转lgtC基因甜菜糖分分析和转乳糖合成酶基因甜菜的获得
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Globotriose是一种具有重要价值的寡糖。在大肠杆菌中,在外源添加乳糖情况下,它的合成需要3个关键酶基因:(1)susA,编码Sucrose synthase(EC2.4.1.13);(2)galE,编码UDP-galactose 4-epimerase(EC 5.1.3.2);(3)lgtC,编码α-1,4-galactosyltransferase(EC 2.4.1.x)。在植物中,Globotriose因缺少lgtC酶和乳糖而不能被合成。
     lgtC基因,来自奈瑟氏脑膜炎球菌(Neisseria meningitidis),该酶催化从UDP-Gal上转移一个半乳糖残基到乳糖末端上。本工作以转lgtC基因的甜菜植株为材料,研究甜菜细胞糖组分的变化,探求lgtC基因对转基因植株代谢和生长发育的影响。
     为了准确测定转基因甜菜的可溶性总糖组成和含量,本工作利用薄层层析方法分离和鉴定转基因植株的各种糖分,同时采用高效液相色谱分离和示差折光检测器测定技术定量叶片提取液中的蔗糖、葡萄糖和果糖含量,采用反向高效液相色谱分离和光电二极管阵列检测器测定UDP-半乳糖的含量。
     人的乳糖合成酶由二亚基组成,其调节亚基为乳清蛋白(α-lactalbumin),由LALBA基因编码;催化亚基为β-1,4-galactosyltransferase(EC 2.4.1.22),由Gal-T1基因编码,催化从UDP-Gal上转移一个半乳糖残基到葡萄糖末端上合成乳糖。本工作拟以转lgtC基因的甜菜丛生芽为受体将LALBA、Gal-T1基因转入甜菜,探讨利用转基因甜菜合成乳糖、Globotriose的可行性。
     转lgtC基因甜菜糖分的分析
     首先用RT-PCR方法筛选出lgtC基因高效表达的甜菜转基因株系,然后对这些株系进行可溶性总糖、单糖和二糖以及核苷糖测定分析,结果显示转正义基因的株系无论叶中还是块根中的可溶性总糖含量均较野生型株系显著提高,相应的葡萄糖、果糖和蔗糖含量与野生型株系相比也均有不同程度的提高;转基因株系UDP-半乳糖含量与对照相比显著降低(P≤0.05);而转反义基因株系的可溶性总糖、UDP-糖以及其它糖分含量均与野生型植株无明显差异。
     转基因植株生长发育观察和光合作用测定表明,向甜菜中转入来源于原核生物的lgtC基因未影响植株的生长发育和光合作用。
     转乳糖合成酶基因甜菜的获得
     从人的cDNA文库(Marathon-Ready cDNA)中克隆得到乳糖合成酶基因(LALBA基因、Gal-T1基因),构建双基因串联的植物表达载体并转化已有的转lgtC基因甜菜丛生芽,获得聚合三个基因的甜菜植株。
     建立起四个转lgtC正义基因株系的离体丛生芽体系,经过继代培养发现,4个株系L1、L2、L3、L4与WT都有丛生芽发生,诱导时间相差不大,其中株系L2不定芽的发生时间较早。培养6周后,不同株系的诱导率均大于86%。随着丛生芽块继代培养时间的延长,不同株系间出现差异。有的株系的单芽在继代培养过程中增殖迅速,发生次生芽较多,而有些株系的单芽生长虽快但较少发生次生芽。
     选取lgtC基因表达活性较高且次生芽增殖迅速的株系L2、L4的丛生芽,通过农杆菌介导法将乳糖合成酶基因引入甜菜,经PCR检测获得了聚合三个基因(LALBA、Gal-T1、lgtC)的甜菜植株。
     本论文以lgtC基因和从人cDNA文库中分离的乳糖合成酶基因为目标基因,利用甜菜细胞为受体,获得了转入单个或数个目标基因的植株,同时研究了转基因植株中糖代谢途径的改变对糖分积累、生长发育的影响,为探测甜菜细胞糖代谢途径调控机制的研究提供了适宜的材料,同时为利用甜菜作为生物反应器生产高附加值寡糖、特别是Globotriose等奠定了基础。
Globotriose is a kind of oligosaccharides of great value.In E.coli,the synthesis of Globotriose from added lactose needs three key enzyme gene:(1) susA,encoding sucrose synthase(EC2.4.1.13);(2) galE,encoding UDP-galactose 4-epimerase(EC 5.1.3.2);(3) lgtC,encodingα-1,4-galactosyltransferase(EC 2.4.1.x).Globotriose can not be synthesized in plants,for the lack of both lgtC enzyme and the substrate of lactose.
     lgtC gene,which comes from Neisseria meningococcus(Neisseria meningitidis), catalyzes the transfer of a galactose residue from UDP-Gal to the end of lactose.In this study,the variation of carbohydrate composition was analyzed in transgenic line containing lgtC,to explore the mechanism of expression of lgtC on metabolism, growth,and development of transgenic plants.
     In order to determine the constituent and content of soluble carbohydrates in the leaves of transgenic sugar beet accurately,various carbohydrates in transgenic plants were separated and identified by Thin Layer Chromotography(TLC).Meanwhile,the content of sucrose,glucose and fructose were measured with HPLC-RID,and the content of UDP-Gal was measured with RP-HPLC combining with PDAD.
     Lactose synthase has two subunits:whey protein(α-lactalbumin),the regulatory subunit,encoded by gene LALBA;andβ-1,4-galactosyltransferase(EC 2.4.1.22),the catalytic subunit,encoded by Gal-T1 gene,which catalyzes the transfer of a galactose residue from UDP-Gal to the end of glucose for the synthesis of lactose.The objective of my work is to transfer both LALBA and Gal-T1 gene into multiple bud of beet containing lgtC to obtain transgenic lines with all these transgenes mentioned above, to explore the feasibility of using transgenic sugar beet to synthesize lactose and Globotriose.
     Analysis of carbohydrate composition of lgtC transgenic beet plants
     In this study,transgenic lines that overexpressed target gene,confirmed by RT-PCR, were chosen for determination of carbohydrate content,including total soluble carbohydrates,monosaccharides,disaccharides and nucleotide sugars.The results suggested that the contents of total soluble carbohydrates in sense transgenic lines were significantly higher than that of WT,either in leaves or roots.Accordingly,the levels of glucose,fructose and sucrose in these sense transgenic lines were all increased in considerable degrees.The content of UDP-Gal in the sense transgenic lines were all significantly(P≤0.05) lower than that of WT.However,the content of total soluble carbohydrates,as well as glucose,fructose and sucrose in the antisense line were not significantly different compared with WT.
     Moreover,transgenic lines showed normal growth and photosynthesis compared with WT,suggesting that transferring lgtC gene from prokaryotes into sugar beet did not affect the growth and photosynthesis.
     Obtaining beet containing lactose synthase gene
     Lactose synthase genes(both LALBA and Gal-T1) were cloned from human cDNA library(Marathon-Ready cDNA),and recombined to a plant expression vector and transferred into sugar beet containing lgtC,and transgenic lines containing LALBA,Gal-T1 and lgtC were obtained.
     Firstly multiple bud induction and subculture system of four lgtC transgenic lines and WT were established.Of the four lines,Line 2 and 4 had higher lgtC enzyme activity and more vigorous proliferation of secondary buds.LALBA and Gal-T1were transferred to buds of Line 2 and 4 by Agrobacterium-mediated transformation.PCR results suggested that plants pyramiding LALBA,Gal-T1,and lgtC were obtained。The transgenes expression and the soluble carbohydrate composition in the transgenic plants were to be determined.
     In this study,transgenic lines containing lgtC gene and and transgenic plants pyramiding lgtC and lactose synthase gene from cDNA library were produced and the change of soluble carbohydrate composition in transgenic plants and the impact of genetic modification of carbohydrate metabolic pathways on carbohydrate accumulation and growth,development of transgenic plants were also studied.The preliminary research provided some productive and useful lines for further study on the controlling mechanism of carbohydrate metabolism in sugar beet cells,and shed light on the insight into the use of engineered sugar beet as a bioreactor for production of oligosaccharides of high value,such as Globotriose.
引文
1.凌华,黄惠琴,鲍时翔(2002)植物生物反应器研究进展。中国生物工程杂志,22(5):21-26.
    2.刘常金,吴定(2000)植物基因工程生产药用蛋白。安徽农业技术示范学院学报,14(1):51-53.
    3.Korban S S,Krasnyanski S F,Buetow D E(2002) Foods as p roduction and delivery vehicles for human vaccines.J Am Coll Nutr,21:212-217.
    4.Mason H S,Warzencha H,Mor T,et al.(2002) Edible plant vaccines:app lications for prophylactic and therapeutic molecular medicine.Trends in Molecular Medicine,8:324-329.
    5.Stoger E,Vaquero C,Fischer R,et al.(2000) Cereal crop s as viable production and storage system for pharmaceutical scFv antibodies.Plant Molecular Biology,42(4):583-590.
    6.Arakawa T,Langridge W H R(1998) Plants are not just passive creatures.Nature Med,4:550.
    7.CommandeurU,Twyman R M,Fisher R,et al.(2003) The biosafety of molecular farming in plant.AgBiotech Net,5:110-111.
    8.Daniell H,Streatfield S J,Wycoff K(2001) Medical molecular farming:production of antibodies,biopharmaceuticals and edible vaccines in plants.Trends Plant Sci,6:219-226.
    9.Van der Meer I M,Ebskamp M J M,Visser R G F,et al.(1996) Fructan as a new carbohydrate sink in transgtnic potato plant.The Plant Cell,6:561-570.
    10.TaWTaberry E S,Dudani A K,Prior F,et al.(1999) Development of bio-pharmaceuticals in plant expression systems:Cloning,expression and immunological reactivity of human cytomegalo virus glycoprotein B in seeds of transgenic tobacco.Vaccine,17:3020-3029.
    11.谢铭(2002)转基因植物作为生物反应器的新进展。广西农业科学,2:95-97.
    12.张玉华,凌沛学,籍保平(2005)海藻糖的研究现状及其应用前景。食品与药品,7(3_A):8-13.
    13.张树珍,杨本鹏,李杨瑞(2003)甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株。中国农业科学,36(2):104-106.
    14.Jang I,Oh S,Seok J,Choi W,Song S,Kim C,Kim Y,Seo H,Choi Y,Nahm B,Kim J(2003) Expression of bifunctional fusion of Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth.Plant Physiol,131:516-524.
    15.何聪芬,冯婷,赵华,董银卯(2003)代谢转基因植物的研究现状与展望。中国生物工程杂志,23(11):19-23.
    16.Hag T A,Mason H S(1995) Oral immunsation with are combinati on bacterial antigen produced in transgenic plants.Science,268:714-716.
    17.Alexandra Castilho,Martin Pabst,Renaud Leonard,et al.(2008)Construction of a Functional CMP-Sialic Acid Biosynthesis Pathway in Arabidopsis.Plant Physiology,147:331-339.
    18.Chen M,Liu XW,Wang ZK,Song J,Qi QS,Wang PG(2004) Modification of plant N-glycans processing:the future of producing therapeutic proteins by transgenic plants.Medicinal Research Reviews,25:343-360.
    19.邵宏波(2002)转基因植物药物的开发研究评述。广西科学,9(1):60-63.
    20.Hiatt A.C.,Cafferkey R(1989) Production of antibodies in transgenic plants.Nature,342:76-78.
    21.Hull A K,Criscuolo C J,Mett V,et al.(2005) Human-derived,plant-produced monoclonal antibody for the treatment of anthrax.Vaccine,23(1718):2082-2086.
    22. Xu B, Copolla M, Herr J C, et al. (2007) Expression of a recombinant human sperm- agglutinating mini-antibody in tobacco (N icotiana tabacum L). Soc Reprod Fertil Suppl, 63:465477.
    
    23. Shchelkunov S N, Salyaev R K, Pozdnyakov S G, et al. (2006) Immunogenicity of a novel, bivalent, plant-based oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol Lett, 28 (13): 959-967.
    
    24. Li D, Leary J, Huang Y, et al. (2006) Expression of cholera toxin B subunit and the B chain of human insulin as a fusion protein in transgenic tobacco plants. Plant Cell Rep, 2006, 25 (5): 417-424.
    
    25. Fitchen J, Beachy R N, Hein M B, et al. (1995) Plants virus expressing hybrid coat protein with added murine epitope elicits autoantibody response. Vaccine, 13(12): 1051-1057.
    
    26. Cramer C L, Weissenborn D L, Oishi K K, Grabau E A, Bennett S, Ponce E, Grabowski G A, Radin D N. (1996) Bioproduction of human enzymes in transgenic tobacco. Ann. N Y Acad. Sci, 792: 62-71.
    
    27. Ruggiero F, Exposito J Y, Bournat P, et al. (2000) Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett, 469(1): 132-136.
    
    28. Mori M, Zhang G H, Kaido M, et al. (1993) Efficient production of human gamma interferon in tobacco protoplasts by genetically engineered brome mosaic virus RNAs. Journal of General Virology, 74: 1255.
    
    29. Verwoerd T C, Paridon P A, Ooyen A J J, et al. (1995) Stable accumulation of aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol, 109: 1199-1205.
    
    30. Salmanian A H, Gushchin A, Medvedeva T (1996) Synthesis and expression of the gene for human epidermal growth factor in transgenic potato plants. Biotechnology Letters, 18(9): 1095.
    31.Matsumoto S,Ikura K,Ueda M(1995) Characterization of a human glycoprotein(erythropoietin,EPO) produced in cultured tobacco cells.Plant Molecular Biology,27:1163.
    32.Hood E,Witcher D,MaddoWT S,et al.(1997) Commercial production of Avidin from transgenic maize:characterization of transformant,production,processing,extraction,and purification.Mol Breed,3:291-306.
    33.Witcher D R,Hood E E,Peterson D,et al.(1998) Commercial production of alpha-glucuronidase(GUS):a model system for the production of proteins in plants.Mol Breed,4:301-312.
    34.AltenbaWT A T,Chong D K(1998) A plant-baced cholera toxin B sub unit insulin fusion protein protects against the development of autoimmune diabetes.Nature Biotechnology,16:934-938.
    35.Kjemtrup S,Borkhsenious O,Raikhel N V,et al.(1995) Targeting and release of phytohemagglutinin from the roots of bean seedlings.Plant Physiology,109(2):603-610.
    36.Falco M,Biassoni R,Bottino C,et al.(1999) Identification and molecular cloning of p75/AIRM1,a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells.The journal of Experimental Medicine,190(6):793-802.
    37.Arntzen CJ,Mason H S,Lam D M(1992) Expression of hepatitis B surface antigen in transgenic plants.Proc Natl Acad Sci USA,89(24):11745-11749.
    38.Kinney A Y,DeVellis B M,Skrzynia C,et al.(1994) Genetic testing for colorectal carcinoma susceptibility:focus group responses of individuals with colorectal carcinoma and first-degree relatives.Curropin Biotechnology,5:144-146.
    39.田歆珍,王贤磊,孙桂琳,李冠(2008)γ-亚麻酸的研究进展。生物技术,18(1):89-92.
    40.李枞,宋艳茹(1998)新的生物反应器--转基因植物。高技术通讯,5:52-57.
    41.Jianbo Zhang,Przemyslaw Kowal,Jianwen Fang,Peter Andreana,Peng George Wang(2002) Efficient chemoenzymatic synthesis of Globotriose and its derivatives with a recombinant α-(1-4)-galactosyltransferase.Carbohydrate Research,337:969-976.
    42.Koizumi S,Endo T,Tabata K,Ozaki A(1998) Large-scale production of UDP-galactose and Globotriose by coupling metabolically engineered bacteria.Nature biotechnology,16(9):847-50.
    43.Karl F Johnson(1999) Synthesis of oligosaccharides by bacterial enzymes.Glycoconjugate Journal,16:141-146.
    44.Jianwen Fang,Jun Li,Xi Chen,Yingnan Zhang,Jianqiang Wang,Zhengmao Guo,Wei Zhang,Libing Yu,Keith Brew,and Peng George Wang (1998) A highly efficient chemo-enzymatic synthesis of a-galactosyl epitopes with a recombinant α 1,3-galactosyltransferase.Journal of American Chemistry Society,120:6635-6638.
    45.Xi Chen,Jianbo Zhang,Przemek Kowal,Ziye Liu,Peter R.Andreana,Yuquan Lu,and Peng George Wang(2001) Transferring a biosynthetic cycle into a productive E.coli strain:large-scale synthesis of galactosides.Journal of American Chemistry Society,123:8866-8867.
    46.Zhang J,Kowal P,Chen X,Wang PG(2003) Large-scale synthesis of Globotriose derivatives through recombinant E.coli.Organic & Biomolecule Chemistry,1(17):3048-3053.
    47.Haataja S,Zhang Z,Tikkanen K,Magnusson G,Finne J(1999)Determination of the cell adhesion specificity of Streptococcus suis with the complete set of monodeoxy analogues of Globotriose.Glycoconjugate Journal,16(1):67-71.
    48. Leach JL, Garber SA, Marcon AA, Prieto PA (2005) In vitro and in vivo effects of soluble, monovalent Globotriose on bacterial attachment and colonization. Antimicrobial Agents Chemotherapy, 49(9): 3842-3846.
    
    49. Watanabe M, Matsuoka K, Kita E, Igai K, Higashi N, Miyagawa A, Watanabe T, Yanoshita R, Samejima Y, Terunuma D, Natori Y, Nishikawa K (2004) Oral therapeutic agents with highly clustered Globotriose for treatment of Shiga toxigenic Escherichia coli infections. The Journal of Infectious Disease, 189(3): 360-368.
    
    50. Watanabe M, Igai K, Matsuoka K, Miyagawa A, watanabe T, Yanoshita R, Ssmejima Y, Terunuma D, Natori Y, Nishikawa K (2006) Structural analysis of the interaction between Shiga toxin B subunits and linear polymers bearing clustered Globotriose residues. Infection and Immunity, 74 (3):1984-1988.
    
    51. Pedro M Coutinho, Emeline Deleury, Gideon J Davies and Bernard Henrissat (2003) An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology, 328: 307-317.
    
    52. Yang QL, Gotschlich EC (1996) Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases. The Journal of Experimental Medicine, 183 (1): 323-327.
    
    53. Jennings MP, Srikhanta YN, Moxon ER, Kramer M, Poolman JT, Kuipers B, van der Ley P (1999) The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitides. Microbiology, 145 (11): 3013-3021.
    
    54. Shafer WM, Datta A, Kolli VS, Rahman MM, Balthazar JT, Martin LE, Veal WL, Stephens DS, Carlson R (2002) Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. Journal of Endotoxin Research, 8(1): 47-58.
    55. Lairson LL, Chiu CP, Ly HD, He S, Wakarchuk WW, Strynadka NC, Withers SG (2004) Intermediate trapping on a mutant retaining a-galactosyltransferase identifies an unexpected aspartate residue. Journal of Molecular Biology, 279: 28339-28344.
    
    56. Wakarchuk WW, Cunningham A, Watson DC, Young NM (1998) Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Engineering, 11 (4): 295-302.
    
    57. Persson K, Ly HD, DieWTelmann M, Wakarchuk WW, Withers SG, Strynadka NCJ (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nature Structural Biology, 8 (2): 166-175.
    
    58. Jing liu and Arcady Mushegian (2003) Three monophyletic superfamilies account for themajority of the known glycosyltransferases. Protein Science, 12: 1418-1431.
    
    59. Lenka Snajdrova, Petr Kulhanek, Anne Imberty and Jaroslav Koca (2004) Molecular dynamics simulations of glycosyltransferase LgtC. Carbohydrate Research, 339: 995-1006.
    
    60. Igor Tvaroska (2004) Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. Carbohydrate Research, 339: 1007-1014.
    
    61. Jianbo Zhang, Przemyslaw Kowal, Jianwen Fang, Peter Andreana, Peng George Wang (2002) Efficient chemoenzymatic synthesis of Globotriose and its derivatives with a recombinant a-(l,4)-galactosyltransferase. Carbohydrate Research, 337: 969-976.
    
    62. Tatiana Antoine, Claude Bosso, Alain Heyraud, Eric Samain (2005) Large scale in vivo synthesis of Globotriose and globotetraose by high cell density culture of metabolically engineered Escherichia coli.Biochimie,87(2):197-203.
    63.张艳芳(2006)susA、galE和lgtC基因转入烟草及转基因植株糖分分析。山东大学硕士论文。
    64.Svensson M,Sabharwal H,Svanborg C,et al.(1999) Molecular characterization of alpha-lactalbumin folding variants that induce apoptosis in tumor cells.J Biol Chem,274(10):6388-6396.
    65.Hakansson A,Svensson M,Mossberg A K,et al.(2000) A foldingvariant of alpha-lactalbumin with bactericidal activity against Streptococcus pneumoniae.Mol Microbiol,35(3):589-600.
    66.Yu SY,Cao G,Fan BL,et al.(2004) The cloning of human-lactalbumin gene and high-level expression in milk of transgenic mice.Pros Biochem Biophys,31(3):244-247.
    67.Fujiwara Y,Takahashi RI,Hirabayashi M,et al.(2003) Analysis of the flanking regions of the human alpha-lactalbumin gene responsible for the human alpha-lactalbumin gene responsible for position effect independent expression.Gene,305(1):71-78.
    68.Suk-Hwan Yang(2002) Expression of a synthetic porcine α-lactalbumin gene in the kernels of transgenic maize.Transgenic Research,11:11-20.
    69.王逸群(2008)转人α-乳清白蛋白基因烟草中半胱氨酸含量的提高。云南植物研究,30(4):457-463.
    70.Lo NW,Shaper JH,Pevsner J(1998) The expanding beta-1,4-galactosyltransferase gene family:messages from the databanks.Glycobiology,8(5):517-526.
    71.Lu Q,Shur BD(1997) Sperm from beta 1,4-galactosyltransferasenull mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly.Development,124(20):4121-4131.
    72.Shur BD,Evans S,Lu Q(1998) Cell surface galactosyltransferase:current issues.Glycoconj J,15(6):537-548.
    73.Hinton DA,Evans SE,Shur BD(1995) Altering the expression of cell surface β-1,4-galactosyltransferase modulates cell growth.Exp Cell Res,219(2):640-649.
    74.NIRIANNE Q.PALACPAC,SHOHEI YOSHIDA,HIROMI SAKAI(1999)Stable expression of human β-1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns.Proc.Natl.Acad.Sci,96:4692-4697.
    75.Fujiyama K,Palacpac N Q,Sakai H,et al.(2001) In vivo conversion of a glycan to human compatible type by transformed tobacco cells.Biochemical and Biophysical Research Communications,289:553.
    76.Misaki R,Kimura Y,et al.(2003) Plant cultured cells expressing human beta 1,4-galactosyltransferase secrete glycoproteins with galactose extended N-linked glycans.Glycobiology,13:199.
    77.Bakker H,Bardor M,Moltho J W,et al.(2001) Galactose-extended glycans of antibodies produced by transgenic plants.Proc Natl Acad Sci USA,2001,98:2899.
    78.邵艳军,山仑,李广敏(2006)干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究。中国生态农业学报,14(1):68-70.
    79.MORCUENDE R,KRAPPE A,HHRRY V,et al.(1998) Sucrose feeding leads to increased rates of nitrate assimilation,increased rates of α-oxoglutarate synthesis,and increased synthesis of a wide spectrum of amino acids in tobacco leaves.Plants,206:394-409.
    80.GRAHAM I A,DENBY J K,LEAVER C J(1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber.Plant Cell,1994(6):761-772.
    81.JANG J C,SHEENH J(1997) Sugar sensing in higher plants.Trends Plant Sci, (2): 208-214.
    
    82. LORETI E, BELLIS L D, ALPI A, et al. (2001) Why and how do plant cells sense sugars. Ann Bot, 88: 803-812.
    
    83. KOCH K E, YING Z, WU Y, et al. (2000) Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J Exp Bot, 51:417-427.
    
    84. ARENAS HUERTERO F, ZHOU L, et al. (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Gene Dev, 14: 2085-2096.
    
    85. OHTO M, ONAI K, FURUKAWA Y, et al. (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis thaliana. Plant Physiol, 127:252-261.
    
    86. ZHOU L, JANG J C, JONES T L, et al. (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose insensitive mutant. ProcNatl Acad Sci USA, 95: 10294-10299.
    
    87. Perata P. (1997) Sugar repression of a gibberellins-dependent signaling pathway in barly embryos. Plant cell, 9: 2197-2208.
    
    88. Zhou L, Jang JC, Jones TL, et al. (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arobidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA, 95: 10294-10299.
    
    89. Halil Kavakli I, Slattery CJ, Ito H, et al. (2000) The conversion of carbon and nitrogen into starch and storage proteins in developing storage organs: an overview. Aust J Plant Physiol, 27: 561-570.
    
    90. Wright T, Penner D (1998) Cell selection and inheritance of imidazolinone resistance in sugarbeet {Beta vulgaris). Theor Appl Genet, 96: 612-620.
    91.Mannerlof M,Tuvesson S,Steen P,et al.(1997) Transgenic sugar beet tolerance to glyphosate.Euphytica,94:83-91.
    92.Ehlers U,Commandeur U,Frank R,et al.(1991) Cloning of the coat protein gene from beet necrotic yellow vein virus and its expression in sugar beet hairy roots.Theor.Appl.Genet.,81:777-782.
    93.姚华建,李大伟,于嘉林(1997)甜菜坏死黄脉病毒外壳蛋白基因在甜菜转基因植株中的表达。生物工程学报,13(4):440-442.
    94.刘巧红,孔凡江,于歆(2000)基因工程方法抗甜菜丛根病病毒育种的研究。中国甜菜糖业,2:1-4.
    95.徐德昌,刘巧红,江莉萍(2002)甜菜转基因植株抗性表现及种子获得。中国甜菜糖业,4:3-4.
    96.陈中义,吴限,张杰(2003)PCR-RFLP筛选DNA文库克隆Bt cry基因的研究。中国农业科学,36(4):398-402.
    97.Tian Y,Fan L,Thurau T,et al.(2004) The absence of TIR-type resistance gene analogues in the sugar beet(Beta vulgaris L.) genome.J Mol Evol,58:40-53.
    98.张红,段晓光,杨爱芳(2005)沿海甜菜的遗传转化和转基因耐盐植株的获得。高技术通讯,15(8):72-77.
    99.Aifang Yang,et al.(2004) Induction of multiple bud clumps from inflorescence tips and regeneration of salt-tolerant plantlets in Beta vulgaris L.Plant Cell,Tissue & Organ Culture,77:29-34.
    100.Sevenier R,Hall R D,Meer I M,et al.(1998) High level fructan accumulation in a transgenic sugar beet.Nat Biotechnol,16:843-846.
    101.Heather D.Coleman,Dave D.Ellis,Margarita Gilbert and Shawn D.Mansfield(2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and Metabolism.Plant Biotechnology Journal,4:87-101.
    102.Marc R Lake,Cynthia L Williamson,Robert D Slocum(1998) Molecular cloning and characterization of a UDP-glucose-4-epimerase gene(galE) and its expression in pea tissues.Plant Physiology and Biochemistry,36(8):555-562.
    103.Hui-li Liu,Xiao-yan Dai,Yun-yuan Xu,Kang Chong(2007) Over-expression of OsUGE-1 altered raffinose level and tolerance to abiotic stress but not morphology in Arabidopsis.Journal of Plant Physiology,164(10):1384-1390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700