黄土高原生态重建中植物凋落物碳氮在土壤中转化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凋落物是生态系统中生产的绿色植物光合作用产物的一部分,是生态系统中归还养分的一个主要途径,其分解的快慢直接影响到地表凋落物的积累,也制约着N、P等元素及其他物质向土壤的归还和土壤养分的有效性,进而影响土壤中有机质的形成和累积,以及土壤的理化性质。凋落物的分解是陆地生态系统物质循环和能量转换的主要途径,在维持土壤肥力、保证植物再生长养分的可利用等均起着重要作用,同时对生态系统的碳累积具有重要的影响。
     黄土高原土地退化、侵蚀严重,是我国乃至世界上水土流失最严重的地区之一。为此,国家从上个世纪末开始在这一地区实施了以退耕还林还草、封山育林为主的生态建设工程。近年来,有关黄土高原区植被恢复重建与生态环境之间的关系已经进行了大量的研究工作,主要集中于植被恢复后对减少径流泥沙、养分流失及植被恢复多年后对土壤性质的影响等方面,而对不同植被下凋落物的分解状况以及在分解过程中对土壤的影响等方面研究较少。
     本文选取黄土高原退耕还林还草、封山育林区分布较为广泛的几种植物凋落物为研究对象,采用室内和田间试验相结合的方法研究了不同凋落物的基本化学组成、分解特性,及其进入土壤后对土壤微生物量碳、氮和矿质态氮含量的影响,旨在揭示凋落物在土壤中分解过程中碳、氮的转化规律。研究获得以下主要结论:
     1.利用2种浸提剂(水和0.01 mol·L~(-1) CaCl_2)提取不同大小(2 mm粉碎样和1 cm长)的植物凋落物,测定可溶性有机碳的含量及其生物降解特性。结果表明,不同植物凋落物可溶性有机碳的含量在4.21~156.82 g·kg~(-1)之间,其占凋落物全碳的比例为0.99%~32.84%,且平均草本类凋落物最低。经过7 d的培养,不同植物凋落物可溶性有机碳的生物降解率在34.7%~80.6%之间,平均草本类也最低。培养结束时植物凋落物可溶性有机碳的UV280吸收值和腐殖化指数(HIXem值)均极显著高于起始时测定值,且培养起始时UV280吸收值和HIXem值与植物凋落物的可溶性有机碳的生物降解率呈显著负相关。
     2.采用室内培养法研究了6种不同植物凋落物及其与不同形态氮素(NH_4~+-N及NO_3~--N)配施对土壤微生物量碳、氮及矿质态氮含量的影响。结果表明,加入不同凋落物均显著提高了土壤微生物量碳、氮含量,其中加入柠条、沙打旺等碳氮比低的凋落物在培养的一段时期内土壤微生物量碳、氮均高于碳氮比高的凋落物(刺槐、沙柳和长芒草)。将凋落物与NH_4~+或NO_3~-同时添加,也提高了土壤微生物量碳、氮含量,其中添加铵态氮的土壤微生物量碳、氮含量的增加达显著水平,说明微生物更易利用铵态氮。加入C/N高的凋落物后土壤中的矿质氮发生固持,矿质态氮固持量与凋落物的C/N比呈显著的正相关关系。
     3.采用室内培养法研究了6种不同植物凋落物及等比例混合后对土壤微生物量碳、氮及矿质态氮含量的影响。结果表明,加入不同植物凋落物均显著提高了培养期间土壤微生物量碳、氮含量。总体平均,添加三种等量混合后植物凋落物的土壤微生物量碳、氮含量高于两种凋落物等量混合处理,而两种凋落物混合高于单种凋落物处理;土壤矿质态氮含量的变化则相反,即单种>两种混合>三种混合。单种和两种混合后土壤微生物量碳、氮含量与其碳氮显著相关,而三种凋落物混合后土壤微生物量碳、氮含量与其碳氮比无相关性,说明多种凋落物混合后土壤微生物量碳、氮含量受多种因素共同影响。
     4.采用网袋法研究了6种凋落物单种及等质量配比混合后在半湿润易旱区(杨凌)的分解及其碳、氮变化动态。结果表明,不同种类凋落物及配比后分解50%所需的时间在0.79~1.43 a之间,分解95%所需的时间在3.43~6.19 a之间。三种凋落物混合后的平均分解速率和平均分解系数大于两种凋落物混合,单种凋落物处理最小。到分解试验结束时,不同处理凋落物的全碳、全氮平均释放率表现为单种>两种混合>三种混合。不同处理凋落物可溶性有机碳含量、可溶性总氮含量、可溶性有机碳占全碳的比例以及可溶性总氮含量占全氮的比例在培养起始的两个月内有升有降,但在随后的4个月内均显著降低,而后缓慢降低。到分解结束时,不同凋落物可溶性有机碳含量、可溶性总氮含量、可溶性有机碳占全碳的比例及可溶性总氮含量占全氮的比例均表现为单种>两种混合>三种混合。
     5.采用网袋法研究了6种凋落物单种及等质量配比混合后在半干旱区(神木)的分解及其碳、氮变化动态。结果表明:经过近14个月的分解后,三种凋落物混合后的平均质量损失率高于两种混合凋落物,单种凋落物最低。到分解试验结束时,不同处理凋落物的全碳、全氮平均释放率均表现为单种>两种混合>三种混合;而不同处理的可溶性有机碳平均含量表现为两种混合>三种>单种;可溶性总氮含量则为三种混合>两种混合>单种。相关分析表明,凋落物的质量损失率与可溶性有机物,特别是可溶性有机碳具有一定的相关性。
     因此,在黄土高原丘陵沟壑区植被恢复重建中在选择植物种类时,有必要采用不同种类植物搭配,利用生物多样性以及不同植物凋落物的碳、氮养分含量及转化特性,协调土壤碳、氮转化过程,促进生态系统健康持续发展。
As the product of photosynthesis of plants, plant litter is a major way for nutrients returning to an ecosystem. And litter decomposition rate affects directly on the accumulation of litter, and on the nutrient availability in soil, as well as on the formation and accumulation of organic matter and the physical and chemical properties of soil. Litter decomposition is the primary means of both nutrient cycling and energy conversion in terrestrial ecosystems, and plays an important role in maintaining soil fertility, the availability of nutrients to plant.
     The Loess Plateau is the one of the most serious areas of land degradation and soil erosion not only in China, but also in the world. Therefore, Chinese government has initated a big ecological project in late 1990s to reestablish the ecology in this region by returning of croplands to forests and grasslands. In recent years, there were a lot of researches to study the relationship between ecological environment and vegetation restoration. However, these researches focused on the reduction of runoff and sediment, nutrient loss and soil properties during vegetation restoring. And there were few researches to study the decomposition and their effects on soil properties during litter decomposing.
     In this research, both incubation and field experiment were used to study the chemical elements and decomposition of different species litters and their effects on soil microbial biomass carbon and nitrogen and mineral nitrogen in order to understand carbon and nitrogen transformation in soil during litter decomposing. The main conclusions were as follows:
     1. Plant litters were sampled from Shenmu in the Loess Plateau, and the contents of soluble organic carbon (SOC) in two sizes litters (2 mm and 1 cm length) was extracted with two extractants (distilled water and 0.01 mol·L~(-1) CaCl_2). And a 7-day incubation experiment was conducted to compare the biodegradability of soluble organic carbon of the different plant litters. The result showed that the contents of SOC in the different plant species ranged from 4.21 g·kg~(-1) to 156.82 g·kg~(-1), and the ratios of SOC to total carbon (SOC/TC) of the plant litters were in range of 0.99% and 32.84%. And the average of grass litter was the lowest. After 7-day of incubation, biodegradation rates of SOC in different plant litters ranged from 34.7% to 80.6%, and the average of grass litters was the lowest. The UV280 absorbance and humification index (HIXem) at the end of incubation were significantly higher than that that start of incubation, and the UV280 absorbance and HIXem were significantly negatively correlation with the bio-degradation rate of soluble organic carbon in plant litter.
     2. A laboratory experiment was conducted to determine the content of soil microbial biomass carbon and nitrogen (SMBC, SMBN) and mineral about both different species litters and nitrogen forms ((NH_4~+-N and NO_3~--N). In general, the addition of the sole plant litter significantly increased the contents of SMBC and SMBN. The increasing rates of SMBC and SMBN were higher when the plant litters with low C/N ratios (e.g., A. adsurgens, C. Korshinskii,) than those with a higher C/N ratio (R. pseudoacacia, Salix psammophila, Stipa bungeana). The dual addition of plant litter and N fertilizer, either as NH_4~+-N or NO_3~--N, also increased the contents of SMBC and SMBN, and the increasing rate was significant higher under the NH_4~+-N treatment, but not under the NH_4~+-N treatment, compared to the sole plant litter treatment. Our results thus indicated that microorganisms in this Losses soil may prefer to use NH_4~+-N rather than NO_3~--N. In addition, the addition of plant litters with higher C/N ratios increased the immobilization of mineral N in the soil, and there was a positively significant relationship between the immobilized N and the C/N ratio in the plant litters.
     3. An incubation experiment was conducted to study the effects of addition of different mixtures of litters of plant species on contents of SMBC, SMBN and mineral nitrogen in soil. The results showed that the addition of either one single or two or three mixed plant litters to the soil significantly increased the contents of SMBC and SMBN. Overall, both the averaged SMBC and SMBN during incubation were highest in the treatments with three-plant-species litters, next were the treatments with two-plant-species litters, and then the treatments with single plant species litter. In contrast to the SMBC and SMBN, contents of mineral nitrogen in soil showed a reverse pattern among the three litter treatments: three-plant-species litter > two-plant-species litter > single plant species litter addition. Meanwhile, there was a significantly positive relationship between the SMBC and SMBN and the C/N ratio in one-plant-species or the two-species litters, but not in the three-plant-species litter. These results indicate that SMBC and SMBN contents were affected by a range of factors, including incubation conditions (temperature, soil water holding capacity, incubation time period, etc.) and the chemical properties of the litter (C and N content, organic compounds, etc.), particularly when the mixed three-plant-species litters were added to soil.
     4. The different mixures of six plant litters were put into litter bags and buried into 15 cm depth of soil in Yangling to study the litter decomposition in soil. The result showed that it took 0.79~1.43 years for 50% decomposition of the different litter treatments, and 3.43~6.19 years for 95% decomposition. The order of average litter decomposition rates were three-plant-species litter > two-plant-species litter > single plant species litter. At the end of field experiment, the average release rate of total carbon and nitrogen of three-plant-species litters was higher than that under two-plant-species litters; and the single plant species litter was the lowest. The content of soluble organic carbon and total soluble nitrogen and the ratio of the soluble organic carbon/total carbon and total soluble nitrogen/total nitrogen were variable in the first two months; and decreased significantly in the following four months, and then decreased slowly. At the end of experiment, the order of the content of soluble organic carbon and total soluble nitrogen and the ratios of the soluble organic carbon/total carbon and total soluble nitrogen/total nitrogen were single plant species litter > two-plant-species litter > three-plant-species litter.
     5. The different mixures of six plant litters were put into litter bags and buried into 15 cm depth of soil in Shenmu to study the litter decomposition in soil. The results showed that the average mass loss rate of three-plant-species litter was higher than that of two-plant-species litter; and the lowest was single-species litter. At the end of experiment, the order of the release rate of total carbon and nitrogen was single plant species litter > two-plant-species litter > three-plant-species litter. However, the order of soluble organic carbon was two-plant-species litter > three-plant-species litter > single plant species litter; and the order of total soluble nitrogen was three-plant-species litter > two-plant-species litter > single plant species litter. In addition, there was a close relationship between the mass loss rate and soluble organic carbon of litter.
     Therefore, we suggest increasing the more species of plants during the vegetation restoration in order to maintain the ecological system sustainable and healthy in the gully and valley region in the Loess Plateau.
引文
鲍士旦. 2010.土壤农化分析.北京:中国农业出版社.
    曹永康. 2010. 6~9年生杉木幼林凋落物及其养分特征.亚热带资源与环境学报, 5(1): 42~47.
    曹志平,胡诚,叶钟年,吴文良. 2006.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响.生态学报, 26(5): 1486~1493.
    陈立新,陈祥伟,段文标. 1998.落叶松人工林凋落物与土壤肥力变化的研究.应用生态学报, 9(6): 581~586.
    陈兴丽,周建斌,刘建亮,高忠霞,杨学云. 2009.不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响.应用生态学报, 20(2): 314~319.
    陈兴丽,周建斌,王春阳,刘建亮. 2010.黄土高原区几种不同植物残落物碳、氮矿化特性研究,水土保持学报, 24(3): 109~112, 126.
    程伯容,许光山,丁桂芳. 1992.长白山北坡针叶林和阔叶红松林的凋落物和生物循环强度.森林生态系统研究Ⅵ.北京:中国林业出版社,200~203.
    程东升. 1993.森林微生物生态学.哈尔滨:东北林业大学出版社.
    程煜. 2006.中亚热带木荷马尾松林恢复过程的群落及凋落物特征研究[博士学位论文].福建:福建农林大学.
    方华,莫江明. 2006.氮沉降对森林凋落物分解的影响.生态学报, 26(9): 3127~3126.
    高忠霞,周建斌,王祥,陈兴利,杨学云. 2010.不同培肥处理对土壤溶解性有机碳含量及特性的影响.土壤学报, 47(1): 115~121.
    郭剑芬,杨玉盛,陈光水,林鹏,谢锦升. 2006.森林凋落物分解研究进展.林业科学, 42(4): 93~100.
    郭晋平,丁颖秀,张芸香. 2009.关帝山华北落叶松林凋落物分解过程及其养分动态.生态学报, 29(10): 5684~5695.
    郭忠玲,郑金萍,马元丹,李庆康,于贵瑞,韩士杰,范春楠,刘万德. 2006.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究.生态学报, 26(4): 1037~1046.
    韩晓日,郭鹏程,陈恩凤,邹德乙. 1998.土壤微生物对施入肥料氮的固持及其动态研究.土壤学报, 35(3): 412~418.
    何帆,王得祥,雷瑞德,王静,王宇超,刘金虎. 2010.秦岭南坡不同海拔林分凋落叶分解特征. 西北植物学报, 30(5): 1004~1011.
    胡婵娟,傅伯杰,靳甜甜,刘国华. 2009.黄土丘陵沟壑区植被恢复对土壤微生物生物量碳和氮的影响.应用生态学报, 20(1): 45~50.
    胡诚,曹志平,叶钟年,吴文良. 2006.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响.生态学报, 26(3): 808~814.
    胡亚林,汪思龙,黄宇,于小军. 2005.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响.生态学报, 25(10): 2662~2668.
    黄懿梅,安韶山,薛虹. 2009.黄土丘陵区草地土壤微生物C、N及呼吸熵对植被恢复的响应.生态学报, 29(6): 2811~2818.
    黄永清. 1994.真菌多样性与森林生态系统的维持与恢复.马克平(主编)生物多样性研究的原理与方法.中国科学技术出版社,192~209.
    贾黎明,方陆明,胡延杰. 1998.杨树刺槐混交林及纯林枯落叶分解.应用生态学报, 9(5): 463~467.
    姜培坤. 2005.不同林分下土壤活性有机碳库的研究.林业科学, 41(1): 10~13.
    蒋小芳,罗佳,黄启为,徐阳春,杨兴明,沈其荣. 2008.不同原料堆肥的有机无机复混肥对辣椒产量和土壤生物性状的影响.植物营养与肥料学报, 14(4): 766~773.
    蒋有绪. 1981.川西亚高山冷杉林枯枝落叶层的群落学作用.植物生态学报, 3(2): 89~98.
    焦坤,李忠佩. 2005.红壤稻田土壤溶解有机碳含量动态及其生物降解特性.土壤, 37 (3): 272~276.
    李贵桐,赵紫娟,黄元仿,李保国. 2002.秸秆还田对土壤氮素转化的影响.植物营养与肥料学报, 8(2): 162~167.
    李海涛,于贵瑞,李家永,陈永瑞,梁涛. 2007.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放.生态学报, 27(3): 898~908.
    李生秀,刘彩云. 1993.石灰性土壤铵态氮的挥发损失—Ⅰ.土壤性质对铵态氮挥发损失的影响. 干旱地区农业研究, 11: 125~129.
    李世清,李生秀,张兴昌. 1999.不同生态系统土壤微生物体氮的差异.土壤侵蚀与水土保持学报, 5(1): 69~73.
    李世清,任书杰,李生秀. 2004.土壤微生物体氮的季节性变化及其与土壤水分和温度的关系. 植物营养与肥料学报, 10 (1): 18~23.
    李世清,李生秀. 2001.有机物料在维持土壤微生物体氮库中的作用.生态学报, 21(1): 136~142.
    李世清,凌莉,李生秀. 2000.影响土壤中微生物体氮的因子.土壤与环境, 9(2): 158~162.
    李淑兰,陈永亮. 2004.不同落叶林林下凋落物的分解与养分归还.南京林业大学学报(自然科学版), 28(5): 59~62.
    李雪峰,寒士杰,胡艳玲,赵玉涛. 2008.长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系.应用生态学报, 19(2): 245~251.
    李雪峰,韩士杰,张岩. 2007.降水量变化对蒙古栎落叶分解过程的间接影响.应用生态学报, 18(2): 261~266.
    李志安,邹碧,丁永祯,曹裕松. 2004.森林凋落物分解重要影响因子及其研究进展.生态学杂志, 23(6): 77~83.
    李忠佩,张桃林,陈碧云. 2004.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报, 41(4): 543~552.
    李紫燕,李世清. 2007.黄土高原典型土壤有机氮矿化过程中非交换性铵态氮的变化.水土保持研究, 14(2): 306~310, 314.
    廖利平,Lindley DK,杨永辉. 1997.森林叶凋落物混合分解的研究Ι.缩微(Microcosm)实验.应用生态学报, 8(5): 459~464.
    廖利平,高洪,汪思龙,马越强,黄志群,于小军. 2000.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响.植物生态学报, 24(1): 34~39.
    廖利平,马越强,汪思龙,高洪,于小军. 2000.杉木与主要阔叶造林树种叶凋落物的混合分解. 植物生态学报, 24(1): 27~33.
    林波,刘庆,吴彦,何海. 2004.森林凋落物研究进展.生态学杂志, 23(1): 60~64.
    林开敏,洪伟,俞新妥,黄宝龙. 2001.杉木与伴生植物凋落物混合分解的相互作用研究.应用生态学报, 12(3): 321~325.
    林开敏,张志琴,叶发茂,林艳,李卿叁. 2010.杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析.植物资源与环境学报, 19(2): 34~39.
    林开敏,章志琴,曹光球,何宗明,马祥庆. 2006a.杉木与楠木叶凋落物混合分解及其养分动态.生态学报, 26(8): 2732~2738.
    林开敏,章志琴,邹双全,曹光球. 2006b.杉木与阔叶树叶凋落物混合分解对土壤性质的影响.土壤通报, 37(2): 258~262.
    林鹏,卢昌义,王恭礼,陈焕雄. 1990.海南岛河港海莲红树林凋落物动态的研究.植物生态学报, 14(1): 69~73.
    刘刚,朱剑云,叶永昌,刘颂颂,苏志尧. 2010.东莞主要森林凋落物群落凋落物碳储量及其空间分布.山地学报, 28(1): 69~75.
    刘满强,胡锋,何园球,李辉信. 2003.退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义.土壤学报, 40(6): 937~943.
    刘强,彭少麟,毕华,张洪溢,马文辉,李妮亚. 2004.热带亚热带森林叶凋落物交互分解的研究.中山大学学报(自然科学版), 43(4): 86~89.
    刘醒华. 1979.川西森林采伐迹地土壤肥力的初步研究.土壤学报, 16(3): 234~244.
    刘学军,张福锁. 2009.环境养分及其在生态系统养分资源管理中的作用——以大气氮沉降为例. 干旱区研究, 26(3): 306~311.
    刘洋,张健,冯茂松. 2006.巨桉人工林凋落物数量、养分归还量及分解动态.林业科学, 42(7): 1~10.
    刘颖,韩士杰,林鹿. 2009.长白山4种森林凋落物分解过程中养分动态变化.东北林业大学学报, 37(8): 28~30.
    卢俊培,刘其汉. 1988.海南岛尖峰岭热带森林凋落物研究初报.植物生态学报, 12(2): 104~112.
    卢俊培,刘其汉. 1989.海南岛尖峰岭热带林凋落叶分解过程的研究.林业科学研究, 2(1): 25~32.
    马玉红,郭胜利,杨雨林,王小利,杨光. 2007.植被类型对黄土丘陵区流域土壤有机碳氮的影响.自然资源学报, 22(1): 97~105.
    马元丹,江洪,余树全,窦荣鹏,郭培培,王彬. 2009.不同起源时间的植物叶凋落物在中亚热带的分解特性.生态学报, 29(10): 5237~5245.
    莫江明,布朗,孔国辉,兰娜玛丽尼,张佑昌. 1996.鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究.植物生态学报, 20(6): 534~542.
    聂道平,徐德应,王兵. 1997.全球碳循环与森林关系的研究——问题与发展.世界林业研究, 5: 33~40.
    潘辉,黄石德,洪伟,赵凯,张志鸿. 2010. 3种相思人工林凋落物量及其碳归还动态.福建林学院学报, 30(2): 104~108.
    潘开文,何静,吴宁. 2004.森林凋落物对林地微生境的影响.应用生态学报, 15(1): 153~158.
    庞学勇,包维楷,吴宁. 2009.森林生态系统土壤可溶性有机质(碳)影响因素研究进展.应用与环境生物学报, 15(3): 390~398.
    彭佩钦,张文菊,童成立,王小利,蔡长安. 2005.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布.水土保持学报, 19(1): 49~53.
    彭少麟,刘强. 2002.森林凋落物动态及其对全球变暖的响应.生态学报, 22(9): 1534~1544.
    齐泽民,王开运. 2010.川西亚高山林线交错带植被凋落物量及养分归还动态.生态学杂志, 29(3): 434~438.
    任泳红,曹敏,唐建维,唐勇,张建侯. 1999.西双版纳季节雨林与橡胶多层林凋落物动态的比较研究.植物生态学报, 23(5): 418~425.
    沈海龙,丁宝永,沈国舫,陈爱民. 1996.樟子松人工林下针阔叶凋落物分解动态.林业科学, 32(5): 393~402.
    沈宏,曹志洪,胡正义. 1999.土壤活性有机碳的表征及其生态效应.生态学杂志, 18(3): 32~38.
    沈其荣,史瑞和. 1991.土壤与处理对不同起源氮矿化的影响.南京农业大学学报, 14(1): 54~58.
    宋新章,江洪,马元丹,余树全,周国模,彭少麟,窦荣鹏,郭培培. 2009.中国东部气候带凋落物分解特征—气候和基质质量的综合影响.生态学报, 29(10): 5219~5226.
    宋新章,江洪,张慧玲,余树全,周国模,马元丹,Scott X Chang. 2008.全球环境变化对森林凋落物分解的影响.生态学报, 28(9): 4414~4423.
    苏文会,范少辉,张文元,漆良华,官凤英. 2008.冰冻雪灾对黄山区毛竹林的损害及影响因子. 林业科学, 44(1): 42~49.
    汤建福. 2010.尾巨桉人工林凋落物量及养分归还动态. 29(3): 60~64.
    唐玉霞,贾树龙,孟春香,张贵民,刘春田. 2002.土壤微生物生物量氮研究综述.中国生态农业学报, 10 (2): 76~78.
    田大伦,朱小年,蔡宝玉. 1989.杉木人工林生态系统凋落物的研究Ⅱ.凋落物的养分偏量及分解速度.中南林学院学报,9(增): 45~55.
    屠梦照,姚文华,翁轰,李志安. 1993.鼎湖山南亚热带常绿阔叶林凋落物的特征.土壤学报,30(1): 34~42.
    汪思龙,廖利平,马越强. 1997.杉木火力楠混交林养分归还与生产力.应用生态学报, 8(4): 347~352.
    汪文霞,周建斌,严德翼,马勤安. 2006.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系.水土保持学报, 20(6): 103~106.
    王常慧,刑雪荣,韩兴国. 2004.草地生态系统中土壤氮素矿化影响因素研究进展.应用生态学报,15(11): 2184~2188.
    王凤友. 1989.森林凋落物研究综述.生态学进展,6(2): 82~89.
    王晖,莫江明,薛璟花,方运霆,李炯. 2006.氮沉降增加对森林凋落物分解酶活性的影响.热带亚热带植物学报,14(6): 539~546.
    王继红,刘景双,于君宝,王金达. 2004.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报,18(1): 35~38.
    王瑾,黄建辉. 2001.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较.植物生态学报,25(3): 375~380.
    王其兵,李凌浩,白永飞,邢雪荣. 2000.模拟气候变化对3种草原植物群落混合凋落物分解的影响.植物生态学报,24(6): 674~679.
    王启兰,姜文波. 2001.青藏高原金露梅灌丛与矮嵩草草甸枯枝落叶的分解作用.草地学报,9(2): 128~132.
    王清奎,汪思龙,于小军,张剑,刘燕新. 2007.杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响.应用生态学报, 18(6): 1203~1207.
    王维敏. 1986.麦秸、氮肥与土壤混合培养时氮素的固定、矿化与麦秸的分解.土壤学报,23: 97~105.
    王娓,郭继勋. 2001.松嫩草原碱茅群落环境因素和凋落物分解季节动态.应用生态学报,12(6):841~844.
    王希华,黄建军,闫恩荣. 2004.天童国家森林公园常见植物凋落叶分解的研究.植物生态学报, 28(4): 457~467.
    王小利,苏以荣,黄道友,肖和艾,汪立刚,吴金水. 2006.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响.中国农业科学, 39(4): 750~757.
    王效科,冯宗炜. 1996.森林生态系统生物量和碳储量的研究历史.王如松主编.现代生态学热点问题研究.北京:中国科学技术出版社, 335~340.
    魏样,同延安,段敏,乔丽,田红卫,雷小鹰,马文娟. 2010.陕北典型农区大气干湿氮沉降季节变化.应用生态学报,21(1): 255~259.
    翁轰,李志安,屠梦照,姚文华. 1993.鼎湖山森林凋落物量及营养元素含量研究.植物生态学报,17(4): 299~304.
    吴承祯,洪伟,江志林,郑发辉. 2000.我国森林凋落物研究进展.江西农业大学学报,22(3): 405~411.
    吴金水. 2006.土壤微生物量的研究方法与应用.北京:气象出版社.
    吴庆标,王效科,欧阳志云. 2006.活性有机碳含量在凋落物分解过程中的作用.生态环境,15(6): 1295~1299.
    肖慈英,黄青春,阮宏华. 2002.松、栎纯林及混交林凋落物分解特性研究.土壤学报,38(5): 763~767.
    肖洋,陈丽华,余新晓. 2010.北京密云麻栎人工混交林凋落物养分归还特征.东北林业大学学报,38(7): 13~15.
    肖洋,陈丽华,余新晓. 2010.北京密云油松人工林凋落物营养元素归还特征研究.水土保持学报,24(2): 112~115.
    谢景升,杨玉盛,杨智杰,黄石德,陈光水. 2008.退化红壤植被恢复后土壤轻组有机质的季节动态,应用生态学报,19(3): 557~563.
    徐振锋,尹华军,赵春章,曹刚,万名利,刘庆. 2009.陆地生态系统凋落物分解对全球气候变暖的响应.植物生态学报, 33(6): 1208~1219.
    薛萐,刘国彬,戴全厚,李小利,吴瑞俊. 2008.黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变.应用生态学报,19(3): 517~523.
    薛萐,刘国彬,戴全厚,张超,余娜. 2009.黄土丘陵区退耕撂荒地土壤微生物量演变过程.中国农业科学,42(3): 943~950.
    阎恩荣,王希华,周武. 2008.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系.植物生态学报, 32(1): 1~12.
    杨刚,何寻阳,王克林,黄继山,陈志辉,李有志,艾美荣. 2008.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响.土壤通报, 39(1): 189~191.
    杨万勤,王开运. 2004.森林土壤酶的研究进展.林业科学,40(2): 152~159.
    杨万勤. 2006.森林土壤生态学.成都:四川科学技术出版社.
    杨玉盛,陈光水,郭剑芬,何宗明,陈银秀. 2002.杉木观光木混交林凋落物分解及养分释放的研究(英文).植物生态学报,26(3): 375~282.
    杨玉盛,郭剑芬,陈银秀,陈光水,郑燕明. 2004.福建柏和杉木人工林凋落物分解及养分动态的比较.林业科学,40(3): 19~25.
    曾锋,邱治军,许秀玉. 2010.森林凋落物分解研究进展.生态环境学报,19(1): 239~243.
    张崇玉,李生秀. 2003.西部农业土壤固定态铵及影响因素的研究.干旱地区农业研究,21(2): 54~58.
    张德强,余清发,孔国辉,张佑倡. 1998.鼎湖山季风常绿阔叶林凋落物层化学性质的研究.生态学报,18(1): 96~100.
    张德强,叶万辉,余清发,孔国辉,张佑倡. 2000.鼎湖山演替系列中代表性森林凋落物研究.生态学报, 20(6): 938~944.
    张东来. 2006.帽儿山林区两种主要林分类型凋落物研究. [硕士学位论文].哈尔滨:东北林业大学
    张甲坤,陶澍,曹军. 2000.土壤中水溶性有机碳测定中的样品保存与前处理方法.土壤通报, 31(4): 174~176.
    张金波,宋长春,杨文燕. 2005.土地利用方式对土壤水溶性有机碳的影响.中国环境科学, 25(3): 343~347.
    张梅,郑郁善. 2008.滨海沙地吊丝单竹林凋落物分解及养分动态研究.西南林学院学报,28(3): 4~7.
    张明,白震,张威,丁雪丽,宋斗妍,朱俊丰,朱平. 2007.长期施肥农田黑土微生物量碳、氮季节性变化.生态环境, 16(5): 1498~1503.
    张庆费,宋永昌,吴化前,由文辉. 1999.浙江天童常绿阔叶林演替过程凋落物数量及分解动态. 植物生态学报,23(3): 250~255.
    张万儒,许本彤,李彬,屠星南. 1990.山地森林土壤枯枝落叶层结构和功能研究.土壤学报, 27(2): 121~131.
    张笑培,杨改河,王得祥,冯永忠,任广鑫. 2008.黄土高原沟壑区不同植被恢复模式对土壤生物学特性的影响.西北农林科技大学学报(自然科学版), 36(5): 149~159.
    张燕燕,曲来叶,陈利顶,卫伟. 2010.黄土丘陵沟壑区不同植被类型土壤微生物特性.应用生态学报,21(1): 165~173.
    赵谷风,蔡延,罗媛媛,李铭红,于明坚. 2006.青冈常绿阔叶林凋落物分解过程中营养元素动态.生态学报,26(10): 3286~3295.
    赵护兵,刘国彬,许明祥. 2004.黄土丘陵区植被恢复与流域养分环境演变研究进展.水土保持通报, 24(2): 173~188.
    赵俊晔,于振文,李延奇,王雪. 2006.施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响.植物营养与肥料学报,12(4): 466~472.
    赵满兴,周建斌,陈竹君. 2007.有机肥中可溶性有机碳、氮含量及其特性.生态学报, 27(1): 397~403.
    赵其国,王明珠,何圆球. 1991.我国热带亚热带森林凋落物及其对土壤的影响.土壤,23(1): 8~15.
    赵勇,吴明作,樊巍,高喜荣. 2009.太行山针、阔叶森林凋落物分解及养分归还比较.自然资源学报,24(9): 1616~1624.
    中国林学会森林生态学分会,杉木人工林集约栽培研究专题组编著. 1992.人工林地力衰退研究. 中国科学技术出版社,3~43.
    仲伟彦,殷秀琴,陈鹏. 1999.帽儿山森林落叶分解消耗与土壤动物关系的研究.应用生态学报,10(4): 511~512.
    周建斌,陈竹君,李生秀. 2001.土壤微生物量氮含量、矿化特性及其供氮作用.生态学报, 21(10):1718~1725.
    周建斌,李生秀. 1998.碱性过硫酸钾氧化法测定溶液中全氮含量氧化剂的选择.植物营养与肥料学报, 4(3): 299~304.
    周建斌,李世清. 2008.旱地土壤中的微生物氮及其意义.李生秀主编,中国旱地土壤植物氮素. 中国科学出版社, 138~187.
    周晓峰. 1991.森林生态系统定位研究(第一集).哈尔滨:东北林业大学出版社.
    Aber J D, Melillo J M. 1982. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Canadian Journal of Botany, 60: 2263~2269.
    Adams M B, Angradi T R. 1996. Decomposition and nutrient dynamics of hardwood leaf litter in the Fernow whole-watershed acidification experiment. Forest Ecology Management, 83: 61~69.
    Adrien C F, Andrew S A, Evan H D, David S E, Willian H S. 2001. Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology, 82(2): 470~484.
    Aerts R, de Caluwe H. 1997. Nutritional and plant mediated controls on leaf litter decomposition of Carex species. Ecology, 78: 244~260.
    Aerts R. 2006. The freezer defrosting global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94: 713~724.
    Aitkenhead-Peterson J A, McDowell W H, Neff J C. 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In: Findlay, S.E. G., Sinsabaugh, R. L. (Eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. [M]. Elsevier, Amsterdam, 25~70.
    Alhamd L, Arakaki S, Hagihara A. 2004. Decomposition of leaf litter of four tree species in a subtropical evergreen broad-leaved forest, Okinawa Island, Japan. Forest Ecology and management, 202: 1~11.
    Ayres E, Dromph K M, Bardgett R D. 2006. Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biology and Biochemistry, 38: 183~186.
    Azam F, Yousaf M, Hussain F, Malik K A. 1989. Determination of biomass N in some agricultural soils of Punjab, Pakistan. Plant and Soil, 113(2): 223~228.
    Berendse F. 1994. Litter decomposability - a neglected component of plant fitness. Journal of Ecology, 82: 187~190.
    Berg B, Berg M P, Bottner P, Box E, Breymeyer A, Ca de Anta R, couteaux M, Escudero A, Gallardo A, Kratz W. 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20: 127~159。
    Berg B, Ekbohnm G. 1983. Nitrogen immobilization to decomposing needle litter at variable carbon-nitrogen ratios. Ecology, 64: 63~67.
    Berg B, Hannus K, Popoff T, Theander O. 1982. Changes in organic-chemical components of needle litter during decomposition: long-term decomposition in a Scots pine forest. Canadian Journal of Botany, 60: 1310~1319.
    Berg B, Johansson M-B, Meentemeyer V. 2000. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Canadian Journal of Forest Research, 30(7): 1136~1147.
    Berg B, Lundmark J E. 1987. Decomposition of needle litter in lodgepole pine and Scots pine monocultures-a comparison. Scandinavian Journal of Forest Research, 2: 3~12.
    Berg B, Matzner E. 1997. Effect of N deposition on decomposition of plant litter and soil organicmatter in forest systems. Environmental Reviews, 5(1): 1~25.
    Berg B, Mcclaugherty C. 2008. Plant litter: Decomposition, Humus formation, Carbon sequestration. Berlin Heidelberg: Springer-Verlag, 12~13.
    Berg B. 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133: 13~22.
    Bergkvist B, Folkeson L. 1992. Soil acidification and element fluxes of a Fagus sylvatica forest influenced by simulated nitrogen deposition. Water, Air, and Soil Pollution, 65: 111~133.
    Billore S K, Othsawa M, Numata M, Okano S. 1995. Microbial biomass nitrogen poll in soil from a warm temperate grassland, and from deciduous and evergreen forest in Chiba, central Japan. Biology and Fertility of Soils. 19: 124~128.
    Blair J M, Parmelee R W, Beare M H. 1990. Decay rates, nitrogen fluxes, and decomposer communities of single- and mixed- species foliage litter. Ecology, 71(5): 1976~1985.
    Blair J M. 1988. Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biology and Biochemistry, 20: 693~701.
    Block J C, Mathieu L, Servais P, Fontvieille D, Werner P. 1992. Indigenous bacterial inocula for measuring the biodegradable dissolved organic carbon (BDOC) in waters. Water Research, 26(4): 481~486.
    Boissier J M, Fontvieille D. 1993. Biodegradable dissolved organic carbon in seepage waters from two forest soils. Soil Biology and Biochemistry, 25(9): 1257~1261.
    Bolan N S, Baskaran S, Thiagarajan S. 1996. An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Communications in Soil Science and Plant Analyses, 27(13&14): 2723~2737.
    Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S. 2010. Decomposition and nutrients dynamics in mixed litter of Meditrranean species. Plant and Soil, 331: 481~496.
    Borken W, Xu Y J, Brumme R, Lamersdorf N. 1999. A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effects. Soil Science Society of America Journal, 63: 1848~1855.
    Bottner P. 1985. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C and 15N labeled plant material. Soil Biology and Biochemistry, 17: 329~337.
    Boyer J N, Groffman P M. 1996. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biology & Biochemistry, 28(6): 783~790.
    Briones M J, Ineson P. 1996. Decomposition of eucalyptus leaves in litter mixtures. Soil Biology and Biochemistry, 28(10/11): 1381~1388.
    Brookes P C. 2001. The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes and Environments, 16: 131~140.
    Bryant D M, Holland E A, Seastedt T R, Walker M D. 1998. Analysis of litter decomposition in an alpine tundra. Canadian Journal of Botany, 76: 1295~1304.
    Bucher A E, Lanyon L E. 2005. Evaluating soil management with microbial community-level physiological profiles. Applied Soil Ecology, 29: 59~71.
    Campbell C A, Biederbeck V O, Wen G, Zentner R P, Schoenau J, Hahn D. 1999. Seasonal trends in selected soil biochemical attributes: effects of crop rotation in the semiarid prairie. Canadian Journal of SoilScience, 79: 73~84.
    Cances B, Ponthieu M, Castrec-Rouelle M, Aubry E, Benedetti M F. 2003. Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma, 113: 341~355.
    Carlyle J C, Malcolm D C. 1986. Nitrogen availability beneath spruce and mixed larch and spruce stands growing on deep peat (Ι). Net mineralization measured by field and laboratory incubations. Plant and Soil, 93: 95~113.
    Chantigny M H. 2003. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma, 113: 357~380.
    Chapin F S. 1991. Effects of multiple environmental stresses on nutrient availability and use. In: Mooney H A et al. eds. Response of Plant to Multiple Stresses. San Diego, California: Academic Press, 68~88.
    Chapman K, Whittaker J B, Heal O W. 1988. Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agriculture, Ecosystems and Environment, 24: 33~40.
    Chen C R, Xu Z H, Zhang S L, Keay P. 2005. Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant and Soil, 277: 285~297.
    Chen H, Harmon M E, Griffiths R P, Hicks W. 2000. Effects of temperature and moisture on C respired from decomposing woody roots. Forest Ecology and Management, 138: 51~64.
    Christou M, Avramides E J, Roberts J P, Jones D L. 2005. Dissolved organic nitrogen in contrasting agricultural ecosystems. Soil Biology and Biochemistry, 37: 1560~1563.
    Contin M, Corcimaru S, De Nobili M, Brookes P C. 2000. Temperature changes and the ATP concentrations of the soil microbial biomass. Soil Biology and Biochemistry, 32: 1219~1225.
    Cuevas E, Lugo A E. 1998. Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. Forest Ecology and Management, 112: 263~179.
    Dalva M, Moore T R. 1991. Sources and sinks of dissolved organic carbon in a forested swampcatchments. Biogeochemistry, 15: 1~19.
    David M B, Vance G F, Rissing J F, Stevenson F J. 1989. Organic carbon fraction in extracts of O and B horizons from a New England spodosol: Effect of acid treatment. Journal of Environmental Quality, 18: 212~217.
    Dawson H J, Ugolini F C, Hrutfiord B F. 1978. Role of soluble organics in the soil process of a podzol, Central Cascades, Washington. Soil Science, 126: 290~296.
    Dentener F J, Crutzen P J. 1994. A three-dimensional model of the global ammonia cycle. Journal of Atmospheric Chemistry, 19(4): 331~369.
    Diaz-Ravina M, Acea M J, Carballas T. 1995. Seasonal changes in microbial biomass and nutrient flush in forest soils. Biology and Fertility of Soils, 19: 220~226.
    Don A, Kalbitz K. 2005. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biology and Biochemistry, 37: 2171~2179.
    Doran J W. 1987. Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biology and Fertility of Soils, 5: 68~75.
    Dyer M L, Meentemeyer V, Berg B. 1990. Apparent controls of mass loss rate of leaf litter on a regional scale: litter quality vs. climate. Scandinavian Journal of Forest Research, 5: 311~323.
    Ebermayer E. 1876. Die Gesamte Lehre der Waldstreu mit Rücksicht auf die Chemische Statik desWaldbaues. Berlin: Springer.
    Edmonds R L, Thomas T B. 1995. Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forests, Olympic National Park Washington. Canadian Journal of Forest Research, 25: 1049~1057.
    Embacher A, Zsolnay A, Gattinger A. 2007. The dynamics of water extractable organic matter (WEOM) in different arable topsoils over a three year period: I. Influence of soil type. Geoderma, 139(1-2): 11~22.
    Fioretto A, DiNardo C, Papa S. 2005. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biology and Biochemistry, 37: 1083~1091.
    Franzluebbers A J, Hons F M, Zuberer D A. 1995. Soil organic carbon microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Science Society of America Journal, 59: 460~466.
    Gallardo A, Merino J. 1993. Leaf decomposition in two Mediterranean Ecosystems of southwest Spain: influence of substrate quality. Ecology, 74: 152~161.
    Gallardo A, Schlesinger W H. 1994. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biology and Biochemistry, 26: 1409~1415.
    Gilbert E. 1988. Biodegradability of ozonation products as a function of COD and DOC elimination by the example of humic acids. Water Research, 22: 123~126.
    Glendining M J, Powlson D S, Poulton P R, Bradbury N J, Palazzo D, Li X. 1996. The effects of long-term application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment. Journal of Agricultural Science, 127: 347~363.
    Gregorich E G, Beare M H, Stoklas U, St-Georges P. 2003. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma, 113: 237~252.
    Gregorich E G, Liang B C, Drury C F, Mackenzie A F, McGill W B. 2000. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biology and Biochemistry, 32: 581~587.
    Guggenberger G, Zech W. 1993. Dissolved organic carbon control in acid forest soils of the Fichtelgebirge (FRG) as revealed by distribution patterns and structural composition analysis. Geoderma, 59: 109~129.
    Guggenberger G, Zech W. 1994. Dissolved organic carbon in forest floor leachates: simple degradation products or humic substances? The Science of Total Environment, 152(1): 37~47.
    Gunapala N, Scow K M. 1998. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biology and Biochemistry, 30: 805~816.
    Han N, Thompson M L. 1999. Soluble organic carbon in a biosolids-amended mollisol. Journal of Environmental Quality, 28: 652~658.
    Haney R L, Franzluebbers A J, Hons F M, Zuberer D A. 1999. Soil C extracted with water or K2SO4: pH effect on determination of microbial biomass. Canadian Journal of Soil Science, 79: 529~533.
    Harris J A. 2003. Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 54: 801~808.
    Haynes R J. 2000. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistry, 32: 211~219.
    Heaney A, Proctor J. 1989. Chemical elements in litter on Volcan Barva, Costa Rica//Proctor J. Mineral nutrients in tropical forest and savanna ecosystems. Oxford: Blackwell Scientific, 225~271.
    Helfrich M, Ludwig B, Potthoff M, Flessa H. 2008. Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen. Soil Biology and Biochemistry, 40: 1823~1835.
    Hendricks J J, Wilson C A, Bpring L R. 2002. Foliar litter position and decomposition in a fire-maintained longleaf pine-wiregrass ecosystem. Canadian Journal of Forest Research, 32: 928~941.
    Holmes W E, Zak D R. 1994. Soil microbial biomass dynamics and nitrogen mineralization in Northern Hardwood ecosystems. Soil Science Society of America Journal, 58: 238~243.
    Homsby D C, Lockaby B G, Chappelka A H. 1995. Influence of microclimate on decomposition in loblolly pine stands: a field microcosm approach. Canadian Journal of Forest Research, 25(10): 1570~1577.
    Hongve D, VanHees W, Lundstr?m U S. 2000. Dissolved components in precipitation water percolated through forest litter. European Journal of Soil Science, 51: 667~677.
    Hughes S, Reynolds B, Roberts J D. 1990. The influence of land management on concentration of dissolved organic carbon and its effects on the mobilization of aluminium and iron in podzol soils in Mid-Wales. Soil Use Management, 6: 137~145.
    Hungate B A, Dijkstra P, Johnson D W, Hinkle C R, Drake B G. 1999. Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology, 5: 797~806.
    Jamaludheen V, Mohan Kumar B. 1999. Litter of multipurpose trees in Kerala, India: variations in the amount, quality, decay rates and release of nutrients. Forest Ecology and management, 115: 1~11.
    Jandl R, Sletten R S. 1999. Mineralization of forest soil carbon: interactions with metals. Journal of Plant Nutrition and Soil Science, 162: 623~629.
    Jandl R, Sollins P. 1997. Water extractable soil carbon in relation to the belowground carbon cycle. Biology and Fertility of Soils, 25: 196~201.
    Jenkinson D S, Ladd J N. 1981. Microbial biomass in soil: measurement and turnover. // Paul E A, Ladd J N eds. Soil Biochemistry, Vol 5. New York: Dekker, 414~472.
    Jensen E S. 1997. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues. Biology and Fertility of Soils, 24: 39~44.
    Jones D L, Willett V B. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38: 991~999.
    Kaiser K A, Martens R, Heinemeyer O. 1995. Temporal changes in soil microbial biomass carbon in an arable soil. Consequence for soil sampling. Plant and Soil, 170: 287~295.
    Kaiser K, Guggenberger G, Zech W. 2001. Organically bound nutrients in dissolved organic matter fractions in seepage and pore water of weakly developed forest soils. Acta Hydrochimica et Hydrobiologica, 28: 411~419.
    Kaiser K, Zech W. 2000. Sorption of dissolved nitrogen by acid subsoil horizons and individual mineral phases. European Journal of Soil Science, 51: 403~411.
    Kalbitz K, Geyer W, Geyer S. 1999. Spectroscopic properties of dissolved humic substances-areflection of land use history in a fen area. Biogeochemistry, 7: 219~238.
    Kalbitz K, Popp P, Geyer W, Hanschmann G. 1997.β-HCH mobilization in polluted wetland soils as influenced by dissolved organic matter. The Science of the Total Environment, 204: 37~48.
    Kalbitz K, Popp P. 1999. Seasonal impacts onβ-hexachlorocyclohexane concentration in soil solution. Environment Pollution, 106: 139~141.
    Kalbitz K, Schmerwitz J, Schwesig D, Matzner E. 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 113: 273~291.
    Kalbitz K, Schwesig D, Schmerwitz J, Kaiser K, Haumaier L, Glaser B, Ellerbrock R, Leinweber P. 2003. Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biology and Biochemistry, 35: 1129~1142.
    Kalbitz K, Solinger S, Park J H, Michalzik B, Matzner E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 165: 277~304.
    Kiikkil(a|¨) O, Kitunen V, Smolander A. 2005. Degradability of dissolved soil organic carbon and nitrogen in relation to tree species. FEMS Microbiology Ecology, 53: 33~40
    Kiikkil(a|¨) O, Kitunen V, Smolander A. 2006. Dissolved soil organic matter from surface organic horizons under birch and conifers: degradation in relation to chemical characteristics. Soil Biology and Biochemistry, 38: 737~746
    Klemmedson J O, Campbell C E. 1990. Litter fall transfers of dry matter and nutrients in ponderosa pine stands. Canadian Journal of Forest Research, 20: 1105~1115.
    K(o|¨) gel-Knabner I. 1997. 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma, 80: 243~270.
    Koopmans C J, Tietema A, Verstraten J M. 1998. Effects of reduced N deposition on litter decomposition and N cycling in two N saturated forest in the Netherlands. Soil Biology and Biochemistry, 30(2): 141~151.
    Koroleff F. 1983. Simultaneous oxidation of nitrogen and phosphorus compounds by persulfate. In Methods of Seawater Analysis; 2th; Grasshoff K. et al.(eds) Verlag Chemie: Weinheimer , Germany, 168~169.
    Kumar B M, Deepu J K. 1992. Litter production and decomposition dynamics in moist deciduous forests of the Western Ghats in Peninsular India. Forest Ecology and Management, 50: 181~201.
    Ladd J N , Amato M , Zhou L K. 1994. Differential effects of rotation, plant residues and nitrogen fertilizer on microbial biomass and organic in Australian Alfisol. Soil Biology and Biochemistry, 26: 821~831.
    Liski J, Nissinen A, Erhard M, Taskinen O. 2003. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change Biology, 9(4): 575~584.
    Liu X Y, Lindemann W C, Whitford W G, Steiner R L. 2000. Microbial diversity and activity of disturbed soil in the northern Chihuahuan desert. Biology and Fertility of Soils, 32: 243~249.
    Loranger G, Ponge J-F, Imbert D, Lavelle P. 2002. Leaf decomposition in two semi evergreen tropical forests: influence of litter quality. Biology and Fertility of Soils, 35: 247~252.
    Lundquist E J, Scow K M, Jackson L E, Uesugi S L, Johnson C R. 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biology and Biochemistry, 31: 1666~1675.Malhi S S, Nyborg M. 1983. Field study of the fate of fall-applied 15N-lebelled fertilizers in three Alberta soils. American Society of Agronomy, 1983, 75: 71~74.
    Marchner B, Kalbitz K. 2003. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113: 211~235.
    Marschner B, Bredow A. 2002. Temperature effects on release and ecological properties of dissolved organic matter (DOM) in sterilized and biologically active soil samples. Soil Biology and Biochemistry, 34: 459~466.
    Matlou M C, Haynes R J. 2006. Soluble organic matter and microbial biomass C and N in soils under pasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study. Applied Soil Ecology, 34: 160~167.
    McDowell W H, Currie W S, Aber J D, Yano Y. 1998. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air and Soil Pollution, 105: 175~182.
    McDowell W H, Zsolnay A, Aitkenhead-Peterson J A, Gregorich E G, Jones D L, Jodemann D, Kalbitz K, Marschner B, Schwesig D. 2006. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biology and Biochemistry, 38: 1933~1942.
    McDowell W H. 2003. Dissolved organic matter in soils-future directions and unanswered questions. Geoderma, 113: 179~186.
    Melillo J M, Aber J D, Linkins A E, Ricca A, Fry B, Nadelhoffer K J. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil, 115: 189~198.
    Melillo J M, Aber J D, Muratore J F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63: 621~626.
    Mengel K, Schneider B, Kosegarten J. 1999. Nitrogen compounds extracted by electroultrafitration (EUF) or CaCl2 solution and their relationships to nitrogen mineralization in soils. Journal of Plant Nutrition and Soil Science, 162: 139~148.
    Meyer J L, Edwards R T, Risley R. 1987. Bacterial growth on dissolved organic carbon from a blackwater river. Microbial Ecology, 13: 13~29.
    Michalzik B, Matzner E. 1999. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosysterm. European Journal of Soil Science, 50(4): 579~590.
    Michelsen A, Andersson M, Jensen M, Kjoller A, Gashew M. 2004. Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biology and Biochemistry, 36: 1707~1717.
    Miller M, Dick R P. 1995. Dynamics of soil C and microbial biomass in whole soil and aggregates in two cropping systems. Applied Soil Ecology, 2: 253~261.
    Mooney H A, Canadell J, Chapin F S. 1999. Ecosystem Physiology Responses to Global Change. Cambridge Press, 41~189.
    Moore T R, Trofymow J A, Prescott C E, Fyles J, Titus B D. 2006. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9(1): 46~62.
    Moore T R, Trofymow J A, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S. 1999. Litterdecomposition rates in Canadian forests. Global Change Biology, 5: 75~82.
    Moretto A S, Distel R A, Didone N G. 2001. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semiarid grassland. Applied Soil Ecology, 18(1): 31~37.
    Murphy D V, Macdonald A J, Stockdale E A, Goulding K W T, Fortune S, Gaunt J L, Poulton P R, Wakefield J A, Webster C P, Wilmer W S. 2000. Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils, 30: 374~387.
    Nelson P N, Dictor M C, Soulas G. 1994. Availability of organic carbon in soluble and particle-size fractions from a soil profile. Soil Biology and Biochemistry, 26: 1549~1555.
    Nemergut D R, Costello E K, Meyer A F, Pescador M Y, Weintraub M N, Schmidt S K. 2005. Structure and function of alpine and arctic soil microbial communities. Research in Microbiology, 156(7): 775~784.
    Ocion J A, Brookes P C, Jenkinson D S. 1991. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biology and Biochemistry, 23: 171~176.
    Odum E P. 1983. Basic ecology. Philadelphia, Saunders College Publishing. 13~18.
    Ohno T. 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science and Technology, 36: 742~746.
    Olson J S. 1963. Energy storage and the balance of producer and decomposers in ecological system. Ecology, 4(4): 322~331.
    Park J H, Kalbitz K, Matzner E. 2002. Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Biology and Biochemistry, 34: 813~822.
    Park J H, Matzner E. 2003. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry, 66: 265~286.
    Parlanti E, Worz K, Geoffroy L, Lamotte M. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthopogenic inputs. Organic Geochemistry, 31: 1765~1781.
    Pascual J A, Garcia C, Hernandez T, Moreno J L, Ros M. 2000. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry, 32: 1877~1883.
    Patra D D, Brookes P C, Coleman K, Jenkinson D S. 1990. Seasonal changes of soil microbial biomass in an arable and a grassland soil which have been under uniform management for many years. Soil Biology and Biochemistry, 22(6): 739~742.
    Paulus R, R(o|¨)mbke J, Ruf A, Beck L. 1999. A comparison of the litter bag mini container and bait-lamina-methods in an eco-toxicological field experiment with diflubenzuron and btk. Pedobiologia, 43: 120~133.
    Paustian K, Agren G I, Bosatta E. 1997. Modeling litter quality effects on decomposition and soil organic matter dynamica. In: Cadisch G, Giller KE, ed. Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK, 313~335
    Perry D A. 1994. Forest Ecosystems [M]. Baltimore and London: The Johns Hopkins University Press.
    Pinney M L, Westerhoff P K, Baker L. 2000. Transformations in dissolved organic carbon through constructed wetlands. Water Research, 34: 1897~1911.
    Powlson D S, Prookes P C, Christensen B T. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19: 159~164.
    Qualls R G, Haines B L. 1992. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Science Society of America Journal, 56: 578~586.
    Qualls R G, Haines B L. 1991. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Science Society of America Journal, 55: 1112~1123.
    Qualls R G, Haines B L. 1992. Measuring adsorption isotherms using continuous unsaturated flow through intact soil cores. Soil Science Society of America Journal, 56: 456~460.
    Quideau S A, Chadwick O A, Benesi A, Graham R C, Anderson M A. 2001. A direct link between forest vegetation type and soil organic matter composition. Geoderma, 104: 41~60.
    Raich J W, Schelesinger W H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B: 81~99.
    Recous S, Mary B. 1990. Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biology and Biochemistry, 22: 913~922.
    Reemtsma T, Bredow A, Gehring M. 1999. The nature and kinetics of organic matter release from soil by salt solutions. European Journal of Soil Science, 50: 53~64.
    Rogers B F, TateШR L. 2001. Temporal analysis of the soil microbial community along a toposequence in Pineland Soils. Soil Biology and Biochemistry, 33(10): 1389~1401.
    Rowell D M, Prescott C E, Preston C M. 2001. Decomposition and nitrogen mineralization from biosolids and other organic materials: Relationship with initial chemistry. Journal of Environmental Quality, 30: 1401~1410.
    Rustad L E, Cronan C S. 1988. Element loss and retention during litter decay in a red spruce stand in Maine. Canadian Journal of Forest Research, 18(6): 947~953.
    Scheu S, Schauermann J. 1994. Decomposition of roots and twigs: Effects of wood type (beech and ash), diameter, site of exposure and macrofauna exclusion. Plant and Soil, 163: 13~24.
    Schimel D S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1(1): 77~91.
    Schlesinger W H, Hasey M M. 1981. Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents form deciduous and evergreen leaves. Ecology, 62: 762~774.
    Schwesig D, Kalbitz K, Matzner E. 2003. Mineralization of dissolved organic carbon in mineral soil solution in two forest soils. Journal of Plant Nutrition and Soil Science, 166: 585~593.
    Servais P, Anzil A, Ventresque C. 1989. Simple method for determination of biodegradable dissolved organic carbon in water. Applied Environment Microbial, 55: 2732~2734.
    Shen S M, Hart P B S, Powlson D S, Jenkinson D S. 1989. The nitrogen cycle in the Broadbalk Wheat Experiment: 15N-labelled fertilizer residues in the soil and in the soil microbial biomass. Soil Biology and Biochemistry, 21(4): 529~533.
    Singh K P, singh P K, Tripathi S K. 1999. Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biology and Fertility of Soil, 29: 371~378.
    Smith J L, Norton J M, Paul E A, 1989. Decomposition of 14C- and 15N- labeled organisms in soilunder anaerobic conditions. Plant and soil, 116: 115~118.
    Smith L J, Paul E A. 1990. The significance of soil microbial biomass estimations. Soil Biochemistry, 6: 357~359.
    Sparling G, Vojvodic-Vukovic M, Schipper L A. 1998. Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biology and Biochemistry, 30: 1469~1472.
    Spurr H S, Baroes B V. 1980. Forest ecology. New York, John Wiley and Sons, 211~274.
    Steenwerth K L, Jackson L E, Calderon F J, Stromberg M R, Scow K M. 2002. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology and Biochemistry, 34: 1599~1611.
    Stevenson F J. 1985. Cycles of soil carbon, nitrogen, phosphoros, sulfur, micronutrients. New York: John Wiley and Son, 155~215.
    Strobel B W. 2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution- a review. Geoderma, 99: 169~198.
    Swift M J, Heal O W, Anderson J M. 1979. Decomposition in terrestrial ecosystems. University of California Press, Berkley and Los Angeles, California, USA.
    Talyor B R, Parsons W F J, Parkisons D. 1989. Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnus crispa litter. Canadian Journal of Forest Research, 19: 674~679.
    Taylor B R, Parkinson D, Parsons W F J. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70: 97~104.
    Temminghoff E J M, van der Zee S E A T M, de Haan F A M. 1997. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environmental Science and Technology, 31: 1109~1115
    Tietema A, Wessel W W. 1994. Microbial activity and leaching during initial oak leaf litter decomposition. Biology and Fertility of Soils, 18: 49~54.
    Tu C, Ristaino J B, Hu S. Soil microbial biomass and activity in organic tomato farming systems-effects of organic inputs and straw mulching. Soil Biology and Biochemistry, 2006, 38: 247~255.
    Van der Drift J. 1963. The disappearance of litter in mull and mor in connection with weather condition and the activity of the macrofauna. In: Doeksen, J. and Van der Drift J. (eds), Soil organisms. North-Holland Publishing Company, Amsterdam, Holland, 124~132.
    Vesterdal L. Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Canadian Journal of Forest Research, 1999, 29: 95~105.
    Vitousek P M, Mooney H A, Lubchenco J, Melillo J M. 1997. Human domination of earth’s ecosystems. Science, 277: 494~499.
    Vitousek P M, Turner D R, Parton W J, Sanford R L. 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanism, and models. Ecology, 75: 418~429.
    Vitousek P M. 1994. Beyond global warming: ecology and global change. Ecology, 75(7): 1861~1876.
    Vitousek P M. 1984. Litter fall, nutrient cycling and nutrient limitation in tropical forests. Ecology, 65: 285~298.
    Wagai R, Sollins P. 2002. Biodegradation and regeneration of water-soluble carbon in a forest soil:leaching column study. Biology and Fertility of Soils, 35: 18~26.
    Willcock J, Magan N. 2001. Impact of environmental factors on fungal respiration and dry matter losses in wheat straw. Journal of Stored Products Research, 37: 35~45.
    Winjum J K, Dixon R K, Schroeder P E. 1993. Forest management and carbon storage: an analysis of 12 key forest nations. Water, Air, and Soil Pollution, 70: 239~257.
    Xu Q F, Xu J M. 2003. Change in soil carbon pools induced by substitution of plantation for native forest. Pedosphere, 13(3): 271~278.
    Xu X N, Hirata E. 2005. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant and Soil, 273: 279~289.
    Yang W Q, Wang K Y, Kellom?ki S, Gong H D. 2005. Litter dynamics of three subalpine forests in the western Sichuan. Pedosphere, 15(5): 653~659.
    Yang W Q, Wang K Y, Kellom?ki S, Zhang J. 2006. Annual and monthly variations in litter macronutrients of Three Subalpine Forests in Western China. Pedosphere, 16(6): 788~798.
    Yano Y, McDowell W H, Aber J D. 2000. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biology ang Biochemistry, 24: 27~40.
    Yano Y, McDowell W H, Kinner N E. 1998. Quantification of biodegradable dissolved organic carbon in soil solution with flow-through bioreactors. Soil Science Society of America Journal, 62: 1556~1564.
    Yu Z S, Northup R R, Dahlgren R A. 1994. Determination of dissolved organic nitrogen using persulfate oxidation and conductimetric quantification of nitrate-nitrogen. Communications in Soil Science and Plant Analyses, 25: 3161~3169.
    Zech W, Guggenberger G, Schulten H-R. 1994. Budgets and chemistry of dissolved organic carbon in forest soils: effects of anthropogenic soil acidification. The Science of the Total Environment, 152: 49~62.
    Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano T M, Miltner A, Schroth G. 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 79: 117~161.
    Zhang B, Yang Y S, Zepp H. 2004. Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China. Catena, 57: 77~90.
    Zheng F L. 2006. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere, 16: 420~427.
    Zheng Y S, Ding Y X. 1998. Effects of mixed forests of Chinese fir and Tsoongs tree on soil proprieties. Pedosphere, 8(2): 161~168.
    Zhou L X, Wong J W C. 2003. Behavior of heavy metals in soil: Effect of dissolved organic matter. In: Selim M, Kingery WL (eds.) Geochemical and Hydrological Reactivity of Heavy Metals in Soil. New York: CRC Press. 245~270.
    Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F. 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1): 45~50.
    Zsolnay A, Gorlitz H. 1994. Water extractable organic matter in arable soils: effects of drought and long-term fertilization. Soil Biology and Biochemistry, 26: 1257~1261.
    Zsolnay A, Steindl H. 1991. Geovariability and biodegrability of the water-extractable organicmaterial in an agricultural soil. Soil Biology and Biochemistry, 23: 1077~1082.
    Zsolnay A. 1996. Dissolved humus in soil waters. In: Piccolo, A.(Ed.), Substances in Terrestrial Ecosystems. Elsevier Science BV, Amsterdam, 171~223.
    Zsolnay A. 2003. Dissolved organic matter: artifacts, definitions, and functions. Geoderma, 113: 187~209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700