大跨度索拱组合体系非线性静动力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着轻质、高强、低阻尼索结构的出现,索拱组合体系在土木工程中具有广泛的应用,最早应用于体育馆等建筑结构中,在桥梁工程中的应用主要是作为大跨度拱桥施工过程中的临时受力结构体系,作为永久性受力结构体系在桥梁工程中应用仍处于探索阶段。本文以桥梁工程中广泛存在的索拱组合体系为工程背景,主要进行两个方面的研究:一是以国内第一座将索拱作为永久性受力结构体系的桥梁—湘江四大桥为研究对象,从非线性有限元法的基本原理出发,考虑几何和材料双重非线性,对索拱组合桥这一新型的桥梁结构形式的力学性能进行了深入的研究;二是以在采用缆索吊装施工方法的拱桥中广泛存在的临时索拱组合体系为研究对象,利用非线性动力学的基本理论,对索的参数共振和亚谐波共振以及索拱相互激励的内共振、分叉、混沌等非线性动力学行为进行了系统和深入的研究,工作主要研究内容如下:
     第一章主要对索拱组合结构体系在土木工程中的应用进行了总结,特别对在桥梁工程中的应用进行了详细的阐述,从永久性的索拱组合体系和临时性的索拱组合体系两个方面,对该结构体系的研究方法、研究现状及进展进行了综述,介绍了本文的研究目的及研究内容。
     第二章介绍了当前工程界最常用的和最广泛的有限位移计算理论,并从虚功原理出发推导了全量形式下和增量形式下几何非线性有限元的一般公式,在总结众多考虑非线性影响因素的拉索计算方法的基础上,推导了适合在长大跨度桥梁中使用的拉索单元,并在大型有限元程序中ANSYS中进行了二次开发,利用建立的非线性索单元,结合大位移理论,形成了适用于索拱组合体系等长大跨度桥梁的非线性分析理论。
     第三章以湘江四大桥为背景,详细介绍了索拱组合桥结构体系的受力特点,在第二章的基础上开发了可用于对索拱组合桥进行几何非线性分析的有限元程序NSGCB程序,并用经典算例验证了其可靠性,使用NSGCB程序对湘江四大桥受力性能进行了详细的分析,着重研究了斜拉索倾角、斜拉索初张力对主拱受力性能的影响,对比分析了在设计荷载作用下索拱组合桥与普通系杆拱桥受力性能的差异,同时分析了极限承载能力状态下两种拱桥体系受力性能的优劣,对几何非线性因素对索拱组合桥受力性能的影响进行了定量分析。
     第四章阐述了桥梁结构极限承载能力概念,总结了目前研究桥梁结构极限承载能力问题的主要方法,从理论研究和试验研究两个方面概述了目前我国拱桥特别是钢管混凝土拱桥的极限承载能力的研究现状,给出了对索拱组合桥梁进行材料非线性分析的计算方法和计算公式。结合第三章给出的几何非线性分析的计算方法和计算公式,针对大跨度索拱组合桥梁在失稳、破坏期间表现的几何和材料非线性特征,采用高精度不分层等截面梁单元和钢管混凝土组合材料统一本构关系,通过荷载增量法,采用分级逐步加载的方式,对目前国内第一座索拱组合桥—湘江四大桥进行了在多种静力荷载作用下的极限承载能力分析,追踪整个结构在加载过程中的变形过程,直至失去承载能力。
     第五章建立了缆索吊装过程中索拱组合连续体系的非线性参数振动力学分析模型,考虑了由于索的初始垂度、大位移而引起的几何非线性因素的影响,推导了索拱组合结构参数振动的非线性动力学方程,运用多尺度摄动方法,对拉索可能发生的参数共振和亚谐波共振进行了理论研究和数值分析,确定了索-拱组合结构中拉索参数共振和亚谐波共振的影响因素及发生条件。
     第六章在利用索拱连接条件的基础上,建立了索拱组合体系的无穷维非线性动力学分析模型。利用多尺度摄动方法对非线性方程进行了求解,讨论了在无外激励作用情形下索拱组合体系的非内共振情况和内共振情况,同时对索拱组合体系在外激励作用下的非线性动力学行为进行了详细的分析,定性研究了索拱在分别发生主共振条件下索拱非内共振情形和索拱之间内共振情形,
     第七章以湘江四大桥第一施工阶段结构为研究对象,在索拱分别发生主共振条件下,分非内共振和内共振两种情况对索拱发生内共振的模式、分叉类型及其混沌性质进行了深入的讨论和研究,得到了产生动力不稳定、分叉及混沌的频域区间及相应激励幅值区间,详细讨论了索拱结构参数对索拱非线性动力性能的影响,确定了索拱各结构参数的敏感性,提出了设计吊装系统时应重点考虑的结构动力学参数。
     第八章对本文的工作进行了总结,并指出了今后在索拱组合体系研究上需要努力的方向。
Along with the appearance of lightness, flexibility and inherently low damping cables, the cable-stayed arch system are applied widely on civil engineering, the system first was applied in construction structure and so on the stadium, and it mainly is taken the temporary stress structure system in the erection stage of long span arch bridges in bridge engineering, but the application as the permanent stress structure system in the bridge engineering still is at the exploration stage, This paper take the cable-stayed system as the project background, mainly has conducted the research in two aspects: one is that the forth bridge of Xian tan in which the system is taken the temporary stress structure for the first time in china was taken as the research object, based on theory of nonlinear finite element analysis method, Considered the effects of geometric non-linearity as well as material non-linearity, The mechanics performance of the cable-stayed bridge was conducted the thorough research; the other is that the temporary cable-stayed arch system which widely exists in the erection stage of the long-span arch bridges was taken as the research object, using the non-linear dynamics theory, the parametric and sub-harmonic resonances of cables are analyzed, and the internal resonance, bifurcation as well as chaos of the cable and the arch has been thoroughly studied. The studies have more profound theoretical significances and important engineering application values. The main content in this paper is as follows:
     Chapter one carries on the summary to the cable-stayed arch in civil engineering application, specially carries on the detailed outline to the cable-stayed arch in bridge engineering. From the temporary cable-stayed arch and the permanent cable-stayed arch, the chapter outlines study methods, research situation and recent advances on the system first, and introduces the aim, contents and innovations of the study in this paper.
     Chapter two in detail introduces the finite displacement theory. Using the total Lagrangian formulations and the updated Lagrangian formulations, the non-linear FEM equation are derived from the virtual work principle, Based on the summary to the nonlinear cable element, the spatial catenary cable element which suits in the long-span bridge was derived. A user nonlinear cable element was defined in FEM software ANSYS using User Programmable Features. The stiffness matrix of spatial element was derived, and the shearing deformation of beam was considered. Thus the beam element has the widespread serviceability. With the help of the cable element and the beam element, the nonlinear analysis theory which suitably applies in the long-span cable-stayed arch bridge is formed through the large displacement theory.
     In chapter three, based on the forth bridge of XIANGTAN, the mechanics characteristic of the cable-stayed arch bridge are introduced in detail. On the basis of chapter two, the nonlinear analysis program (NSGCB) was developed, by which the analysis can be performed to the cable-stayed arch bridge with geometrical non-linearity. Using the program, the mechanics characteristic of the cable-stayed arch bridge in detail were analyzed, the effects of the initial tension of cables and the tilt angle of cables on the mechanics characteristics of cable-stayed arch bridge are discussed with emphasis, the difference of the two kinds of arch bridges are contrasted with under designing load, and the difference of the two kinds of arch bridges are contrasted with under ultimate load. The effects of the non-linear factors on the cable-stayed arch bridge are analyzed by the quota.
     Chapter four describes the concept of the ultimate bearing capacity of bridges, and outlines main study methods by which the ultimate bearing capacity of bridges was studied. The research present situation of the ultimate bearing capacity of CFST arch bridge was summarized from fundamental research and experimental study. The computational method and formula by which the cable-stayed arch bridge was analyzed was given. On the basis of above-mentioned work, considered nonlinear characteristics of concrete filled steel tube arch in both material and geometry in deformation and instability, based on the constitutive relations of combinatorial material of concrete filled steel tube and the finite element method of high accuracy beam, the ultimate bearing capacity of the cable-stayed arch bridge was analyzed under many kinds of static loads, and traced the distortion process during increasing load until losing bearing capacity.
     In chapter five, we present the nonlinear mechanical model for parametric vibration problem of cable-stayed arch structure. The nonlinear equations of motion of the cable-stayed arch structure were derived, and the static sag of the cable as well as the geometric nonlinearity is considered. Appling the multi-scale perturbation method, the parametric and sub-harmonic resonances of cables were analyzed. We obtained the influence factor and the condition of the parametric and sub-harmonic resonances of cables in the cable-stayed arch structure.
     In chapter six, a nonlinear dynamical modal of cable-stayed the cable-stayed arch structure is built by application of the cable-arch connecting condition. The nonlinear dynamical equation of the cable-arch connecting condition was solved by the multi-scale perturbation method. The internal resonance of the cable-stayed arch system subjected to the external excitation is investigated; the nonlinear dynamical characteristic of the cable-stayed arch system subjected to the external excitation is discussed in detail. The internal resonance and the non-internal resonance of the cable-arch were studied qualitatively with primary resonance of the cable-stayed arch structure.
     In chapter seven, taking the first construction stage of the forth bridge of XIANGTAN as research object,, the internal-resonant modal, the bifurcation and chaos of the cable-stayed arch structure were thoroughly and systematically studied with the appearance of primary resonance of the cable-stayed arch structure under internal resonance and non- internal resonance respectively. The region of dynamic instability, the region of bifurcation, the region of chaos and the region of excitation amplitude are obtained, the effects of structural parameter on the nonlinear dynamic performance of the cable-stayed arch structure are analyzed in detail, and then we have determined the sensitivity of structural parameters. Based on the above work, the dynamic parameters of the cable-stayed arch structure are considered with emphasis during designing the temporary structure system in the erection stage of long span arch bridges.
     Chapter eight have carried on the summary to main contents of the study in this paper, and have pointed out the diligently direction in the cable-stayed arch system.
引文
[1] 刘开国 .索 -拱体系的静力与动力特性分析 .建筑钢结构进展 ,2003,5(4): 49-51.
    [2] 郑皆连.特大跨径 RC 拱桥悬拼合拢技术的探讨.中国公路学报,1999,12(1): 42-49.
    [3] 林同炎.拱是结构也是建筑.土木工程学报,1997,30(3):11-15.
    [4] 李占军, 张福海, 刘锡良.拉索拱结构几何非线性分析的实用方法.建筑结构学报,1999, 20(3):35-41.
    [5] Pascal Klein, Michael Yamout. Cable-Stayed Arch Bridges, Putrajaya, Kuala Lumpur, Malaysia .Structural Engineering International, 2003, 25(3):196- 199.
    [6] 王莲香,周水兴.马来西亚吉隆坡普特拉贾亚城的斜拉拱组合桥.世界桥梁,2004, (4):9-12.
    [7] 罗世东, 王新国, 王庭正等.大跨径斜拉拱桥创新技术构思与研究.桥梁建设, 2005, (6):31-33.
    [8] 陈向阳,汪劲丰,王建江等.用索拱体系加固提载刚架拱桥的分析研究.公路交通科技,2005, 22(11):115-118.
    [9] 陈宝春.钢管混凝土拱桥实例集(一).北京:人民交通出版社,2002,11-14.
    [10] 唐寰澄.世界长大桥梁技术和艺术的发展趋向.广东交通科技,2000,(11): 73-79.
    [11] 周念先.桥梁方案比选.上海:同济大学出版社,1997,66-67.
    [12] 刘德宝,马芹纲.桥梁结构创新方法.国外桥梁. 2002, (1): 65-68.
    [13] 赵跃宇,吕建根,易壮鹏.斜拉拱桥的力学性能及经济性能的研究.世界桥梁,2005,(1):29-32.
    [14] 赵跃宇, 杨相展, 康厚军. 斜拉拱桥动力特性分析.公路,2005,(11):36-39.
    [15] 郝 成 新 . 平 面 预 应 力 索 - 拱 体 系 动 力 特 性 的 研 究 . 哈 尔 滨 建 筑 大 学 学报,1996,29(6):51-56.
    [16] 丁建国. 索-拱结构受跨中集中力作用时的稳定性分析. 南京理工大学学报,2003, 7(2): 214-217.
    [17] 剧锦三,郭彦林. 索-拱结构的平面内稳定性研究. 建筑结构学报,2001,22(2) 84-87.
    [18] 马爱民,王琦.索拱结构体系参数分析.四川工业学院学报,2003,22(3):86-88.
    [19] 陈宝春.钢管混凝土拱桥设计与施工.北京:人民交通出版社,2000,255-260.
    [20] 宋立德.大跨度钢管混凝土拱桥施工技术: [同济大学硕士学位论文].上海:同济大学土木工程学院,2004,2-16.
    [21] 陈宝春, 孙 潮.石潭溪大桥施工受力分析.中国公路学报,1998,11(4):51-57.
    [22] 饶 勃.实用混凝土工手册.上海:上海交通大学出版社,1993,78-79.
    [23] 赵 雷, 杜正国.大跨度钢筋混凝土拱桥钢管混凝土劲性骨架施工阶段稳定性分析.西南交通大学学报,1994,29(4):446-452.
    [24] 谢幼藩, 赵 雷, 谢邦珠,等.用劲性骨架法建造大跨钢筋混凝土拱桥的施工安全度分析[A].四川省公路学会桥梁学术研讨会论文集.成都:西南交通大学出版社,1996,46-53.
    [25] 颜全胜, 韩大建.钢管混凝土系杆拱桥的非线性与稳定分析.第十三届全国桥梁学术会议论文集.上海:同济大学出版社,1998,491-498.
    [26] 盛洪飞, 郭 伟, 王 锐等.无风撑钢管混凝土中承拱桥非线性试验分析.哈尔滨建筑大学学报,1997,30(4):103-108.
    [27] 刘 忠.大跨径钢-混凝土复合桥梁的时间、几何、材料、温度非线性空间分析:[同济大学博士论文],上海:同济大学,1996,3-5.
    [28] 陈宝春, 孙 潮, 徐爱民.钢管混凝土拱桥温度内力计算时温差取值分析.中国公路学报,2000,13(2):52-56.
    [29] 赵 长 军 , 王 锋 君 , 陈 强 等 . 大 跨 度 钢 管 混 凝 土 拱 桥 空 间 稳 定 性 分 析 . 公路,2001,(2):15-17.
    [30] 王 勖 成 , 邵 敏 . 有 限 单 元 法 基 本 原 理 和 数 值 方 法 . 北 京 : 清 华 大 学 出 版社,1996,531-544.
    [31] Ted Belytschko,Wing Kam Liu,Brian Moran.Nonlinear Finite Elements for Continua and Structures.John Wiley & Sons,2000,93-96.
    [32] 朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998,5-24.
    [33] 王勖成.有限单元法.北京:清华大学出版社,2003,6-33.
    [34] 董石麟, 钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社,2000,13-29.
    [35] 钱 若 军 , 杨 联 萍 . 张 力 结 构 的 分 析 ·设 计 ·施 工 . 南 京 : 东 南 大 学 出 版社,2003,63-69.
    [36] 宋天霞 ,郭建生 ,杨元明 .非线性固体计算力学 .武汉 :华中科技大学出版社,2002,66-96.
    [37] 江 锋.薄壁箱梁混合单元及其在斜拉桥双重非线性分析中的应用研究:[中南大学博士论文].长沙:中南大学,2004,1-50.
    [38] 程庆国, 潘家英, 高路彬等.关于大跨度斜拉桥几何非线性问题.全国桥梁结构学术大会论文集.上海:同济大学出版社,1992,66-69.
    [39] Ali HM, Abdel-Gha.ar AM. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings. Computers and Structures 1995, 26(5):46-54.
    [40] 洪显诚, 刘志英.精确的斜拉索等效弹性模量公式的推导.全国桥梁结构学术大会论文集.上海:同济大学出版社,1992,32-37
    [41] 彭杰元,汪正兴.关于大跨度斜拉桥的非线性分析—武汉桥模型研究.全国桥梁结构学术大会论文集.上海:同济大学出版社,1992,37-42.
    [42] Raid Karoumi. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Computer and Structures, 1990, 71(4):397-412.
    [43] 唐建民等. 索弯顶结构非线性分析的杆索有限元法.工程力学,1998,15(4): 34-42.
    [44] 唐建民等. 索弯顶结构非线性分析的曲线索单元有限元法.同济大学学报,1996,24(1):6- 10.
    [45] 董 明等. 张力结构的非线性分析.计算力学学报,1997,14(3): 268-275.
    [46] Prem Krishna, cable-suspended roofs. McGraw-Hill Bood Company, 1978,1-56.
    [47] O'Brien T. Francis AJ. Cable movements under two-dimensional Journal of Structural Engineering, 1964, 90(ST3): 89-123.
    [48] O'Brien T. General solution of suspended cable problems . Journal of Structural Engineering,1967,93(STl): 1-26.
    [49] Peyrot AH, Goulois AM. Analysis of cable Structures .Computers and structures, 1981.14(3):3-14.
    [50] Jayaraman HB, Knudson WC. A curved element for the analysis of cable structures. Computers&Structures, 1981, 14(3-4): 325-333.
    [51] 杨孟刚, 陈政清.基于 UL 列式的两节点悬链线索元非线性有限元分析.土木工程学报,2003,36(8):63-68.
    [52] 罗月静.大跨度钢管混凝土拱桥施工控制研究:[广西大学博士论文].南宁:广西大学,2004,41-44.
    [53] Tang Jianmin, Shen Zuyan and Qian Ruojun. A nonlinear finite element method with five-node curved element for analysis of cable structures . Proceedings of IASS International Symposium, 1995, 16(2):929-935.
    [54] 唐建民,赵引,吴黎华.基于欧拉描述的两节点索单元非线性有限元法. 上海力学, 1999,20(1):89-94.
    [55] 哈 尔 滨 建 筑 工 程 学 院 编 . 大 跨 度 房 屋 钢 结 构 . 北 京 : 中 国 建 筑 工 业 出 版社,1985,66-67.
    [56] 胡 松 , 何 艳 丽 , 王 肇 民 . 大 跨 度 索 结 构 的 非 线 性 有 限 元 分 析 . 工 程 力学,2000,17(12):36-43.
    [57] W C Knudson. Static and dynamic analysis of cable net structures [Doctoral dissertation]. University of California, Berkely, California, 1971, 33-49.
    [58] 袁行飞, 董石麟. 二节点曲线索单元非线性分析.工程力学,1999,16(4):59-64.
    [59] 李著璟.特殊结构.北京:清华大学出版社,1988,10-30.
    [60] 罗 世 东 , 王 新 国 等 . 大 跨 径 斜 拉 拱 桥 创 新 技 术 构 思 与 研 究 . 桥 梁 建设,2005,(6):31-33.
    [61] 伊藤学, 川田忠树等.超长大桥梁建设的序幕-技术者的新挑战.北京:人民交通出版社,2002,1-30.
    [62] 张国政. 铁路悬索桥非线性分析及其极限承载能力的研究:[铁道部科学研究院博士学位论文]. 北京:铁道部科学研究院,1994,1-120.
    [63] 项海帆.高等桥梁结构理论.北京:人民交通出版社,2001,258-260.
    [64] 中交公路规划设计院.公路桥涵设计通用规范(JTGD60- 2004).北京:人民交通出版社,2004,26-29.
    [65] Chatterjee P N.On the Deflection Theory of Ribbed Two-Hinged Elastic Arches. Thesis PhD.The University of Illinois, 1948,33-89.
    [66] Sadao Komatsu, Tatsuro Sakimoto.Ultimate Load-carrying Capacity of Steel Arches.Journal of the Structural Division, ASCE, 1977, 103(ST12):2323-2361.
    [67] 谢 幼 藩 , 陈 克 济 . 拱 桥 面 内 稳 定 性 计 算 的 探 讨 . 西 南 交 通 大 学 学报,1982,12(1):1-111.
    [68] 任伟新.钢桁架桥压杆局部与整体相关屈曲极限承载力研究:[长沙铁道学院博士学位论文].长沙:长沙铁道学院,1992,3-8.
    [69] 任 伟 新 , 曾 庆 元 . 钢 压 杆 稳 定 极 限 承 载 力 分 析 . 北 京 : 中 国 铁 道 出 版社,1994,1-28.
    [70] 颜全胜.大跨度钢斜拉桥极限承载力分析:[长沙铁道学院博士学位论文].长沙:长沙铁道学院,1994,1-6.
    [71] Ehinton, D R J Qwcn. Finite Element Software for Plates and Shells.1984, 19-37.
    [72] 张翔, 黄赤, 贺栓海.大跨径混凝土桥梁结构的极限承载力分析.华东公路,1990, (6):52-69.
    [73] S P Seif, W H Dilger. Nonlinear Analysis and Collapse Load of P/C Cable-Stayed Bridge. Journal of Structure Engineering.1990, 116(3):16-39.
    [74] 郭 彦 林 , 梅 占 璐 . 加 筋 板 的 非 线 性 相 关 屈 曲 研 究 . 应 用 力 学 学 报 ,1992,9(2):16-27.
    [75] 伏 魁 先 , 刘 学 信 , 黄 华 彪 . 斜 拉 桥 面 内 整 体 失 稳 分 析 . 铁 道 学 报 ,1993.15(4):74-79.
    [76] 潘家英, 张国政等.大跨度桥梁极限承载力的几何与材料非线性藕合分析.土木工程学报,2000,33(1):5-8.
    [77] 程 进, 江见鲸等.拱桥结构极限承载力的研究现状与发展.公路交通科技,2002,19(4):57-59.
    [78] 陈克济.钢筋混凝土拱面内承载力非线性分析.桥梁建设,1983,(1):24-36.
    [79] A. S.Nazmy.Stability and load-carrying capacity of three-dimensional long-span steel arch bridges.Computers & Structures, 1997, 65(6):857-868.
    [80] Yong-Lin Pi, B. M. Put and N. S. Trahair.Inelastic lateral buckling strength and design of steel arches.Thin-Walled Structures, 2000, 34(1):65-93.
    [81] 钟新谷.单拱面预应力混凝土系杆拱桥极限承载力分析:[长沙铁道学院博士论文].长沙:长沙铁道学院,1997,3-7.
    [82] 钟新谷, 曾庆元, 戴公连.单拱面预应力混凝土系杆拱桥极限承载力分析.工程力学,1999,16(5):8-16.
    [83] 周文伟.大跨度铁路钢管混凝土拱桥空间稳定极限承载力分析:[长沙铁道学院博士论文].长沙:长沙铁道学院,1999,2-8.
    [84] 戴公连等.深圳市芙蓉大桥连续钢管拱系杆拱桥空间稳定性分析.中国公路学报,2001,14(1):48-51.
    [85] 赵长军等.大跨度钢管混凝土拱桥空间稳定性分析.公路,2001,(2):15-18.
    [86] 陈 克 济 . 钢 筋 混 凝 土 拱 桥 面 内 承 载 力 的 非 线 性 分 析 . 桥 梁 建设,1983,13(1):39-45.
    [87] 结构工程试验中心拱桥课题组.万县长江大桥钢筋混凝土拱模型试验研究.西南交通大学学报,1994,29(4):362-367.
    [88] 周文伟.大跨度铁路钢管混凝土拱桥空间稳定极限承载里分析.[长沙铁道学院博士论文].长沙:长沙铁道学院,1999,1-7
    [89] 陈宝春.钢管混凝土肋拱面内受力全过程试验研究.工程力学,2000,17(2): 44-50.
    [90] 秦泽豹.钢管混凝土单圆管拱肋极限承载能力研究:[福州大学硕士论文].福州:福州大学,2003,1-8.
    [91] 曾国锋.钢管混凝土系杆拱桥极限承载力研究:[同济大学博士论文].上海:同济大学,2003,1-6.
    [92] 崔 军.大跨度钢管混凝土拱桥受力性能分析:[浙江大学博士论文],杭州:浙江大学,2003,29-33.
    [93] 蒋友谅.非线性有限元法.北京:北京工业学院出版社,1988,31-46.
    [94] 钟善桐.钢管混凝土结构.北京:清华大学出版社,2003,260-308.
    [95] 陈宝春.钢管混凝土拱桥设计与施工.北京:人民交通出版社,2000,148-158.
    [96] Hagedom P. and Schafer B. On nonlinear free vibrations of an elastic cable, International Journal of Nonlinear Mechanics, 1980, 15(2):333-340.
    [97] Perkins N.C and Mote C.D. Three-dimensional vibration of traveling elastic cables. Journal of Sound and Irbration, 1987, 114(10):325-340.
    [98] Rao. G.V&R. lyengar. Internal resonance and non-linear response of a cable under a periodic excitation. J of Sound and Vibration, 1991, 149(6):25-41.
    [99] Perkins N.C. Modal interactions in the nonlinear response of elastic cables under parametric, external excitation, international Journal of Non-linear Mechanics, 1992, 27(2):233-250.
    [100] O.O'Reilly, and Holmes, P.J.Non-periodic vibrations of a string.Journal of Sound and Vibration, 1999, 153(3):413-435.
    [101] Lee.C. L, and Perkins, N.C. Nonlinear oscillations of suspended cable containing a two-to-one internal resonance, Nonlinear Dynamics, 1992, 3(6) 466-490.
    [102] Benedethni F, Rega G. and Alaggio R. Non-linear oscillations of a four degree of freedom model of a suspended cable under multiple internal resonance conditions. Journal of Sound and Vibration, 1995, 167(18):775-798.
    [103] Bonito M.Pacheco, Yazo Fujino. Ajai Suledh Estimation curve for modal damping in stay cables with viscous damper. Jorawal of Structural Engineering, 1993, 119(6):1961-1979.
    [104] Xu.Y.L, Yu.z.Vibration of inclined sag cables with oil dampers in cable-stayed bridges, Journal of Bridge Engineers, 1998, 3(4):194-206.
    [105] Xu.Y.L, Yu.z.Mitigation of three dimensional vibration of inclined sag cable using discrete oil dampers Part II: application, Journal of Sound and Vibration, 1998, 214(5):679-693.
    [106] Xu.Y.L, Yu.z.Non-linear vibration of cable-damper systems part II: Application and verification, Journal of Sound and Vibration, 1999, 225(3):465-481.
    [107] Pilipchuk V.N and Ibrahim R.A Non-linear modal interactions in shallow suspend cables. Journal of Sound and Vibration, 1999, 277(1):1-28.
    [108] Zhao YY, Wang LH, Chen DL, et al.Nonlinear dynamic analysis of the two-dimensional simplified model of an elastic cable. Journal of Sound and Vibration, 2002, 255(6): 43-59.
    [109] 王连华.斜拉索的非线性动力学分析:[湖南大学硕士学位论文].长沙:湖南大学,2001,1-27.
    [110] A. Pinto Da Costa, J. A. C. Martins, et al. Oscillations of bridne stay cables induced by periodic motions of deck and/or towers.Journal of Engineering Mechanics, 1996,122(7):613-622.
    [111] 亢战, 钟万勰. 斜拉桥参数共振问题的数值研究.土木工程学报,1998,31 (4):14-22.
    [112] 陈水生, 孙炳楠. 斜拉桥索-桥耦合非线性参数振动数值研究.土木工程学报,2003,36(4):70-75.
    [113] 赵跃宇.大跨径斜拉桥非线性动力学的建模与理论研究:[湖南大学博士学位论文].长沙:湖南大学,2000,1-20.
    [114] 赵跃宇, 蒋丽忠等.索-梁组合结构的动力学建模理论及其内共振分析.土木工程学报,2004,37(3):69-72.
    [115] Vincenzo Gattulli, Massimiliano Morandini , Achille Paolone . Parametric analytical model for non-linear dynamics in cable-stayed beam . Earthquake Engineering and Structural Dynamic, 2002, 31(6):1281-1300.
    [116] Josef Henrych.The Dynamics of Arches and Franes.New York: Elsevier Scientific Publishing Company Amsterdam Oxford, 1981, 42-57.
    [117] 项海帆,刘光栋.拱结构的稳定与振动.北京:人民交通出版社, 1991,63-90.
    [118] Hsu CS.Stability of shallow arches against snap-throuhg under wise step loads.AIAA, 1969, 35(12):31-39.
    [119] Humphery JS.On dynamic snap buckling of shallow arches.AIAA J.1966, 32(4):866-878.
    [120] Ariaratnam ST.dynamic buckling of shallow curved structures under stochastic loads.Nonlinear Dynamics, 1995, 26(8):179-195.
    [121] A.H.Nayfeh.Modal interactions in dynamical and structural systems, Appl.Mech.Rev, 1989, 42(2), 175-201.
    [122] Tien Win-Min, SriNamachchivayaN, MalhotraN.Nonlinear dynamics of a shallow arch under periodic excitation-II 1:1 internal resonance .Internal Journal of Nonlinear Mech, 1994, 29(3):367-386.
    [123] Tien Win-Min, SriNamachchivaya N, BajaiAnilK.Nonlinear dynamics of a shallow arch under periodic excitation-I.1:2 internal resonance .Int J Nonlinear Mech, 1994, 29(3):349-366.
    [124] N.Malhotra,N.Sri Namachchivaya.Chaotic Motion of Shallow Arch Structures Under 1:2 Internal Resonance.Journal of Engineering Mechanics,1997,30(6): 612-619.
    [125] N.Malhotra,N.Sri Namachchivaya.Chaotic Motion of Shallow Arch StructuresUnder 1:1 Internal Resonance.Journal of Engineering mechanics,1997, 30(6):620-627.
    [126] W. Lacarbonara, C.-M. Chin, R. R. Soper.Open-Loop Nonlinear Vibration Control of Shallow Arches via Perturbation Approach .Journal of Applied Mechanics, 2002, 699(4):325-334.
    [127] Jen-San Chen,Jian-San Lin.Dynamic Snap-Through of a Shallow Arch under a Moving Point Load .Journal of Vibration and Acoustics, 2004, 126(6):514-519.
    [128] Y.-L. Pi, M.A. Bradford, F. Tin-Loi.Nonlinear analysis and buckling of elastically supported circular shallow arches .International Journal of Solids and Structures, 2006, 44(7-8):2401-2425.
    [129] 席丰 张晓杰.集中阶跃载荷作用下层合浅拱的非线性动力屈曲.山东建筑工程学院学报,1995,10(3):1-6.
    [130] BI Qin-sheng, DAI Hui-hui.Analysis of nonlinear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance .Journal of Sound and Vibration, 2000, 233(8):557-571.
    [131] 毕勤胜, 陈予恕.周期性激励浅拱分岔研究.力学学报,1998,30(1):83-88.
    [132] 刘习军, 陈予恕, 候书军.拱型结构在参、强激励下的非线性振动分析.力学学报,2000,32(1):99-104.
    [133] 王钟羡, 江波, 孙保昌.周期激励浅拱的全局分岔.江苏大学学报(自然科学版), 2004,25(1):85-88.
    [134] 魏德敏.拱的非线性理论及应用.北京:科学出版社,2004,1-47.
    [135] Jian-Xue Xu , Hong Huang et al. Dynamic stability of shallow arch with elastic Supports-application in the dynamic stability analysis of inner winding of transformer during short circuit. International Journal of Non-Linear Mechanics, 2002, 37(4-5):909-920.
    [136] 赵跃宇, 冯锐, 劳文全,王连华.空间曲梁非线性动力学方程.动力学与控制学学报, 2005,4(3):34-37.
    [137] 赵跃宇,康厚军,冯锐,劳文全.曲线梁研究进展.力学进展,2005,36(2):170-186.
    [138] 赵跃宇, 劳文全, 冯锐. 圆弧拱的面内非线性动力学分析. 动力学与控制学报,2006,4(2):122-126.
    [139] Y.Cai, S.S.Chen,Dynamic response of a stack/cable system subjected to vortex induced vibration.1996, 196(3):337-349.
    [140] 赵跃宇, 王连华等.斜拉索面内振动和面外摆振的耦合分析.土木工程学报, 2003,36(4):65-69.
    [141] H. Max Irvine. Cable Structure .The MIT Press, 1981, 33-92.
    [142] G. Tagata. Harmonically Forced, Finite Amplitude Vibration of a String .Journal of Sound and Vibration, 1977, 51(4):483-492.
    [143] A.H.奈弗, D.T.穆克.非线性振动.北京:高教出版社,1990,41-86.
    [144] 刘延柱, 陈立群.非线性振动.北京:高教出版社,2001,66-97.
    [145] Faouzi Lakrad, Werner Schiehlen.Effects of a low frequency parametric excitation. Chaos, Solitons and Fractals,2004, 22(5):1149-1164.
    [146] O.C. Pinto, P.B. Goncalves. Active non-linear control of buckling and vibrations of a flexible buckled beam. Chaos, Solitons and Fractals, 2002, 14(2): 227-239.
    [147] Nayfeh AH, Balachandran B. Applied Nonlinear Dynamics, Wiley-Interscience, New York, 1994,58-92.
    [148] 刘伟长.大跨度斜拉拱桥的稳定性及模型试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2006,54-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700