卧龙自然保护区亚高山草甸群落学特征及生态水文功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对卧龙自然保护区亚高山草甸进行了群落学调查和分析,采用DCA(Detrended Correspondence Analysis)排序和TWINSPAN(Two-Way Indicator Speicies Analysis)分类方法研究了群落之间和群落与环境之间的生态关系,在此基础上,从亚高山草甸水源涵养机理的研究着手,系统地研究了草甸主要群落类型的植冠层和土壤层的水文过程及其草甸植被对涵养水源功能的影响,建立了草甸不同群落类型的水源涵养功能的评价指标体系。主要结论如下:
    (1) 通过野外植被调查,研究卧龙自然保护区亚高山草甸植物种、植物群落与环境的生态关系。该地区亚高山草甸共有植物139 种,隶属于31 科88 属,其中菊科、百合科、兰科、报春花科、玄参科、蓼科、毛茛科、禾本科植物占有重要地位。应用数量分类方法将114 个样方分为12 个群落类型, 分别为糙野青茅+粘毛香青+珠芽蓼群落(Deyeuxia scabrescens+Anaphalis bulleyana+ Polygonum viviparum),糙野青茅+珠芽蓼+扭盔马先蒿(Deyeuxia scabrescens + Polygonum viviparum+ Pedicularis davidii)群落,狼毒+珠芽蓼(Stellera chamaejasme + Polygonum Viviparum)群落,突隔梅花草+珠芽蓼+糙野青茅(Parnassia delavayi+Polygonum Viviparum+ Deyeuxia scabrescens)群落,糙野青茅+珠芽蓼(Deyeuxia scabrescens+Polygonum viviparum)群落,川甘蒲公英+狼毒(Taraxacum lugubre+Stellera chamaejasme)群落,狼毒+川甘蒲公英(Stellera chamaejasme+ Taraxacum lugubre)群落,驴蹄草+圆穗蓼(Caltha palustris + Polygonum sphaerostachyum)群落,蒿草+狼毒+驴蹄草(Kobresia sp+ Stellera chamaejasme+ Caltha palustris)群落,驴蹄草+毛茛状金莲花+蒲公英(Caltha palustris+Trollius ranunculoides+Taraxacum mongolicum)群落,长葶鸢尾+糙野青茅(Iris delavayi+Deyeuxiascabrescens)群落,驴蹄草+薄叶高山耳蕨(Caltha palustris+Pteris bakerianum)群落。
    (2) DCA 排序图反映出排序轴的生态意义,第一轴反映了各群落类型所在的环境的海拔梯度,从上到下,随着的海拔的升高,植物群落或植物种的耐寒性越来越强;第二轴基本上反映了各群落类型所在的环境的土壤含水量。DCA 排序和TWINSPAN 分类结果基本一致,都较好地反映了群落之间和群落与环境之间的关系,通过定量分析不仅给出了植物群落与环境梯度的解释,而且客观地阐明了植被与环境因子的关系,显示出决定该区植物群落类型和空间分布的主要生态因子是海拔梯度和土壤含水量。
    (3) 运用物种丰富度、α多样性、β多样性等指标,分析研究了保护区亚高山草甸植被的物种多样性及其变化格局。结果表明,随海拔升高,亚高山草甸植被物种丰富度呈现单峰分布格局;α多样性(Shannon-Wiener指数和Simpson指数)随海拔上升先增加后有下降趋势,均匀度指数则随海拔升高而增加;β多样性(Wilson-Schmida指数、群落相异系数βCS及Cody指数)随着海拔均呈上升趋势。
The subalpine meadow and eco-environmental conditions at the source area of Wolong Nature Reserve were investigated. By the means of Detrended Correspondence Analysis (DCA) ordination and Two Way Indicator Species Analysis (TWINSPAN ) classification the ecological relationship among the communities and between the community and the environmental factors were studied. On the basis of the subalpine meadow mechanism of water-conserving,the hydrological process of canny layer and soil layer for vegetations and characteristics for water conservation function have been analyzed. The evaluation index system of water-conserving function has been put forward to. Conclusions are as follows:
    (1) There are 139 species of plants in this subalpine zone. They belong to 30 families and 108 genera, which are dominated by Compositoe, Liliaceae, Orchidaceae, Pleurosperum, Scrophulariaceae, Polygonaceae, Ranunculaceae and Gramineae. Based on the field investigation of 114 sampling plots in Wolong Nature Reserve, the species composition and community structure of subalpine meadow communities were analyzed. The two-way indicator species analysis and the detrended correspondence analysis were employed to classify and ordinate subalpine meadow communities from 114 sampling plots in order to understand key influencing factors determining the structure and distribution pattern of subalpine meadow communities. The subalpine meadows were classified into 12 types through TWINSPAN analysis. There are Deyeuxia scabrescens+Anaphalis bulleyana+ Polygonum viviparum,Deyeuxia scabrescens+Polygonum viviparum+Pedicularis davidii, Stellera chamaejasme+Polygonum viviparum, Parnassia delavayi+Polygonum viviparum+ Deyeuxia scabrescens, Deyeuxia scabrescens+Polygonum viviparum, Taraxacum lugubre+ Stellera chamaejasme, Stellera chamaejasme+Taraxacum lugubre, Caltha palustris+ Polygonum sphaerostachyum, Kobresia sp.+Stellera chamaejasme+ Caltha palustris, Caltha palustris+Trollius ranunculoides+Taraxacum mongolicum, Iris delavayi+Deyeuxia scabres-ens, Caltha palustris+Pteris bakerianum.
    (2) DCA ordination of those communities demonstrated that Axis2 indicated a significant relationship between meadow distribution and soil humidity; while Axis1 indicated an important relationship of meadow distribution with altitude, along the gradient of which the communities were distinct from each other. The result of DCA ordination was similar to that of TWINSPAN classification, which reflected the relationship among the communities and between the community and the environmental factors. The quantitative analysis method not only provided the interpretation to the communities and the environmental gradients but also
    objectively elucidated the relation between the communities and the environmental factors. The analysis results showed that the importance of environmental factors affecting the structure and distribution pattern of subalpine meadow communities were soil moisture and altitude. The communities at this zone play very important roles in improving the conditions of soil and climate, conserving water and maintaining ecological balance. (3) Based on the data from field survey species richness ,αdiversity and βdiversity of the subalpine meadow in Wolong nature reserve ,Sichuan Province, we are analyzed in this paper .The results were as follows: Species richness index was the highest at mid-altitude. Αdiversity indices (Shannon-Wiener index and Simpson index) increased firstly ,then decreased with altitude increasing . Pielou evenness index increased with altitude increasing obviously. βdiversity indices (Cody index and Wilson-Schmida index),increased with increasing altitude. (4) The saturated water-holding capacity of leaves in different communities ranged from 1.00mm to1.40mm,Stellera chamaejasme community was the largest. The available water-holding capability of leaves rate which was the same as saturated water content rate were Stellera chamaejasme community(1.26mm), Deyeuxia scabrescens community(1.06mm), Caltha palustris community(1.10 mm)and Iris delavayi community(0.86mm) (5) There are better physical attributes and high water-holding capability in subalpine meadow soil. The maximum water storage of Caltha palustris community, Stellera chamaejasme community, Deyeuxia scabrescens community and Iris delavayi community were 3242 t/hm2,3193t/hm2, 3213t/hm2,2704t/hm2 in 45cm depth respectively. (6) The initial infiltration rate of Caltha palustris community, Stellera chamaejasme community, Deyeuxia scabrescens community and Iris delavayi community were 16.89 mm/min, 12.57mm/min, 7.33 mm/min and 2.36 mm/min;stable infiltration rate were 9.03 mm/min, 10.37 mm/min, 4.72 mm/min and 1.26 mm/min;cumulate infiltration content in 30mins of Caltha palustris community was higher than other subalpine meadow,time of reaching stable seepage of Iris delavayi community was the shortest. So, the soil infiltration property of Caltha palustris community and Stellera chamaejasme community were superior and the function of regulating the water during the process were marked. We concluded that rainfall intensity was not reach or overrun the stable infiltration rate in all subalpine meadow communities, so surface runoff over infiltration state seldom occured. (7) The soil water varied with time, flatuating during the growing season. The vetical variation of soil moisture indicated to different patterns among the three spatial layers.
    (8) The method of Analytic Hierarchy Process was applied to establish the hierarchy structure model and evaluation index system of vegetation community .The method of expert assessment and integrative grades were applied to assess the water-holding function of vegetation community. The index value ranges from 2.8 to 8.0. The water-conserving function of community shows as follows: Stellera chamaejasme community> Caltha palustris community> Deyeuxia scabrescens community>Iris delavayi community
引文
1. Alatalo R V., Problems in the measure of evenness in ecology, Oikos, 1981, 37:199一204
    2. Andrew J., Baird Robert L., (赵文智, 王根绪译). 生态水文学. 北京:海洋出版社,2002
    3. Arya L.M., Leij F.J. et a1, Scaling parameter to predict the soil water characteristic from particle-size distribution data, Soil Sci. Soc. Am. J., 1999, 63:510-519.
    4. Baruch Z., Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan páramos.Vegetatio,1984, 55:115-126
    5. Beals E.W., Vegetation changes along altitudinal gradients. Science, 1969, 165:98l-985
    6. Begon M., Harper J.L. and Townsend C.R., Ecology: Individuals, Populations and Communities, Blackwell Science, Oxford., 1996
    7. Bodman G.B. and Colman E.A., Moisture and energy condition during downward entry of water into soil, Soil Sci. Soc. AM. J., 1944, 8(2): 166-182
    8. Breek, C.J.F., CANOCO—a FORTRAN program for canonical community ordination by Partial, Detrended, Canonical correspondence analysis, principle component analysis and redundancy analysis, New York : Cornell University Press, 1991
    9. Brooks R.H., Corey A.T., Hydraulic properties of porous media, Colorada: Colorada State Univ., Fort Colins, 1964.
    10. Brooks R.H., Corey A.T., Properties of porous media affecting fluid flow. J. Imig. Drain. Div. Am. Soc. Civ. Eng., 92(IR2), 1966, 61-88
    11. Brown J.H., Species Diversity. In: Myers A.A. and Giller P.S., Analytical Biogeography: An integrated approach to the Study of Animal and Plant Distribution. Chapman & Hall, New York, 1988,57-89
    12. Burke A., Classification and ordination of plant communities of the Naukluft Mountains, Namibia. J. Veg. Sic., 2001, 12: 53-60
    13. Campell G.S., A simple method for determining unsaturated hydraulic conductivity from moisture retention data, Soil Sci., 1974, 1l7:3ll-314
    14. Chong S. K., et al, Simple in situ Determination of Hydraulic Conductivity by Fower Function Description of Drainage, Water Resource Res., 1981, 17(4): 1109-1114
    15. Cilliers S.S. & Bredenkamp G. J., Classes of synanthropic vegetation in urban open spaces of Potchefstroom, South Africa. Proceedings IAVES Symposium, 2000, 218-221
    16. Clothier B.E., Scotter D.R., Diffusivity and one dimensional absorption experiments. Soil Sci. Soc. Am. J., 1983, 47: 641-644
    17. Cody M L. Towards a theory of continental species diversity: bird distributions over Mediterranean habitat gradients. In: Cody M L. and Diamond J M. eds. Ecology and Evolution of Communities. Cambridge: Harvard University Press, 214-257
    18. Dolezal J. and Srutek M., Altitudinal changes in composition and structure of mountain-temperate vegetation:a case study from the Western Carpathians.Plant Ecology, 2002, 158:201-221
    19. Dooge J.C.I., Hydrology in perspective, Hydrological Sciences Journal, 1995, 33:61-85.
    20. Gardner W.R., Solutions of the flow equation for the drying of soil and other porous media, Soil Sci. Soc. AmerProc,1957,23: 183-187.
    21. Gaston K.J., Global patterns in biodiversity, Nature.2000, 405:220—226
    22. Glenn-Lewin D.C., Species diversity in the North American temperate forests, Vegetatio, 1977, 33: 153 -162.
    23. Green R.E., Ahuja L.R., Hydraulic conductivity,diffusivity and sorptivity of unsaturated soils:Field methods. In:Klute A. eds. Methods of Soil Analysis Part 1:Physical and Mineralogical Methods Agronomy, Monograph no 9. 2nd eds. Soc Agrom Am. and Soil Sci. Soc. Am. Madison, Wisconsin, I986, 771~789
    24. Hamilton A.C. and Perrott R.A., 1981.A study of altitudinal zonation in the montane forest belt of Mt. Elgon. Kenya/Uganda, Vegetatio, 45: 107-l25
    25. Hill M O., DECORANA--a FORTRAN program for detrended correspondence analysis and reciprocal averaging, Ithaca: Cornell University Press, 1979, 1-49
    26. Hill M O., TWINSPAN –a Fortran program for arranging multivariate data in an Ordered Two-way Table by Classification of the individuals and attributes. Ithaca, New York: Cornell University Press, 1979, 1-52
    27. Hill M.O & Gauch H.G., Detrended correspondence analysis: an improved ordination technique. Vegetation, 1980, 42:47-58。
    28. Horton R E., An approach toward a physical interpretation of infiltration capacity. Soil Sci. Soc. AM. J., 1940,5(3): 399 -417.
    29. Rodriguez-Iturbe. Eco-hydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research, 2000, 36(1): 3-9.
    30. Klute A. Dirksen C., Hydraulic conductivity,diffusivity and sorptivity of unsaturated soils:Field methods. In:Klute A.ed. Methods of Soil Analysis Part 1:Physical and Mineralogical Methods Agronomy, Monograph no 9. 2nd ed. Soc Agrom Am. and Soil Sci. Soc. Am. Madison, Wisconsin, 1986, 687~734
    31. Kostiakov A N., On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purpose of amelioration. Soil SCI., 1932, 97(1): 17-21.
    32. Kratochwil A., Biodiversity in ecosystems:some principles.In:Kratochwil A. (ed.). Biodiversity in Ecosystems.Kluwer Academic Publishers,Dordrecht,1999, 5-38
    33. Kutiel P., Slope aspect effect on soil and vegetation in a Mediterranean ecosystem. Israel Journal of Botany, 1992, 41:243-250
    34. M. Vis. Interception drop size distributions and rainfall kinetic energy in form colombian forest ecosystems. Earth Surface Process and Landforms, 1986, 11:594-603
    35. Mackinnon J., Sha M., et al, A Biodiversity Review of China,WWF International,Hong Kong, 1996
    36. Magurran A E., Ecological Diversity and Its Measurement New Jersy, Princeton University Press. 1988
    37. McCoy E.D., The distribution of insects along elevational gradients.Oikos, 1990, 58:3l3-322.
    38. Mualem Y., A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Research, 1976, 12:593—622
    39. Margalef R. Information theory in ecology, Gen. Syst., 1957, 3:37-71
    40. N.W.哈德逊著, 窦葆璋译, 土壤保持, 北京: 科学出版社, 1976
    41. Odland A. and Birks H.J.B., The altitudinal gradient of vascular plant richness in Aurland, western Norway.Ecography, 22:548-566
    42. Olvera-Vargas, M. & Figuero-Rangel B.L., Zonation and management of mountain forests in the Sierra de Manantlán, México. Proceedings IAVES Symposium, 2000, 207-209
    43. Palmer M. W., Putting things in even better order: the advantages of canonical correspondence analysis. Ecology, 1993, 74: 2215-2230
    44. Pausas J. and Austin M.P., Patterns of plant species richness in relation to different environments:an appraisa1.Journal of Vegetation Science.2001, 12:l53—166
    45. Philip J R., The theory of infiltration about sorptivity and algebeaic infiltration equations. Soil Sei, 1957,84(4),257-264.
    46. Pielou E.C., Ecological diversity. John Wiley & Sons.1975
    47. Rahbek C., The relationship among area, elevation, and regional species richness in neotropical birds. American Naturalist, 1997,149: 875-902.
    48. Richards P.W., The tropical rain forest-an ecology study. Second edition, Cambridge University Press. 1996
    49. Russell-Smith J., Classification, species richness, and environment relations of monsoon rain forest in northern Australia. J. Veg. Sic. 1990, 2: 259-278
    50. Saaty T.L., The analytical hierarchy process: planning, priority setting, resource allocation. New York: McGraw-hill Company, 1980.
    51. Schaap M.G. and Leij F. J. Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten equation. Soil Sci. Soc Am. J., 2000, 64:843—851
    52. Sklenar P. and Ramsay M., Diversity of zonal páramo plant communities in Ecuador.Diversity and Distributions, 2001, 7:113-124
    53. Smith R.E., The infiltration envelope results from a theoretical infiltrometer, Journal of Hydrology, 1972, 17(1):1-21
    54. Southwood T R. 罗清河等译,生态学研究方法:适用于昆虫种群的研究。北京:科学出版社,1978
    55. van Genuchten M.Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 1980, 44:892--898
    56. Van Genuchten, M. Th., Leij, F. J. and Yates, S. R. The RETC code for quantifying the hydraulic functions of unsaturated soils. California: U. S. Salinity Laboratory, 1999. 4-41
    57. Velázquez, A. Multivariate analysis of the vegetation of the volcanoes Tláloc and Pelado, Mexico. J. Veg. Sic., 1994, 5: 263-270
    58. Viville D., et al, Interception on a mountainous declining spruce stand in the Strengbach catchment (Voges, France). J. Hydrol., 1993, 144:273~282
    59. Whitehead P. G. and Calder M., Foreward, J. Hydrol., 1993, 145: 215~216
    60. WHITTAKER R H. 植物群落排序.王伯荪等译.北京:科学出版社,1986.
    61. Whittaker R. H., Vegetation of the Great Smoky Mountains.Ecological Monographs.1956, 26:1-80.
    62. Whittaker R. J., Whillis K.J. and Field. K., Scale and species richness: towards a general hierarchical theory of species diversity . Journal of Biogeography. 2001, 28:453-470.
    63. Whittaker R.H., Communities and Ecosystems . Macmillan Publisher, New Yoyk., 1975.
    64. Whittaker R.H., Gradient analysis of vegetation.Biological Reviews,1967, 42:207-264
    65. Whittaker RH. Evolution and measurement of species diversity. Taxon,1972, (21):213~251
    66. Zalewski M., Janauer G A. et al. Eco-hydrology: A new paradigm for the sustainable use of aquatic resources. Paris. UNESCO, 1997. 1-56
    67. 蔡强国等, 植被覆盖对降雨溅蚀的影响, 黄河粗泥沙来源及侵蚀产沙机理研究文集, 北京:气象出版社, 1989: 41-47
    68. 陈炳浩,长江洪涝灾害的原因与森林水文生态效应机制,林业经济,1998,5:12-17
    69. 陈浩, 蔡强国, 坡度对坡面径流入渗量影响的试验研究. 晋西黄土高原土壤侵蚀规律实验研究. 北京:水利电力出版社, 1990. 17-25.
    70. 陈建刚, 李启军等, 不同植被覆盖条件下土壤入渗及模型的比较分析, 中国水土保持科学, 2004, 2(3): 22-26
    71. 陈灵芝, 中国的生物多样性-现状及其保护对策, 1997, 北京: 科学出版社
    72. 陈文年, 吴宁, 罗鹏, 岷江上游地区的草地资源与畜牧业发展, 四川草原, 2002, (1): 1-5
    73. 陈廷贵,张金屯,山西关帝山神尾沟植物群落物种多样性与环境关系的研究I.丰富度、均匀度和物种多样性指数,应用与环境生物学报,2000,6(5):406-411
    74. 党宏忠,祁连山水源涵养林水文特征研究,2004,博士论文
    75. 高甲荣,尹婧,长江上游亚高山暗针叶林林地水文作用初探,北京林业大学学报,2002,24(4):75-79
    76. 高贤明, 陈灵芝, 北京山区辽东栎(Quercusliaotungensis)群落物种多样性的研究. 植物生态学报, 1998, 22(1): 23~32
    77. 高贤明, 马克平, 陈灵芝. 暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系.植物生态学报, 2001, 25(3): 283~290
    78. 高贤明,马克平等, 北京东灵山地区植物群落多样性的研究山地草甸β多样性.生态学报, 1998, 18(1): 24-32
    79. 韩念勇,中国自然保护区可持续管理政策研究,自然资源学报,2000,15(3):201-207
    80. 韩仕峰等. 几种多年生豆科牧草的水土保持效应.草业科学, 1993, (2): 6-9
    81. 郝占庆, 王力华, 辽东山区主要森林类型林地土壤涵蓄水性能的研究, 应用生态学报, 1998, 9(3): 237~241
    82. 郝占庆,于德永. 长白山北坡植物群落α多样性及其随海拔梯度的变化. 应用生态学报, 2002, 13(7)∶785~789
    83. 何东宁,张洪勋,海乐都地区森林涵养水源效能研究,植物生态学与地植物学学报,1991,15(1):71-78
    84. 贺金生, 陈伟烈, 长江三峡地区退化生态系统植物群落物种多样性特征, 生态学报, 1998, 18(4): 399-407
    85. 侯喜禄,杜成祥,不同植被类型小区的径流泥沙观测分析,水土保持通报,1985, 6
    86. 华孟, 王坚, 土壤物理学. 北京:北京农业大学出版社, 1993
    87. 黄昌勇, 土壤学, 北京中国农业出版社, 2000. 98-118
    88. 黄礼隆,陈祖铭,森林水文研究方法,四川林业科技,1994,15(1):14-33
    89. 黄顺红, 朱创业, 卧龙自然保护区旅游开发对生态环境的影响及其保护, 西南民族大学学报·人文社科版, 2004, 25(4): 140-142
    90. 黄弈龙, 傅伯杰等, 生态水文过程研究进展, 生态学报, 2003, 23(3): 580-587
    91. 姜恕等, 草地生态研究方法, 北京: 农业出版社, 1986
    92. 蒋定生, 黄国俊, 谢永生, 黄土高原土壤入渗能力野外测试. 水土保持通报, 1984, 4(4): 7-9.
    93. 蒋定生, 黄国俊. 黄土高原土壤入渗速率的研究. 土壤学报, 1986, 23(4): 299-304.
    94. 蒋定生,黄土高原水土流失与治理模式.北京:中国水利水电出版社,1997,293-294
    95. 焦菊英,王万忠. 人工草地在黄土高原水土保持中的减水减沙效益与有效盖度. 草地学报, 2001, 9(3): 176-182
    96. 金则新,浙江天台山种子植物区系分析,广西植物,1994, 14(3): 211-215
    97. 来剑斌,王全九,土壤水分特征曲线模型比较分析,水土保持学报,2003,17(1):137-140
    98. 雷瑞德, 华山松林冠层对降雨动能的影响, 水土保持学报, 1988, (2) :31-38
    99. 雷志栋, 杨诗秀, 谢森传. 土壤水动力学. 北京: 清华大学出版社, 1988, 18-24
    100. 李祟巍,岷江上游生态系统空间格局与生态水文功能模拟,博士论文,2005,北京师范大学
    101. 李春友, 任理,李保国. 利用优化方法求算van Genuchten 方程参数, 水科学进展, 2001, 12(4): 473--478
    102. 李德荣, 王静, 董闻达. 百喜草在我国南方红壤坡地农业可持续发展中的应用与地位. 江西农业大学学报, 2003, 25(6): 949
    103. 刘海江,郭柯,浑善达克沙地丘间低地植物群落的分类与排序,生态学报,2003,23(10):2163-2169
    104. 刘伦辉,刘文耀,郑征, 滇中山地主要植物群落水土保持效益比较, 水土保持学报,1990,4(1):36-42
    105. 刘明冲, 卧龙自然保护区珍稀植物资源的保护, 四川林勘设计, 2003, 4: 46-48
    106. 刘明国,何富广,辽西地区草本植物改土防蚀效益研究,土壤通报,1998,29(5): 198-200
    107. 刘世荣, 中国森林生态系统水文生态功能规律, 北京:中国林业出版社, 1996, 107-203.
    108. 刘世荣,中国暖温带森林生物多样性研究,北京:中国科学技术出版社,1998
    109. 刘元保,坡耕地不用地面覆盖的水土流失试验研究,水土地保持学报,1990,4(1):25-29
    110. 娄安如,天山中段山地植被的生态梯度分析及环境解释,植物生态学报,1998,22(4):364~372
    111. 卢升銮, 钟家有, 香根草在红壤丘陵上的应用. 江西农业学报, 1997, 9(4): 50~55
    112. 马克平, 黄建辉等, 北京东灵山地区植物群落多样性的研究: 丰富度、均匀度和物种多样性指数. 生态学报, 1995, 15(3): 268-277
    113. 马克平等. 北京东灵山地区植物群落多样性研究:丰富度、均匀度和物种多样性指数. 生态学报,1995,15(3):268-277
    114. 马雪华,森林水文学,北京:中国林业出版社,1993
    115. 孟林, 层次分析法在草地资源评价中应用的研究, 草业科学, 1998,15(6): 1-4
    116. 庞鸿宾, 卧龙自然保护区森林土壤物理性质及其水源涵养功能的研究, 1983, 1-45,
    117. 邱波, 任青吉等, 高寒草甸不同生境类型植物群落的α及β多样性研究. 西北植物学报, 2004, 24(4): 655-661.
    118. 邱扬,张金屯. DCCA 排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用. 生态学报,2000,20(2):199~206
    119. 任继周, 草业科学研究方法. 北京:农业出版社, 1998, 1-35
    120. 邵明安, 黄明斌, 土-根系统水动力学, 西安:陕西科学技术出版社, 2000, 17-106
    121. 邵明安,王全九,推求土壤水分运动参数的简单入渗法Ⅰ理论分析,土壤学报,2000,37(1):1-8
    122. 沈泽昊, 张新时, 地形对亚热带山地景观尺度植被格局影响的分析, 植物生态学报, 2000, 24 (4): .430-435
    123. 石承苍, 罗秀陵, 成都平原及岷江上游地区生态环境的变化, 西南农业学报1999, 12: 75-80
    124. 石培礼, 李文华等, 四川卧龙亚高山林线生态交错带群落的种多度关系, 生态学报, 2000, 20(3): 384-389
    125. 史作民, 刘世荣, 程瑞梅, 宝天曼地区栓皮栎林恢复过程中高等植物物种多样性变化.植物生态学报, 1998. 22(5): 415-421.
    126. 史作民,刘世荣,河南宝天曼植物群落数量分类与排序,林业科学,2000,36(6): 20-27
    127. 史作民,刘世荣,河南宝天曼种子植物区系特征,西北植物学报,1996, 16(3): 323-335
    128. 孙雪新,李毅,康向阳,酒泉胡杨林的数量分类和排序,干旱区资源与环境, 1994, 8(4): 61-67
    129. 唐志尧,方精云,张玲,秦岭太白山木本植物物种多样性的梯度格局及环境解释,生物多样性2004,2(1):115-122
    130. 田积莹,黄土地区土壤的物理性质与黄土成因的关系,中国科学院西北水保所集刊,1987,(5):1-12.
    131. 王长庭,王启基等,高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究,植物生态学报, 2004,28(2):240-245
    132. 王根绪,钱鞠,程国栋,生态水文科学研究的现状与展望,地球科学进展,2001,16(3): 314-323.
    133. 王国宏,祁连山北坡中段植物群落多样性的垂直分布格局,生物多样性,2002,10(1):7~14
    134. 王晗生,刘国彬,试论防蚀有效植被的基本特征-帖地面覆盖,中国水土保持,2000,(3):28-31
    135. 王全九,来剑斌,李毅,Green-Ampt 模型与Philip 入渗模型的对比分析,农业工程学报,2002,(2):13-16
    136. 王峥峰,安树青,海南岛吊罗山山地雨林物种多样性, 生态学报,1999,19(1):61-67
    137. 魏玉君等,药用植物冬凌草保持水土效益的研究,水土保持学报, 2000,(l):24
    138. 温远光,大明山不同环境梯度植被的物种多样性研究,广西农业大学学报,1998,17(2): 131-137
    139. 温远光,刘世荣,我国主要森林生态系统类型降水截留规律的数量分析,林业科学,1995, 31(4):289-298
    140. 卧龙自然保护区管理局,卧龙植被及资源植物,四川科学出版社,1987,8~10.
    141. 吴晓莆,朱彪,东北地区阔叶红松林的群落结构及其物种多样性比较,生物多样性, 2004,12(1):174-181
    142. 吴征镒, 中国种子植物属的分布区类型,云南植物研究,1991,增刊IV.
    143. 吴征镒,中国植被,北京:科学出版社,1980
    144. 武强,董东林,试论生态水文学主要问题及研究方法,水文地质工程地质,2001,(2):69-72.
    145. 武素功,杨永平等,青藏高原高寒地区种子植物区系的研究,云南植物研究,1995,17(3): 233-250
    146. 熊贵枢、张胜利, 大理河减水减涉敛益初步分析, 人民黄河,1983,1
    147. 徐绍辉,张佳宝,刘建立等,表征土壤水分持留曲线的儿种模型的适应性研究,土壤学报,2002,39(4):498—504
    148. 徐绍辉,张佳宝.求土壤水力特征的-种迭代方法.土壤学报2000, 37(3):271--274
    149. 徐绍辉,张佳宝等,表征土壤水分持留曲线的几种模型的适应性研究,土壤学报, 2002, 39(4): 498-504
    150. 杨海龙, 三峡库区小流域森林植被理水调洪规律的研究, 2004, 博士论文, 北京林业大学
    151. 杨吉华,张光灿,刘霞,紫花苜蓿保持水土效益的研究,土壤侵蚀与水土保持学报,1997,3(2):91-96
    152. 应俊生等,那西神农架地区的植物和植物区系,武汉:湖北人民出版社,1979
    153. 余新晓, 陈丽华, 黄土地区防护林生态系统水量平衡研究, 生态学报,1996, 16(3):238-245
    154. 袁建平,蒋定生,不同治理度下小流域正态整体模型试验-林草措施对小流域径流泥沙的影响,自然资源学报,2000,15(1):91-96
    155. 岳明, 张林静, 佛坪自然保护区植物群落物种多样性与海拔梯度的关系, 地理科学, 2002, 22(3): 249-254
    156. 岳明,任毅,佛坪国家级自然保护区植物群落物种多样性特征,生物多样性,1999,7(4): 263-269
    157. 臧润国, 刘世荣, 蒋有绪. 森林生物多样性保护原理概述,林业科学, 1999, 35(4):71-79.
    158. 张峰,张全屯.植被数量分类和排序的发展.山西太学学报(自然科学版).2000,23(3):278-282.
    159. 张光辉, 梁-民,论有效植被盖度,中国水土保持,1996,(5):28
    160. 张光辉, 梁一民, 黄土丘陵区沙打旺草地截留试验研究, 水土保持通报,1995,15(3): 27-31
    161. 张光辉, 梁一民, 模拟降雨条件下人工草地产流产沙过程研究, 土壤侵蚀与水土保持学报, 1996, 2(3): 56-59
    162. 张光辉, 梁一民, 植被盖度对水土保持功效影响的研究综述, 水土保持研究, 1996, 3(2): 104-110
    163. 张建平, 叶延琼, 樊宏, 岷江上游草地资源及合理利用, 山地学报, 2002, 20(3): 343~348
    164. 张金屯, 典范指示种分析—一个新的外在分类方法, 植物生态学报, 1994, 18(4): 379-384
    165. 张金屯, 植被数量生态学方法.北京:中国科学技术出版社,1995.
    166. 张金屯,数量生态学,北京:科学出版社,2004
    167. 张金香, 钱今娥, 太行山草被水土保持功能的研究, 河北林学院学报,1996, 11(2):120-124
    168. 赵淑清, 方精云等, 长白山北坡植物群落组成结构及物种多样性的垂直分布,生物多样性,2004,12(1):164-173
    169. 赵文智, 程国栋, 生态水文学-揭示生态格局和生态过程水文学机制的科学, 冰川冻土, 2001, 23(4):450-457
    170. 赵西宁, 吴发启, 土壤水分入渗的研究进展和评述, 西北林学院学报,2004, 19(1):42~45
    171. 周寿荣,草地生态学,北京:中国农业出版社,1996,114-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700