不锈钢应用中的几个腐蚀问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢是人类应用最广的绿色环保金属材料。在使用过程中,如果加工或使用不当,易导致局部腐蚀,晶间腐蚀是不锈钢局部腐蚀中最危险的破坏形式之一,但迄今为止仍然没有一种快速、完善、定量、无损的现场检测晶间腐蚀敏感性的方法。近年来随着人们环保意识的提高,为满足不同需求的功能性不锈钢新产品也不断问世,然而目前关于功能性不锈钢在应用环境中腐蚀问题的报道很少,本文围绕太原钢铁公司生产的传统不锈钢及其研制开发的新型304光亮型和430抗菌型不锈钢在应用中的腐蚀问题展开工作。
     针对不锈钢晶间腐蚀的检测,采用电化学测试、扫描电镜观察等方法研究了不锈钢晶间腐蚀的敏感温度及晶间腐蚀发生、发展过程。尝试采用电化学阻抗技术检测晶间腐蚀,初步分析了晶间腐蚀的电化学等效电路,并据此计算了电化学等效电路参数,讨论了等效电路参数与晶间腐蚀敏感程度的关联性。
     研究结果表明:奥氏体与铁素体不锈钢晶间腐蚀的敏感温度不同,在进行不锈钢晶间腐蚀敏感性检测时,应根据钢种选择相应的敏化处理制度,避免不合格的原材料出厂使用;EPR极化过程中固溶态和敏化态304不锈钢在再活化区,EIS图呈现双容抗弧特征,低频下敏化态比固溶态不锈钢阻抗模值小一个数量级,敏化态不锈钢发生了晶间腐蚀;钝化膜表面界面电容Cc及晶间腐蚀活性区界面电容Cd随敏化态不锈钢晶间腐蚀程度的加剧呈上升趋势,电荷传递电阻Rt呈现下降趋势,与晶间腐蚀的发生和发展有一定的对应关系。研究结果为运用电化学阻抗谱技术检测不锈钢晶间腐蚀提供了必要的依据。
     新型的304光亮不锈钢以其光洁美观的外观主要应用在大气环境中。采用恒电位开路衰减等多种电化学技术着重研究了304光亮不锈钢在含Cl-环境中的耐蚀性,结果表明,在0.01mol/L~0.6mol/L NaCl溶液及薄液膜下光亮不锈钢钝化膜的稳定性显著提高;同一浓度NaCl溶液中,光亮不锈钢点蚀击穿电位比普通不锈钢正400~600mV (SCE),显示了优异的耐蚀性能。分析认为光亮退火降低了不锈钢表面的粗糙度和减少表面贫铬现象是提高不锈钢耐蚀性的主要原因。
     抗菌铁素体不锈钢问世是不锈钢开发研究的另一进展,利用电化学方法、微生物学和表面分析方法研究了抗菌不锈钢在含异养菌介质中的腐蚀行为。结果表明不锈钢的腐蚀电位随异养菌新陈代谢呈现规律性地变化,抗菌处理使不锈钢在菌液中钝化膜的稳定性得到改善,点蚀敏感性降低;抗菌不锈钢表面弥散分布的ε-Cu析出相的杀菌作用,降低了异养菌的活性,减缓了异养菌对抗菌不锈钢的腐蚀,提高了抗菌不锈钢耐微生物腐蚀性能。
Stainless steels are one of the most widely used eco-friendly materials. However improper fabricating processes and employing conditions will cause various types of corrosion, among which intergranular corrosion is one of the most hazardous forms. While there are still no rapid, quantitative, non-destructive and versatile in situ methods competent for intergranular corrosion sensitivity detection up to now. In recent years as the importance of environment protection are more and more valued, diversified functional stainless steels began to come out, but still there are few reports concerning about corrosion of functional stainless steels in specified environments. This paper is focusing on corrosion problems in application of traditional stainless steel, new functional 304 bright-annealed stainless steel and 430 antibacterial stainless steel developed and manufactured by Taiyuan Iron and Steel Group Co. Ltd.
     In order to develop intergranular corrosion detection methods, electrochemical tests and SEM are used to study sensitive temperatures of intergranular corrosion, and also the procedure of initiation and development of intergranular corrosion. Electrochemical impedance spectroscopy (EIS) technique is applied to detect intergranular corrosion and equivalent circuit for intergranular corrosion is studied and corresponding parameters are decided accordingly. The relativity between equivalent circuit parameters and intergranular corrosion sensitivity is discussed. The results show that the intergranular corrosion sensitive temperatures between austenitic stainless steel and ferrite stainless steel are different from each other. Therefore in order to avoid unqualified products, the sensitizing heat-treatment system for the intergranular corrosion sensitivity examination should change according to various steel types. During EPR polarization in reactivation region EIS diagrams of both solution-annealed and sensitized 304 stainless steels present feature of double capacitance resistance arc and impedance modulus of sensitized stainless steel is one order of magnitude less than that of solution-annealed one at low frequencies, which shows that intergranular corrosion happens on sensitized stainless steel. Electrochemical equivalent circuit parameters such as Cc and Cd increase with severity of intergranular corrosion of sensitized stainless steel, whereas reverse situation happens to Rt, as is somewhat relative to occurrence and development of intergranular corrosion. The results obtained above provide the knowledge base for
引文
[1] 李成.中国不锈钢行业如何面对机遇和挑战[A]. 2005 年中国不锈钢行业年会.
    [2] J .A .Collins,M .L .Monack.Stress corrosion cracking in the chemical process industry.Materials Protection and Performance.1973, 12(6): 11~15
    [3] 侯保荣,海洋腐蚀环境理论及其应用.北京:科学出版社,1999, 22~24
    [4] 武川哲也,石丸褐.化学ブラソトにぉける防食构造设计の实际.防食技术,1976,25:251~257
    [5] 须永寿夫.不锈钢的损伤及其防护-典型实例.北京:机械工业出版社,1981,7~28,40~57.
    [6] 魏宝明.金属腐蚀理论及应用. 北京:化学工业出版社,1984,156.
    [7] 陆柱,21世纪对腐蚀与防护技术的挑战与对策,海峡两岸材料腐蚀与防护研讨会论文集,厦门,厦门大学出版社,1998,96~98
    [8] 肖纪美.不锈钢的金属学问题.北京:冶金工业出版社,1983, 289,246
    [9] 杨长强.合金钢文集.冶金部钢铁研究总院合金钢部,1992, 216~224
    [10] 陆世英.不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢.北京:原子能出版社, 1985,76-89.
    [11] 王正藮,吴幼林等.不锈钢.北京:化学工业出版社,1991,28~37,43~54,100~151,227~245
    [12] Bernstein,I.M.,Handbook of Stainless Steel,McGraw-Hill,1977,15~26
    [13] R. Merello, F.J. Botana, J.Botella, M.V.Matres, M .Marcos.Influence of Chemical Composition on the Pitting Corrosion Resistance of Non-standard low Ni-high-NDuplex Stainless Steels.Corrosion Science2003,45(5):909~921
    [14] 张国华,李敬高.奥氏体不锈钢应力腐蚀分析研究.焊接技术,2002,31(6):53~54
    [15] Cigada A, Mazza B, Pedeferri P, et al. Stress Corrosion Cracking of Cold- worked Austenitic Stainless Steels, Corros. Sci,1982,22(6):559~565
    [16] 刘双梅,刘道新.TA7钛合金耐热不锈钢电偶腐蚀敏感性研究.材料工程,2000 ( 1) : 17~20
    [17] Parkings R N. Environment-Induced Cracking of Metals. eds, Gangl of R P, Ives M B Houston ,TX;NACE,1990.
    [18] Cotis R A , Husain Z. Corrosion-fatigue Initiation Processes in Maraging Steel. Metals Technology,1982,9:104~110
    [19] Leis B N, Rungta R, Mayfield M E, Beavers J A .Corrosion Fatigue Crack Initiation in an Iron-Caustic System .in Corrosion Fatigue; Mechanics, Metallurgy, Electrochemistry and Engineering, eds. Crooker T W, Leis B N,ASTM STP 801,Philadelphia, PA ;ASTM 1983:197
    [20] Laid C, Duguete D J. Mechanismus of Fatigue Crack Nuckeation. in Corrosion Fatigue: Chemistry, Mechanicsand Microstructure, eds. Devereux OF , cevily A J ,Stachle R W ,NACE-2,Houston T X ;NACE 1972:88~93.
    [21] 吴荫顺,谢建辉,汪轩义等.氯化物溶液中不锈钢腐蚀疲劳裂纹初始萌生的过程机理. 腐蚀科学与防护技术,1999,1 1( 1):24~31
    [22] 雷明凯.生物用奥氏体不锈钢磨损腐蚀问题.大连理工大学学报,2000, 40(增 刊 ): 65~ 69
    [23] 陆世英,张廷凯,杨长强等.不锈钢.北京:原子能出版社,1995,2~4,5~8,161.
    [24] 陆世英等.腐蚀与防护手册第二册. 北京:化学工业出版社,1990, 190~253
    [25] Taboda A, Prank L. Intergranular, Corrosion in Nuclear System, Intergranular Corrosion in Stainless Alloys, ASTM STP656, ed.R.F.Steigerwald (Philadelphia. PA: ASTM, 1978), 85
    [26] E .Fritz.不锈钢生产技术的发展趋势.钢铁,2003,38( 5):67~72
    [27] 殷国茂.我国不锈钢无缝钢管的生产现状及发展.钢铁,1998, 27 (6):17~30
    [28] 中国不锈钢行业生产现状和最近国际市场价格走向.世界有色金属,1994,9:18~20
    [29] 段汉桥.我国铸造不锈钢应用现状及发展趋势.铸造,2002, 51 (5):268~272
    [30] 刘永辉,张佩芬.金属腐蚀学原理,航空工业出版社.1993,115~119
    [31] 张德康.不锈钢局部腐蚀.科学出版社.1982,4~27.
    [32] 杨武等.金属的局部腐蚀.化学工业出版社.1995,186~197,226~246
    [33] M.G. 方坦纳,N.D.格林著.腐蚀工程.化学工业出版社.1982,55~58
    [34] 刘秀晨,安成强.金属腐蚀学.国防工业出版社.2002,169~175
    [35] Sehgal.A., Ateya.B.G., Pickering.H.W. Synergistic effects of chromium depletion and ohmic potential drop on the susceptibility to intergranular corrosion and hydrogen embrittlement of sensitized stainless steel. Acta Materialia , 1997, 45( 8): 3389~3399
    [36] Congleton,J.,Yang.W. The effect of applied potential on the stress corrosion cracking of sensitized type 316 stainless steel in high temperature water . Corrosion Science , 1995, 37(3): 429~444
    [37] Horn, R.M.; Gordon, G.M.; Ford, F.P.; Cowan, R.L. Experience and assessment of stress corrosion cracking in L-grade stainless steel BWR internals. Nuclear Engineering and Design,1997,174(3):313~325
    [38] Lu, B.T.; Chen, Z.K.; Luo, J.L.; Patchett, B.M.; Xu, Z.H. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochimica Acta,2005,50(6):1391~1403
    [39] 党政军,于靖文.草酸法检测铁素体不锈钢对晶间腐蚀的敏感性.沈阳工业学院学报,2000,19(4):41~46
    [40] 宿艳霞.尿素合成塔里的腐蚀与防护.中国设备管理,2001,4:21~22
    [41] 李异,榻浩文,韦荣松.316L不锈钢晶间腐蚀机理的探讨. 腐蚀科学与防护技术,1993,5(2):131~135
    [42] Scharfstein L .R, Eisenbrown. C .M. An Evaluation of Accelerated Strauss Testing, ASTM STP369, ASTM,1963, 235~239
    [43] Delong W. B, Testing Multiple Specimen of Stainless Steels in a Modified Boiling Nitric Acid Test Apparatus, Symposium on Evaluation Tests for Stainless Steels,ASTM STP 93, ASTM,1950,211~216
    [44] Warren. D. Intergranular Corrosion Resistance of Austenitic Stainless Steels:A Nitric Acid-Hydrofluoric Acid Test,ASTM Bulletin, No.230,1958,45
    [45] Streicher M .A, Intergranular Corrosion Resistance of Austenitic Stainless steels:A Ferric Sulfate-Sulfuric Acid Test,ASTM ulletin,No.229,1958,77~86
    [46] Streicher M .A, Screening Stainless Steels from the 240-h Nitric Acid Test by Electrolytic Etching in Oxalic Acid,ASTM Bulletin, No.188,1953,35~38
    [47] Szklarska-Smialowska S ., Cragnolino G . Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel in Oxygenated Pure Water at Elevated Temperatures (REVIEW). Corrosion,1980,36 ( 12):653~665
    [48] 田昭武等,电化学实验方法进展,厦门大学出版社,1988,255~257
    [49] Bruemmer S.M. ,Charlot L.A.,Arey B.W. Sensitization Development in Austentic Stainless Steel:Correlation Between STEM-EDS and EPR Measurements.Corrosion,1988,44(6):328~333
    [50] Cihal V.Desestret A,.Froment M, Wagner G H. Tests for Evaluation of Sensibility of Stainless Steels to Intergranular Corrosion. Proc. 5thEuropean Corros. cong(Paris,France:EuropeanFederation on Corrosion,1973)249~253
    [51] Cihal.V.A potentiokinetic reactivation method for predicting the ICC and IGSCC sensitivity of stainless steels and alloys. Corrosion Science,1980,20:737~744
    [52] Cihal V. Advances in the potentiodynamic reactivation method. Werkstoffe und Korrosion,1986,37:587~591
    [53] Clarke W. L., Carlson D .C., Nondestructive measurement of sensitization of stainless steel: Relation to high temperature stress corrosion behavior. Materials Performance, 1980,19(3):16~23
    [54] Majidi A .P., Streicher M .A., Potentiodynamic reactivation method for detecting sensitization in AISI 304 and 304L stainless steels. Corrosion, 1984,40(9):393~408
    [55] Katsura R.,Kodama M.,Nishimura S.DL-EPR Study of Nentron Irradiation in Type 304 Stainless Steel. Corrosion,1992, 48 (5):384~390
    [56] Majidi A .P., Streicher M .A., Four nondestructive electromechanical tests for detecting sensitization in type 304 and 304L stainless steels. Nuclear Techonology, 1986,75(3):356~369
    [57] Muraleedharan P., Gnanamoorthy J. B ., Rodriguez P., Comparative Study: Degree of Sensitization and Intergranular Stress Corrosion Cracking Susceptibility of Type 304 Stainless Steel. Corrosion,1996, 52(10):790~800
    [58] Vladimǐr Cihal, Rudolf ?tefec.On the development of the electrochemical potentiokinetic method. Electrochimica Acta, 2001, 46:3867~3877
    [59] Lee J .B., A New Electrochemical Potentiokinetic Reactivation Test for Determing Degree of Sensitization in Ferritic Stainless steel . Corrosion, 1986, 42 (2):106~110
    [60] Scully J. R., Kelly R .G., An Electrochemical Test For Detecting the Intergranular Corrosion Susceptibility of a Duplex Stainless Steel. Corrosion,1986, 42 (9):537~542
    [61] Frangini S., Mignone A ., Modified Electrochemical Potentiokinetic Reactivation Method for Detecting Sensitization in 12wt% Cr Ferritic Stainless Steels. Corrosion, 1992,48 (9):715~726
    [62] Liu C., Huang H., ChenS.,Activators for EPR Test in Detecting Sensitization of Stainless steels.Corrosion,1992,48(8):686~693
    [63] Z.Fang, Y.S.Wu, and J.Q.Li. Application of the Modified of the Modified Electrochemical Potentiodynamic Reactivation Method to Evaluate Intergranular Corrosion Susceptibility of Stainless Steel. Corrosion,1998, 54:339~346
    [64] Greven O.,Buehler H.E.,Advance in assessing the susceptibility to intergranular corrosionof austenitic stainless steels using the electrochemical reactivation test(ERT)[A].NACE2004[C].Paper04444
    [65] 张安利.试论不锈钢光亮退火的若干问题.上海金属.2002,22(1):10~15
    [66] 张其良,黄明生.中小型冷轧薄不锈钢带光亮退火炉的研制与实践.工业加热,2001,3:49~51
    [67] 傅悦群.不锈钢BA板的生产工艺及其设备特点.上海宝钢工程设计2004,2: 30~34
    [68] 郭培文.不锈钢光亮板(BA板)技术开发.太钢科技,2002,2:42~46
    [69] D.Wallinder,I.Odnevall Wallinder,andC.Leygraf.Influence of Surface Treatment of Type 304L Stainless Steel on Atmomspheric Corrosion Resistance in Urban and Marine Environments. Corrosion,2003,59(3):220~226
    [70] 区国昌.不锈钢、碳钢和低合金钢在湿热地区广州大气腐蚀试验结果.环境技术,1997,6:9~12
    [71] 梁彩风,郁春娟,侯文泰.不锈钢的大气腐蚀研究-12年暴露试验总结.中国腐蚀与防护学报,1999,19(6):227~232
    [72] L.Veleva, L.Maldonado.Classification of atmospheric corrosivity in humid tropical climates.British Corrosion Journal ,1998,33(1):53~57
    [73] 李家柱.大气环境与腐蚀性.装备环境工程,2005,2(1):70~74
    [74] 李梅,王庆瑞. 抗菌材料的发展及其应用.化工新型材料,1998,(5):8~11
    [75] 枥原美佐子,横田毅,佐藤进等.抗菌性良好的不锈钢材及其制造方法[P].CN 1256716A,1999
    [76] 茂启次郎,井上善智,横田毅等. 制造抗菌金属制品的方法及由此制造的抗菌金属制品[P].CN 1243550A,1998.
    [77] 陈四红,吕曼祺, 张敬党等.含Cu抗菌不锈钢的微观组织及其抗菌性能,金属学报,2004,40(3):314-318
    [78] Nakamura S .,Suzuk iS .,Ookubo N .et al .Microstructure and Antimicrobial Activity of Cu Contained Ferritic Stainless steels. CAMP-ISIJ,1998,11 (3):114~118
    [79] Toyokihara C., Nakamura S., Miyakusu K .et al. Microstructure and Antimicrobial Activity of Cu Contained Martensitic Stainless steels. CAMP-ISIJ,1999,12 (6):1179~1185
    [80] Suzuki S., Nakamura S., MiyakusuK .et al . Antimicrobial Activity of Cu Contained Austenitic Stainless steels. CAMP-ISIJ,1999,12(3 ):518~523
    [81] 敬和民,陈四红,董加胜等.抗菌不锈钢材料及其发展现状.材料保护.2003,36(10):9~12
    [82] 邹德宁.含铜抗菌不锈钢的生产工艺研究:[博士后出站报告],太原,太原钢铁公司,2006.
    [83] I.T. Hong, C.H. Koo.Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Materials Science and Engineering, 2005, A 393:213~222
    [84] R.W.Lutey,R.Saito. The Occurrence and Influence of Anaerobic Bacteria in Cooling Water Systems. International Biodeterioration & Biodegradation, 1996,37(1~2): 127~128
    [85] Geesey.G..,Kalaiyappan.C. Microbially Influenced Corrosion of Materials used in the Storage of Spent Nuclear Fuels.International Biodeterioration & Biodegradation, 1996,37(1~2): 127~127
    [86] X.Shi, R.Avci, M.Geiser, Z. Lewandowski. Comparative study in chemistry of microbially and electrochemically induced pitting of 316L stainless steel. Corrosion Science, 2003, 45: 2577~2595
    [87] P.Angell, W.J.Machowski, P.P.Paul, C.M.Wall, F.F.Lyle Jr. A multiple chemostat system for consortia studies on microbially influenced corrosion. Journal of Microbiological Methods,1997,30:173~178
    [88] B.Little,P.Wagner,F.Mansfeld.Microbiologically influenced corrosion of metals and alloys.International Materials Reviews,1991,36(6):253~255.
    [89] 冯骏. 工业用水处理微生物分析. 广州:广东科技出版社,1989,109~115
    [90] P.Angell, J.S.LUO, D.C.White. Microbially Sustained Pitting Corrosion of 304 Stainless Steel in Anaerobic Seawater. Corrosion Science, 1995, 37(7): 1085~1096
    [91] Newman R C, Webster B J, Kelly R G. The Electrochemistry of SRB Corrosin and related inorganic phenomena. ISIJ Int,1991,31:201~209
    [92] Cragnolino G, Tuovinen O H. The Role of Sulphate-reducing Bacteria and Sulphur-oxidizing Bacteria in Localized Corrosion of Iron-based Alloys-A Review. Int Biodeter,1984, 20: 9~26
    [93] 凌云,陈志刚.不同表面对不锈钢SUS304耐微生物腐蚀性能的影响.机械工程学报,2002,38(1):105~107
    [94] R.C.Newman,W.P.Wong,A. Garner.A Mechanism of Microbial Pitting in Stainless Steel. Corrosion, 1986,42(8):489~491
    [95] Chamritski, I.G., Burns, G.R. Webster, B.J., Laycock, N.J. Effect of Iron-oxidizing Bacteria on Pitting of Stainless Steel. Corrosion, 2004, 60(7): 658~669
    [96] Kovach, Curtis W. Review of microbiological corrosion in the high performance stainless steels. American Society of Mechanical Engineers, Power Division (Publication)PWR, 1995,3:93~110
    [97] 宋诗哲著.腐蚀电化学研究方法,北京:化学工业出版社,1988,187~190,86
    [98] K. Ravindranath, S. N. Malhotra. The Influence of Aging on The Intergranular Corrosion of 22 Chromium-5Nickel Duplex Stainless Steel. Corrosion Science, 1995,37(1):121~132.
    [99] 方智,张玉林,吴荫顺等. 电化学动电位再活化法评价308L不锈钢的晶间腐蚀敏感性.腐蚀科学与防护技术,1996,8(2):87~93
    [100] 曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响. 中国腐蚀与防护学报,1989,9(4):261~270
    [101] 宋光玲,曹楚南,林海潮.不锈钢钝化—过钝化过渡区电极过程的交流阻抗分析.中国腐蚀与防护学报, 1993,13(1):1~9
    [102] 宋光玲,曹楚南,林海潮.不锈钢过钝化—二次钝化的研究.中国腐蚀与防护学报,1994,14(3):208~216
    [103] Iva Betova, Martin Bojinov , Timo Laitinen et al. The transpassive dissolution mechanism of highly alloyed stainless steels II. Effect of pH and solution anion on the kinetics. Corrosion Science , 2002,44: 2699~2723
    [104] A.Nishikata, Y.Ichihara, T.Tsuru. Electrochemical Impedance Spectroscopy of Metals Covered With A Thin Electrolyte Layer. Electrochimica Acta,1996,41(7):1057~1062
    [105] R.P.Vera Cruz,A. Nishikata , T.Tsuru.Pitting Corrosion Mechanism of Stainless steels Under Wet-Dry Exposure in Chloride-Containing Environments. Corrosion Science,1998, 40(1):125~139
    [106] Ching-An Huang , Yau-Zen Chang, S.C. Chen. The electrochemical behavior of austenitic stainless steel with different degrees of sensitization in the transpassive potential region in 1MH2SO4 containing chloride. Corrosion Science, 2004, 46:1501~1513
    [107] 宋诗哲,唐子龙.恒电位一恒电流瞬态技术研究Cr18Ni9不锈钢在氯化钠溶液中的孔蚀特征.腐蚀科学与防护技术,1992,4(1):27~34
    [108] 唐子龙. 孔蚀过程动力学及其缓蚀作用机理研究.博士论文:沈阳,中国科学院金属腐蚀与防护研究所,1996
    [109] 宋诗哲,唐子龙.恒电位一恒电流瞬态技术研究钝化膜多层结构.金属学报,1995,31(2):61~64
    [110] 刘剑平,宋诗哲,唐子龙. 304SS/NaCI体系中环己胺的缓蚀作用.化工学报,1999,50(2):216~221
    [111] 王庆飞.模拟生物腐蚀方法研究典型金属材料的海水腐蚀行为:[博士论文],天津,天津大学,2000.
    [112] 林海潮,曹楚南.孔蚀过程中的电化学噪声研究.中国腐蚀与防护学报, 1986,6:141~148
    [113] Gusmano G ,Montesperelli G,Pacetti S,Petitti A,Amicc A D. Electrochemical noise resistance as a tool for corrosion rate prediction. Corrosion,1997, 53(11):860~868
    [114] Chan-Jin Park, Hynk-sang Kwon. Electrochemical noise analysis of localized corrosion of duplex stainless steel aged at 475℃.Materials Chemistry and Physics,2005,91:355~360
    [115] 张昭, 张鉴清, 王建明, 曹楚南. 硫酸钠溶液中2024-T3铝合金孔蚀过程的电化学噪声特征. 中国有色金属学报,2001,11(2):284~287
    [116] Leod A, Dolecek V.Measurement and analysis of electrochemical noise. Corrosion,1995, 51(4):295~300
    [117] 顾 祥,林天煇,钱祥荣.现代物理研究方法及其在腐蚀科学中的应用. 北京:化学工业出版社,1990,87~14.
    [118] Itaya K, In situ scanning tunneling microscopy in electrolyte solutions. Prog. Surf. Sci.,1998,58(3):121~148
    [119] Kolb D M. An atomistic view of electrochemistry. Surf. Sci., 2002, 500: 722 ~740
    [120] Kong De-Sheng;Yuan Shi-Ling;Sun,Yu-Xi et al. Self-assembled monolayer of o-aminothiophenol on Fe(110) surface: a combined study by electrochemistry, in situ STM, and molecular simulations. Surface Science,2004,573(2):272~283
    [121] 秦丽雁, 董征东. 用电化学方法测量不锈钢晶间腐蚀的敏感性.太钢科技,1991,3: 80~86
    [122] JISG0575--1999 Corrosion Test Method for Stainless Steel Sulphuric-acid- Sulphate of Copper.
    [123] GB4334.5--2000不锈钢硫酸-硫酸铜腐蚀试验方法.
    [124] A.Conde,J.de Damborenea. Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy. Corrosion Science,2000, 42:1363~1377
    [125] 于福州 马德章 刘国瑞等.腐蚀与防护手册第一册 腐蚀理论 试验及监测 北京:化学工业出版社,1990, 70~80
    [126] J.M.Bastidas, M.F.López, A.Gutiérrez and C.L.Torres, Chemical analysis of passive films on type AISI 304 stainless steel using soft X-ray absorption spectroscopy Corrosion Science,1998,40:431~438
    [127] 曹楚南 张鉴清. 电化学阻抗谱导论 北京:科学出版社 ,2002;45~75
    [128] Utsunoniya T. Development of Atmospheric Corrosion Resistance Ferritic Stainless Steel. NSS445M2 Nisshin Steel Technical Report, 71(1995). 53~64
    [129] Y.Zuo and S.Fu. Surface Roughness and Metastable Pitting of Amorphous NickelAlloy.Corrosion, 1998, 61(54):313~316
    [130] R. Holliger, H. Boehni, Proc. Symp. Computer Aided Acquisition and Analytical Corros. Data, Electrochem. Soc., Pennington, New Jersey, 1984,85(3):200~207
    [131] 左禹,符适. 非晶态镍基合金表面亚稳态孔蚀生长的动力学特征. 中国腐蚀与防护学报, 1997, 17(3):161~165
    [132] Burstein G T, Pistorius P C. Surface roughness and metastable pitting of stainless steel in chloride solutions .Corrosion, 1995,51(5):380~385
    [133] 曹楚南,腐蚀电化学. 化学工业出版社,北京,1995. 161~162.
    [134] Nagiub.A, Mansfeld.F. Evaluation of corrosion inhibition of brass in chloride media using EIS and ENA. Corrosion Science, 2001,43:2147~2171
    [135] Lu, YZ, Song, SZ, Yin, LH. Corrosion electrochemical behavior of brass tubes in circulating cooling seawater. Transactions of Nonferrous Metal Society of China, 2005, 15 (3): 619~625
    [136] 徐乃欣, 张承典, 丁翠红. 加速大气腐蚀试验的一个新方案.中国腐蚀与防护学报,1990, 10 (3): 228~232
    [137] Zhang D Q,Gao L X,Zhou G D.Inhibition of copper corosion by bis-(1-benzotriazoly-methylene)-(2,5-thiadiazoly)-disulfide in chloride media.Appl Surf Sci,2004,225:287~ 293
    [138] A.Nishikata, Y.Ichihara, and T.Tsuru, An application of electrochemical impedance spectroscopy to atmospheric corrosion study. Corrosion Science, 1995, 37 (6 ): 879~891
    [139] K .W .Chung, K .B .Kim, A Study of the effect of concentration build up of electrolyte on the atmospheric corrosion of carbon steel during drying. Corrosion Science,2000,42:517~531
    [140] G.A. EI-Mahdy,A. Nishikata, T. Tsuru, AC impedance study on corrosion of 55%Al-Zn alloy- coated steel under thin electrolyte layers. Corrosion Science, 2000,42:1509~1521
    [141] R.P.VERA CRUZ,A.NISHIKATA and T.TSURU.AC Impedance Monitoring of Pitting Corrosion of Stainless Steel Under a Wet-Dry Cyclic Condition in Chloride-containing Environment. Corrosion Science,1996,38(8):1397~1406
    [142] Magino S I, Kawaguchi A,Hirata A, Osata T.Spectrum analysis of corrosion potential fluctuations for localized corrosion of type 304 stainless steel J.Electrochem,Soc.,1987,134:2993~2997
    [143] 曹楚南,常晓元,林海潮.孔蚀过程电化学噪声特征.中国腐蚀与防护学报,1989;9(1):21~28
    [144] Cheng, Y.F.;Luo, J.L.;Wilmott,M. Spectral analysis of electrochemical noise with different transient shapes. Electrochimica Acta, 2000, 45(11):1763~1771
    [145] F.Mansfeld and H.xiao, Electrochemical noise analysis of iron exposed to NaCl solution of different corrosivity. J. Electrochem. Soc., 1993, 140(8): 2205~2209
    [146] 熊娟,许伯藩,但智钢等.铜离子注入不锈钢中的剂量与抗菌性. 材料热处理学报, 2004,25(4):45~47
    [147] 邹德宁,张威,张寿禄等.抗菌处理对含铜铁素体不锈钢组织和性能的影响.铸造技术,2005,26(11):1009~1011
    [148] Brenda Little, Patricia Wagner. Myths related to microbiologically influenced corrosion. Mater Perform,1997,36(6):40~44
    [149] 林建,朱国文,孙成等. 金属的微生物腐蚀. 腐蚀科学与防护技术, 2001,13(5):279~284
    [150] Scotto V, Lai M E. The ennoblement of stainless steels in seawater: A likely explanation coming from the field. Corrosion Science,1998,40(6):1007~1018
    [151] 王庆飞,隋静,苏润西等.模拟生物膜方法研究钢在海水中的腐蚀行为.电化学,1999,5(1):55~58
    [152] 王庆飞,隋静,万小山,宋诗哲.典型金属材料在模拟海水微生物环境中的腐蚀行为.化工学报,2000,9(52):814~818
    [153] 刘剑平,宋诗哲,唐子龙. 吸附钝化体系的孔蚀和缓蚀作用的电化学研究新方法.腐蚀科学与防护技术,2000, 12:48~50
    [154] 李宁,文玉华,张伟等. 高铜马氏体不锈钢的抗菌性能.特殊钢,2003,24(4):29~30
    [155] V.Scotto,R.Di Cintio, G.Marcenaro.The Influence of Marine Aerobic Microbial Film on Stainless Steel Corrosion Behavior. Corrosion Science,1985, 25(3):185~194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700