuations, and metastable pitting was replaced by stable pitting. Fluctuation frequency decreased with time. There is no apparent relationship between potential and the frequency of fluctuations.3 . The effects of CO32", NO2", SO42", MOO42" and PO43" anions on meatstable and stable pitting behaviors of A3 carbon steel in NaHCC}? + NaCl solutions were studied. It was found that these anions all made Eb and Em move to positive direction, indicating that they retard not only nucleation of pitting corrosion but also nucleation of metastable pitting. NO2" ions showed the strongest inhibition on nucleation of metastable pitting. The effects of these anions on nucleation and growth of metastable pits are very similar to those on stable pits.4. A larger pit on carbon steel surface may be composed of several
    smaller pits, especially in NaNO_2 + NaCl solutions, which suggests that a repassivated metastable pit may still be active site for following metastable pits to nucleate. Repeated local dissolution events around a certain active site caused accumulated corrosion damage. The pit size distribution calculated from the current fluctuations was very close to that observed with SEM, indicating that there is good correlation between current fluctuations and growth process of metastable pits. It is possible to make prediction for accumulated pitting damage of carbon steel in certain systems according to the current fluctuations and the calculation of current value. Corrosion products may pile up at pit mouth and lead the pit to an occluded state, thus metastable pitting process was replaced by stable pitting. Once the pit mouth was completely blocked up by corrosion products, the pit would stop growing.5. The pitting behaviors of A3 carbon steel in NaHCO_3 and NaNO_2 solutions were compared. It was found that many metastable pits occurred before stable pits for carbon steel in NaHCO_3 solution. While in NaNO_3 solution, a few metastable pits occurred and they would be replaced by stable pits soon. Many individual current fluctuations of carbon steel in NaBCO_3 solution leaded to many stochastic pits on surface. While in NaNO_2 solution it was found that a larger metastable pit was usually composed of several smaller pits, which was consistent with the overlapped currents on current-time curves. The potential step measurements, EIS and
引文
[1] 魏宝明.金属腐蚀理论及应用,北京,化学工业出版社.
    [2] Sato N. The stability of pitting dissolution of metals in aqueous solution. J. Electrochem. Soc., 1982, 129(2): 260-264.
    [3] Daufin G, Pagetti J, Labbe J P, Michel F. Pitting initiation on stainless steels: electrochemical and micrographic aspects. Corrosion, 1985, 41(9): 533-539.
    [4] Sato N. Anodic breakdown of passive film on metals. J. Electrochem. Soc., 1982, 129(2): 255-260.
    [5] Williams D E, Fleischmann M, Stewart J, Brooks T. Electrochemical methods in corrosion research. Materials Science Forum, 1986, 41 (9): 151.
    [6] Gabrielli C, Huat F, Keddam M, Oltra R. A review of the probabilistic aspects of localized corrosion. Corrosion, 1990, 46(4): 266-278.
    [7] Williams D E, Westcott C, Fleischmann M. Stochastic models of pitting corrosion of stainless steels Ⅰ Modeling of the initiation and growth of pits at constant potential. J. Electrochem. Soc., 1985, 132(8): 1796-1804.
    [8] Williams D E, Westcott C, Fleischmann M. Stochastic models of pitting corrosion of stainless steels Ⅱ Measurement and interpretation of data at constant potential. J. Electrochem. Soc., 1985, 132(8): 1804-1811.
    [9] Garfias-Mesias L F, Sykes J M. Metastable pitting in 25 Cr duplex stainless steel. Corros. Sci., 1999, 41(5): 959-987.
    [10] Frankel G S, Stochkert L, Hunkeler F, Boehni H. Metastable pitting of stainless steel. Corrosion, 1987, 43(7): 428-436.
    [11] Pistorius P C, Burstein G T. Mater. Sci. Forum, 1992, 111: 429.
    [12] Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate. Corros. Sci., 1992, 33 (12): 1885-1897.
    [13] Williams D E, Stewart J, Balkwill H. The nucleation, growth and stability of micropits in stainless Steel. Corros. Sci., 1994, 36(7): 1213-1235.
    [14] 半田隆夫,宫田惠守,高泽寿佳.防食技术,1989,38:529.
    [15] Breslin Carmel B, Macdonal Digby D, Sikora Elzbieta, Sikora Janusz. Photo-inhibition of pitting corrosion on types 304 and 316 stainless steels in chloride-containing solutions. Electrochimica Acta, 1997, 42(1): 137-144.
    [16] Suter T, Bohni H. A new microelectrochemical method to study pit initiation on stainless steels. Electrochimica Acta, 1997, 42(20-22): 3275-3280.
    [17] Cheng Y F, Luo J L. Metastable pitting of carbon steel under potentiostatic control. J. Electrochem. Soc., 1999, 146(3): 970-976.
    [18] Stockert L, Bohni H. Mater. Sci. Forum., 1989, 44(45): 313.
    [19] Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth. J. Electrochem. Soc, 1994, 141 (11): 3028-3040.
    [20] Bohni H. Mater. Sci. Forum., 1992, 111-112, 404.
    [21] Pistorius P C, Burstein G T. Philos. Trans, R. Soc, London, Ser. A, 1992, 341: 531.
    [22] Isascs H S. The localized breakdown and repair of passive surfaces during pitting. Corros. Sci., 1989, 29(2/3): 313-323.
    [23] Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions. Corros. Sci., 1992, 33(3): 457-474.
    [24] Laycock N J, Stewart J, Newman R C. The initiation of crevice corrosion in stainless steels. Corros. Sci., 1997, 39(10-11): 1791-1809.
    [25] Hoar T P, Jocot W R. Nature. 1961, 216(8): 1299.
    [26] Heusler K E, Fischer L. Kinetics of pit initiation at passive iron. Werkstoffe und Korrosion, 1976, 27(11): 788-791.
    [27] Heusler K E, Fischer L. Kinetics of pit initiation at the alloy Fe_5Cr. Werkstoffe und Korrosion. 1976, 27(10): 697-701.
    [28] Macdonald D D, Biaggio S R, Song H. Electrochemical Soc., Meeting. 171, Phoneix AZ, 1991.
    [29] Okada T. A theoretical analysis of the electrochemical noise during the induction period of pitting corrosion in passive metals Part Ⅱ. J. Electroanal. Chem. 1991, 297(2): 361-375.
    [30] MacFarlane D R, Smedley S J. The dissolution mechanism of iron in chloride solutions. J. Electrochem. Soc., 1986, 133(10): 2240-2253.
    [31] Keddam M, Krarti M, Pallatta C. Some aspects of the fluctuations of the passive current on stainless steel in presence of chlorides-their relation to the probalistic approach of pitting. Corrosion, i987, 43(8): 454-458.
    [32] Cheng Y F, Wilmott M, luo J L. The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise. Applied Surface Sci., 1999, 152(3-4): 161-168.
    [33] 左禹,符适.非晶态镍基合金表面亚稳态孔蚀生长的动力学特征.中国腐蚀与防护学报,1997,17(3):161-166.
    [34] Zuo Y, Fu S. Surface roughness and metastable pitting of amorphous nickel alloy. Corrosion, 1998, 54(4): 313-316.
    [35] Zuo Y, Wang H T, Xiong J P. The aspect ratio of surface grooves and metastable pitting of stainless steel. Corros. Sci., 2002, 44(1): 25-35.
    [36] Pistorius P C, Burstein G T. Surface roughness and the metastable pitting of stainless steel in chloride solutions. Corrosion, 1995, 51(5): 380-385.
    [37] 龚小芝,北京化工大学硕士论文,2002
    [38] Engell H J, Stolica N D. Stochastic models of pitting corrosion at constant potential. Z. Phys. Chem., NF, 1958, 20: 113.
    [39] Hoar T P, Tawb W R. Pitting of stainless steel in chloride solutions. Nature, 1996, 216: 1299.
    [40] 牛林,陈晓.碱性介质中卤素离子引起铁腐蚀的差异及腐蚀控制.山东大学学报,1996,31(2):190-195.
    [41] Ogura K, Ohama T. Pit formation in the cathodic polarization of passive iron Ⅱ. Effects of anions. Corrosion, 1981, 37(10): 569-574.
    [42] 左禹,陆玉成,熊金平,几种阴离子对亚稳态孔蚀行为的影响.中国腐蚀与防护学报,1999,19(1):21-26,
    [43] Zuo Y, Wang H T, Zhao J M, Xiong J P. The effects of some anions on metastable pitting of 316L stainless steel. Corros. Sci., 2002, 44(1): 13-24.
    [44] Acosta C A, Salvarezza R C, Videla H A, Arvia A. The pitting of mild steel in phosphate-borate solutions in the presence of sodium solphate. Corros. Sci., 1985, 25(5): 291-303.
    [45] 姜涛,左禹,熊金平.含S阴离子对低碳钢孔蚀的影响.腐蚀科学与防护技术,2001,13(5):249-253.
    [46] Boehni H, Stockert L. Susceptibility to crevice corrosion and metastable pitting of stainless steels. Mater. Sci. Forum, 1988(Pub. 1989): 44-45.
    [47] Pistorius P C, Burstein G T. Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel. Corros. Sci., 1994, 36(3): 525-538.
    [48] Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulfide inclusions, Advance in Localized Corrosion. 1996: 131.
    [49] Williams D E, Westcott C, Fleischmann M. Corrosion chemistry within pits, crevices and cracks. 1987, HMSO, London, p: 61.
    [50] Holliger R, Boehni H, Proc. Symp. Computer aided acquisition and analytical corrosion data. Electrochem. Soc., Pennington, New Jersey, 1984, 85(3): 200.
    [51] 龚小芝,肖娟,左禹,赵景茂,熊金平.溶液pH值对不锈钢亚稳态孔蚀行为的影响.北京化工大学学报,2002,29(4):29-31.
    [52] Pistorius P C, Kearns J R, Scully J R, Roberge P R, Reichert D L, Dawson J L. Electrochemical noise measurement for corrosion application, ASTM STP 1277, West Conshohocken, PA, 1996, p. 343.
    [53] Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel. Corros. Sci., 1993, 35(1): 57-62.
    [54] Hong T, Walter G W, Nagumo M. The observation of the early stages of pitting on passivated type 304 stainless steel in 0.5mol/L NaCl solution at low potentials in the passive region by using the AC impedance methods. Corros. Sci., 1996, 38(9): 1525-1533.
    [55] Pride S T, Scully J R, Hudson J L. Electrochemical noise measurement for corrosion application. ASTM STP 1277, West Conshohocken, PA, 1996, p: 307
    [56] Cheng Y F, luo J L. Passivity and pitting of carbon steel in chromate solutions. Electrochimica Acta, 1999, 44(26): 4795-4804.
    [57] Williams D E, Westcott C, Fleischmann M. Studies of the initiation of pitting corrosion on stainless steel. J. Electronal. Chem., 1983, 130: 549.
    [58] Hong T, Naguma M. The effect of chloride concentration on early stages of pitting for type 304 stainless steel revealed by the AC impedance method. Corros. Sci., 1997, 39(2): 285-293.
    [59] Was G S, Choi D. Effect of boric acid on pit growth in alloy 600 steam generator tubing. Corrosion, 1992, 48(2): 103-113.
    [60] Kobayashi Y, Virtanen S, Bohni H. Microelectrochemical studies on the influence of Cr and Mo on nucleation events of pitting corrosion. J. Electrochem. Soc., 2000, 147(1): 155-159.
    [61] Otero T F, Achucarro C. Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution. Corrosion, 1994, 50(8): 576-583.
    [62] Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth. J. Electrochem. Soc, 1994, 141(11): 3028-3039.
    [63] 左禹,王海涛.金属亚稳态孔蚀行为的电化学研究.腐蚀科学与防护技术,1999,11(1):44-52.
    [64] Bertocci U, Ye Y. An examination of current fluctuations during pit initation in Fe-Cr alloys. J. Electrochem. Soc., 1984, 131(5): 1011-1017.
    [65] Bertocci U, Koike M, Leigh S, Furong Q, Grace Y. A statistical analysis of the fluctuations of the passive current. J. Electrochem. Soc., 1986, 133(9): 1782-1786.
    [66] Bargeron C B, Givens R B. A signature in the current during early events in the pitting corrosion of aluminum. J. Electrochem. Soc., 1982, 129(2): 340-341.
    [67] Uruchurtu J C, Dawson J L. Noise analysis of pure aluminum under different pitting conditions. Corrosion, 1987, 43(1): 19-26.
    [68] Pistorius P C. Design aspects of electrochemical noise measurements for uncoated metals: electrode size and sampling rate. Corrosion, 1997, 53(4): 273-283.
    [69] Fukuda T, Mizuno T. The evaluation of pitting corrosion from the spectrum slope of noise fluctuation on iron and 304 stainless steel electrodes. Corros. Sci., 1996, 38(7): 1085-1091.
    [70] 曹楚南,常晓元,林海潮.孔蚀过程中的电化学噪声特征.中国腐蚀与防护学报,1989,9(1):22-28.
    [71] 曹楚南,石青荣,林海潮.孔蚀过程中电流噪声特征研究.中国腐蚀与防护学报,1990,10(1):22.
    [73] Kriston A, Lakatos-Varsanyi M. Testing and analyzing metastable pitting corrosion. Electrochimica Acta, 46(24-25): 3699-3703.
    [74] Hong T, Nagumo M. Effect of surface roughness on early stages of pitting corrosion of type 301 stainless steel. Corros. Sci., 1997, 39(9): 1665-1697.
    [75] Hong T, Nagumo M. The effect of SO_4~(2-) concentration in NaCl solution on the early stages of pitting corrosion of type 340 stainless steel. Corros. Sci., 1997, 39(5): 961-967.
    [75] Hong T, Nagumo M, Jepson W P. Influence of HNO_3 treatments on the early stages of pitting of type 430 stainless steel. Corros. Sci., 2000, 42(2): 289-298.
    [76] Schmuki P, Bohni H. Metastable pitting and semiconductive properties of passive films. J. Electrochem. Soc., 1992, 139(7): 1908-1913.
    [77] 林昌健,卓向东,冯祖德,杜荣归,田昭武.空间分辨电化学技术用于研究金属局部腐蚀.电化学,1999,5(2):25-30.
    [78] Tan Yong-Jun. Wire beam electrode: a new tool for studying localized corrosion and other heterogeneous electrochemical processes. Corros. Sci., 1998, 41(2): 229-247.
    [79] Tan Y J, Bailey S, Kinsella B, Lowe A. Mapping corrosion kinetics using the wire beam electrode in conjunction with electrochemical noise resistance measurements. J. Electrochem. Soc., 2000, 147(2): 530-539.
    [80] 钟庆东.采用丝束电极研究金属的缝隙腐蚀.中国腐蚀与防护学报,1999,19(3):189-192.
    [81] Shibata T, Takeyama T. Stochastic theory of pitting corrosion. Corrosion, 1977, 33(7): 243-251.
    [82] Gabrielli C, Huet P, Keddam M, Oltra R. A review of the probabilistic aspects of localized corrosion. Corrosion, 1990, 46(4): 266-278.
    [83] Gabrielli C, Huet P, Keddam M. Electrochemical and optical techniques for the study and monitoring of metallic corrosion, Ferreira M G S, Melendres C A (eds.), Kluwer Academic Publishers, 1991, 135.
    [84] Mola E E, Mellein B, Rodriguez E M, Vicente J L, Salvarezza R C. Stochastic approach for pitting corrosion modeling: 1 The case of Quasi-Hemispherical pits. J. Electrochem. Soc., 1990, 137(5): 1384-1390.
    [85] Burstein G T, Ilevabre G O. The effect of specimen size on the measured pitting potential of stainless steel. Corros. Sci., 1996, 38(12): 2257-2265.
    [86] Shibata T. Statistical and stochastic approaches to localized corrosion. Corrosion, 1996, 52(11): 813-830.
    [87] 俞春福,徐久军,黑祖昆.电化学扫描探针显微镜在腐蚀电化学研究中的应用.腐蚀与防护,2002,23(1):1-5.
    [88] 俞春福,徐久军,黑祖昆.氮化钽薄膜局部腐蚀早期过程的原位研究.材料保护,2002,35(5):16-18.
    [89] 林昌健,谢兆雄,田昭武.不锈钢点腐蚀发生的早期过程Ⅱ电化学扫描隧道显微镜研究.腐蚀科学与防护技术,1997,9(4):259-264.
    [90] Williford R E, Windisch C F, Jones R H. In situ observations of the early stages of localized corrosion in type 304 SS using the electrochemical atomic force microscope. Materials Science and Engineering, 2000, A288: 54-60.
    [91] Vuillemin B, Philippe X, Oltra R, Vignal V, Coudreuse L, Dufour L C, Finot E.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700