两种杨树人工林细根形态对水肥措施的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究基于山东黄泛平原三倍体毛白杨纸浆林和北京沙地欧美108杨速生丰产林,采用根钻法分别对不同滴灌处理和不同水肥处理条件下两种杨树人工林林地0-30cm土层细根形态特征进行了研究,以探讨两种杨树人工林细根对不同处理的响应机制,进而从根系生长与分布角度揭示水肥管理措施促进林木生长的机制,为指导灌溉和施肥决策提供理论依据。主要研究结果及结论如下:
     1、基于山东黄泛平原三倍体毛白杨纸浆林的研究结果表明:垂直方向上,四种处理下的细根生物量、根长密度、表面积和体积均随土层深度的增加而显著减小,地下滴灌没有改变林木细根的垂直分布格局。地下滴灌显著提高了林地20-30cm土层细根生物量和体积。如在20-30cm土层,T2处理(以-50kPa的土壤水势为灌溉起始阈值)下的细根生物量和体积分别为0.29mg·cm-3和0.62mm3·cm-3较CK显著增加了112.31%和91.64%。地下滴灌显著降低了林地0-10cm和20-30cm土层细根比根长及10-20cm土层细根组织密度,并促使二者在各土层中分布趋于一致,以有利于各土层细根全部发挥其吸收和伸展功效。如T1处理下20-30cm土层的细根比根长和10-20cm土层的细根组织密度分别为2799.1cm·g-1和0.411g·cm-3,较CK显著减少了44.79%和17.28%。在各土层中,三种滴灌处理间各细根形态指标无显著差异。
     2、基于北京沙地欧美108杨速生丰产林的研究结果表明:垂直方向上,十种处理下的细根生物量、根长密度、表面积和体积均随土层深度的增加而显著减小,水肥处理没有改变林木细根的垂直分布格局。中肥(652g/株)和高肥(978g/株)条件下各水肥处理显著提高了林地三个土层细根生物量、根长密度、表面积和体积。同时两施肥水平下三个土层细根根长密度和表面积以及10-20cm和20-30cm土层细根生物量和体积均随滴灌水平的降低而显著减小。低肥(326g/株)条件下三个土层四个指标随滴灌水平的降低而无显著性变化。三种滴灌水平下三个土层细根生物量、根长密度、表面积和体积均随施肥水平的提高而显著增大。高水高肥处理(第3处理)促进细根生长的效果最明显,例如其10-20cm土层细根生物量、根长密度、表面积和体积分别为0.248mg·cm-3、0.526cm·cm-3、0.060cm2·cm-3和0.533mm3·cm-3,较CK显著增加了386.18%、176.49%、212.82%和234.53%。水肥处理对0-10cm土层细根比根长无显著影响。中水(-50kPa)和高水(-25kPa)条件下各水肥处理显著降低了林地10-20cm土层细根比根长。同时两滴灌水平下10-20cm和20-30cm土层细根比根长均随施肥水平的提高而无显著性变化。低水(-75kPa)条件下两个土层细根比根长均随施肥水平的提高而显著减小。三种滴灌水平下三个土层细根组织密度整体上均随施肥水平的提高而显著提高。三种施肥水平下10-20cm和20-30cm土层细根比根长均随滴灌水平的降低而显著增大,组织密度总体上均随滴灌水平的降低而显著降低,而0-10cm土层细根组织密度随滴灌水平的降低而无显著性变化。高水高肥处理(第3处理)促进细根比根长降低和组织密度提高的效果最明显,例如其20-30cm土层细根比根长和组织密度分别为2373.7cm·g-1和0.427g·cm-3,分别较CK显著降低和提高了45.69%和48.70%。
     综上,水肥管理措施能够提高林地土壤资源的有效性,从而促进林木细根的增生,进而增强林木细根对土壤水分和养分的吸收能力,这是细根形态响应不同处理的重要机制,也是水肥管理措施提高林地生产力的主要机制。同时,除低肥水平(326g/株)外,本研究中针对北京沙地欧美杨所设定的三种灌溉量及两种施肥量整体上均在适宜的范围内。因此水肥管理措施对于促进人工林林地吸收根系生长及合理分布具有重要意义,建议推广使用地下滴灌、地表滴灌和随水施肥。
This study is based on triploid Populus tomentosa pulpwood on Shandong Yellow River flood plain and Populus xeuramericana fast growing and high yielding plantation at Beijing sandy land, where two field experiments were respectively conducted to investigate the fine root morphology of the two kinds of poplar plantation in0--30cm soil layers under different subsurface drip irrigation and surface drip irrigation and fertigation treatments by using soil cores method, aimed at inquiring into the mechanism how the fine root responded different treatments, revealing the mechanism how water and fertilizer management measures promoted woods growth from the angle of root distribution, and providing irrigation and fertigation decisions with theoretical basis. The main results and conclusions are as follows.
     1. Results based on triploid Populus tomentosa pulpwood on Shandong Yellow River flood plain showed that in the vertical direction, fine root biomass, length density, surface area and volume significantly decreased with more depth under the four treatments, subsurface drip irrigation did not change the vertical distribution pattern of fine root, subsurface drip irrigation significantly raised fine root biomass and volume in20-30cm soil layer, which was one of the main reasons why subsurface drip irrigation improved forest productivity. For example, in20~30cm soil layer, fine root biomass and volume under T2treatment were respectively0.29mg·cm-3and0.62mm3·cm-3, which were significantly112.31%and91.64%higher than CK treatment, subsurface drip irrigation significantly reduced fine specific root length in0~10cm and20~30cm soil layer and fine root tissue density in10~20cm soil layer, made both indices above in all soil layers roughly the same, in order to contribute to bringing into play the function of absorption and stretching of fine root in each soil layer. For example, under T1treatment, fine specific root length in20~30cm soil layer and fine root tissue density in10-20cm soil layer were respectively2799.1cm·g-1and0.411g·cm-3, which were significantly44.79%and17.28% lower than CK treatment. In each soil layer, the difference of each morphological index of fine root among the three subsurface drip irrigation treatments was not significant.
     2. Results based on Populus euramericana fast growing and high yielding plantation at Beijing sandy land showed that in the vertical direction, fine root biomass, length density, surface area and volume significantly decreased with more depth under the ten treatments, and the vertical distribution pattern of fine root has not been altered with the water and fertilizer treatments. For middle-(652g/plant) and high-(978g/plant) level of fertilizer, all treatments exerted an increase effect on fine root biomass, length density, surface area and volume. Meanwhile, fine root length density and surface area within the whole soil horizon, fine root biomass and volume in the soil layer of10-20cm and20-30cm among two levels of fertilizer decreased significantly with surface drip irrigation level. However, there was no significant change in all indices of the three soil layers for low-Ievel(326g/plant) of fertilizer. For three surface drip irrigation levels, all indices showed a significant increase with the progressive level of fertilizer. The treatment with high level of water and fertilizer(the third treatment) caused adistinct effect on the growth of fine root. The value of fine root biomass(0.248mg-cm'3), length density(0.526cm·cm-3), surface area(0.060cm2·cm-3) and volume(0.533mm3·cm-3) was386.18%,176.49%,212.82%and234.53%respectively higher relative to CK. Water and fertilizer treatments exerted no influence on fine specific root length in0~10cm soil layer. The specific root length in10-20cm soil layer significantly decreased under middle-(-50kPa) and high-(-25kPa) level of water and no significant change was found in10~20cm and20-30cm soil layer, however the specific root length in the two soil layers both declined with increasing level of fertilizer under low level(-75kPa) of water. Fine specific root length in10-20cm and20~30cm soil layer showed a significant increase with decreased surface drip irrigation level. Fine root tissue density in three soil layers appeared to increase in general with up-regulated fertilizer level but decrease in general with down-regulated water level and no significant change was found in0~10cm soil layer. An apparent decrease in specific root length and increase in root tissue density occurred with the treatment of high water and fertilizer. The fine specific root length and tissue density in20~30cm soil layer was2373.7cm·g-1and0.427g-cm-3, which was respectively45.69%lower and48.70%higher than CK.
     To sum up, water and fertilizer management measures can improve the effectiveness of soil resources of forest land, so as to promote fine root proliferation and enhance the absorption ability of soil water and nutrients, which is an important mechanism how the fine root morphology respond to different treatments, which is also the main mechanism how water and fertilizer management measures enhance the productivity of forest land. On the whole, except the low-level(326g/plant) of fertilizer, three kinds of irrigation level and two kinds of fertilizer level set for Beijing sand poplar were within the suitable range in this study. Therefore, water and fertilizer management measures, including subsurface drip irrigation, surface drip irrigation and fertigation, play an important role in promoting the plantation fine root growth and reasonable distribution.
引文
[1]安慧,韦兰英,刘勇,等.黄土丘陵区油松人工林和白桦天然林细根垂直分布及其与土壤养分的关系[J].植物营养与肥料学报,2007,13(4):611-619.
    [2]陈竹君,刘春光,周建斌,等.不同水肥条件对小麦生长及养分吸收的影响[J].干旱地区农业,2001,19(3):30-35.
    [3]程云环,韩有志,王庆成,等.落叶松人工林细根动态与土壤资源有效性的研究[J].植物生态学报,2005,29(3):403-410.
    [4]单建平,陶大立.国外对树木细根的研究动态[J].生态学杂志,1992,11(4):46-49.
    [5]单建平,陶大立,王森,等.长白山阔叶红松林细根动态[J].应用生态学报,1993,4(3):241-245.
    [6]单立山,张希明,花永辉,等.塔克拉玛干沙漠腹地梭梭幼苗根系分布特征对不同灌溉量的响应[J].植物生态学报,2007,31(5):769-776.
    [7]丁国泉,于立忠,王政权,等.施肥对日本落叶松细根形态的影响[J].东北林业大学学报,2010,38(5):16-19.
    [8]高丽,李红岭,王铁臣,等.水氮耦合对日光温室黄瓜根系生长的影响[J].农业工程学报,2012,28(8):58-64.
    [9]龚时慧,温仲明,施宇.延河流域植物群落功能性状对环境梯度的响应[J].生态学报,2011,31(20):6088-6097.
    [10]顾东祥,汤亮,徐其军,等.水氮处理下不同品种水稻根系生长分布特征[J].植物生态学报,2011,35(5):558-566.
    [11]郭金强,危常州,侯振安,等.施氮量对膜下滴灌棉花氮素吸收、积累及其产量的影响[J].干旱区资源与环境,2008,22(9):130-142.
    [12]何维明.不同生境中沙地柏根面积分布特征[J].林业科学,2000,36(5):17-21.
    [13]华元刚,罗微,林钊沐,等.水肥耦合对橡胶树根系垂直分布的影响[J].热带作物学报,2012,33(8):1342-1374.
    [14]黄刚,赵学勇,苏延桂,等.小叶锦鸡儿根系生长对土壤水分和氮肥添加的响应[J].北京林业大学学报,2009,31(5):73-77.
    [15]贾淑霞,赵妍丽,丁国泉,等.落叶松和水曲柳不同根序细根形态结构、组织氮浓度与根呼吸的关系[J].植物学报,2010,45(2):174-181.
    [16]孔清华,李光永,王永红,等.地下滴灌施氮及灌水周期对青椒根系分布及产量的影响[J].农业工程学报,2009,25(Supp.2):38-42.
    [17]李洪亮,孙玉友,曲金玲,等.施氮量对东北粳稻根系形态生理特征的影响[J].中国水稻科学,2012,26(6):723-730.
    [18]李凌浩,林鹏.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340.
    [19]李培芝,范世华,王力华,等.杨树细根及草根的生产力与周转的研究[J].应用生态学报,2001,12(6):829-832.
    [20]栗岩峰,李久生,饶敏杰.滴灌施肥时水肥顺序对番茄根系分布和产量的影响[J].农业工程学报,2006,22(7):205-207.
    [21]李秋秧,刘文兆.土壤水分与氮肥对玉米根系生长的影响[J].中国生态农业学报,2001,9(1):13-15.
    [22]林文,李义珍,郑景生,等.施氮量及施肥法对水稻根系形态发育和地上部生长的影响[J].福建稻麦科技,1998,17(3):21-24.
    [23]梁银丽,陈培元.土壤水分和氮磷营养对冬小麦根苗生长的效应[J].作物学报,1996,22(4):446-482.
    [24]刘金梁,梅莉,谷加存,等.内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J].生态学杂志,2009,28(1):1-6.
    [25]吕殿青,张文孝,谷洁,等.渭北东部早塬氮磷水三因素交互作用与耦合模型研究[J].西北农业学报,1994,3(3):27-32.
    [26]吕理兴.杉术人工林及林下植被细根生物最和形态分布的特征[J].亚热带资源与环境学报,2012,7(2):70-75.
    [27]梅莉,韩有志,于水强,等.水曲柳人工林细根季节动态及其影响因素[J].林业科学,2006,42(9):7-12.
    [28]梅莉,王政权,程云环,等.水曲柳和落叶松细根分布与土壤有效氮的关系[J].华中农业大学学报,2008,27(1):117-121.
    [29]梅莉,王政权,韩有志,等.水曲柳根系生物量、比根长和根长密度的分布格局[J].应用生态学报,2006,17(1):1-4.
    [30]梅莉,王政权,张秀鹃,等.施氮肥对水曲柳人工林细根生产和周转的影响[J].生态学杂志,2008,27(10):1663-1668.
    [31]曲秋玲,王国梁,刘国彬,等.施氮对白羊草细根形态和生长的影响[J].水土保持通报,2012,32(2):74-79.
    [32]权伟,徐伙,王丰,等.武夷山不同海拔高度植被细根生物量及形态特征[J].生态学杂志,2008,27(7):1095-1103.
    [33]史建伟,王孟本,陈建文,等.柠条细根的分布和动态及其与土壤资源有效性的关系[J].生态学报,2011,31(14):3990-3998.
    [34]史建伟,王孟本,于立忠,等.土壤有效氮及其相关因素对植物细根的影响[J].生态学杂志,2007,26(10):1634-1639.
    [35]施宇,温仲明,龚时慧.黄土丘陵区植物叶片与细根功能性状关系及其变化[J].生态学报,2011,31(22):6805-6814.
    [36]司建华,冯起,李建林,等.荒漠河岸林胡杨吸水根系空间分布特征[J].生态学杂 志,2007,26(1):1-4.
    [37]孙玥,全先奎,贾淑霞,等.施用氮肥对落叶松人工林一级根外生菌根侵染及形态的影响[J].应用生态学报,2007,18(8):1727-1732.
    [38]田盼盼,董新光,姚鹏亮,等.干旱区不同灌溉方式下枣树根系分布特性研究[J].水资源与水工程学报,2012,23(1):102-105.
    [39]王晶,韩晓日,宫亮,等.低磷胁迫下不同番茄品种苗期根系生理适应性研究[J].沈阳农业大学学报,2005,36(5):615-618.
    [40]王迪海,赵忠,李剑,等.土壤水分对黄土高原主要造林树种细根表面积季节动态的影响[J].植物生态学报,2010,34(7):819-826.
    [41]王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究[J].植物生态学报,2005,29(6):871-877.
    [42]王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版社,1994:57.
    [43]魏国良,王得祥,汪有科,等.黄土丘陵区梨枣人工林细根分布与土壤养分的关系研究[J].北方园艺,2012(23):185-188.
    [44]魏国良,汪有科,杨涛,等.滴灌条件下梨枣根系分布特征研究[J].安徽农业科学,2010,38(12):6316-6317,6139.
    [45]韦兰英,上官周平.黄土高原白羊草、沙棘和辽东栎细根比根长特性[J].生态学报,2006,26(12):4164-4170.
    [46]卫星,王政权,张国珍,等.水曲柳苗木不同根序对干旱胁迫的生理生化反应[J].林业科学,2009,45(6):16-21.
    [47]韦艳葵,贾黎明,王玲,等.地下滴灌条件下杨树速生丰产林林木根系生长特性[J].北京林业大学学报,2007,29(2):34-40.
    [48]武阳,王伟,黄兴法,等.亏缺灌溉对成龄库尔勒香梨产量与根系生长的影响[J].农业机械学报,2012,43(9):78-84.
    [49]席本野,王烨,邸楠,等.地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响[J].生态学报,2012,32(17):5318-5329.
    [50]席本野,王烨,贾黎明,等.宽窄行栽植模式下三倍体毛白杨根系分布特征及其与根系吸水的关系[J].生态学报,2011,31(1):47-57.
    [51]谢志良,田长彦.膜下滴灌水氮对棉花根系形态和生物量分配变化的影响[J].干旱区资源与环境,2010,24(4):138-143.
    [52]谢志良,田长彦,卞卫国,等.施氮对棉花苗期根系分布和养分吸收的影响[J].干旱区研究,2010,27(3):374-379.
    [53]熊德成,黄锦学,杨智杰,等.亚热带6种树种细根序级结构和形态特征[J].生态学报,2012,32(6):1888-1897.
    [54]徐文静,王政权,范志强,等.遮荫对水曲柳幼苗细根衰老的影响[J].植物生态学 报,2006,30(1):104-111.
    [55]许旸,谷加存,董雪云,等.海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量[J].植物生态学报,2011,35(9):955-964.
    [56]燕辉,刘广全,李红生.青杨人工林根系生物最、表面积和根长密度变化[J].应用生态学报,2010,21(11):2763-2768.
    [57]燕辉,苏印泉,朱昱燕,等.秦岭北坡杨树人工林细根分布与土壤特性的关系[J].南京林业大学学报(自然科学版),2009,33(2):85-89.
    [58]杨秀清,韩有志,李乐,等.华北山地典型天然次生林土壤氮素空间异质性对落叶松幼苗更新的影响[J].生态学报,2009,29(9):4656-4664.
    [59]杨玉盛,陈光水,何宗明,等.杉木观光木混交林群落细根净生产力及周转[J].林业科学,2001,37(专刊1):35-41.
    [60]杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报,2003,23(9):1719-1731.
    [61]于立忠,丁国泉,史建伟,等.施肥对日本落叶松人工林细根直径、根长和比根长的影响[J].应用生态学报,2007,18(5):957-962.
    [62]于立忠,丁国泉,朱教君,等.施肥对日本落叶松人工林细根生物量的影响[J].应用生态学报,2007,18(4):713-720.
    [63]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200.
    [64]张雷,项文化,田大伦,等.第2代杉木林土壤有机碳、全氮对细根分布及形态特征的影响[J].中南林业科技大学学报,2009,29(3):11-15.
    [65]张礼军,张恩和,郭丽琢,等.水肥耦合对小麦/玉米系统根系分布及吸收活力的调控[J].草业学报,2005,14(2):102-108.
    [66]张小全.环境因子对树木细根生物量、生产与周转的影响[J].林业科学研究,2001,14(5):566-573.
    [67]张新宁,赵健,杨东芳.滴灌条件下葡萄根系分布的研究初报[J].中外葡萄与葡萄酒,2005,6:16-18.
    [68]赵新风,徐海量,刘新华,等.极度干旱区不同灌水量下沙枣防护林根系分布特征[J].地理科学进展,2012,31(5):646-654.
    [69]赵妍丽,许旸,谷加存,等.黄波罗细根碳、氮的季节变化[J].应用生念学报,2011,22(10):2546-2552.
    [70]周鹏,耿燕,马文红,等.温带草地主要优势植物不同器官间功能性状的关联[J].植物生态学报,2010,34(1):7-16.
    [71]朱强根,张焕朝,方升佐,等.苏北杨树人工林细根分布及其季节动态[J].林业科技开发,2008,22(3):45-48.
    [72]朱秋美,马长明,翟明普,等.河北石质山区花椒细根分布特征[J].林业科学,2009,45(2):131-135.
    [73]Aerts R,Boot R G A,Van Der Aart P J M.The relation between above-and belowground biomass allocation patterns and competitive ability[J].Oecologia,1991,87(4):551-559.
    [74]Aerts R,Chapin F S.The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns[J].Adv Ecol Res,2000,30:1-67.
    [75]Albaugh T J,Allen H L,Dougherty P M,et al.Leaf area and above-and belowground growth responses of loblolly pine to nutrient and water additions[J].For Sci,1998,44(2):317-328.
    [76]BassiriRad H,Griffin K L,Reynolds J F,et al.Changes in root NH4+and NO3 absorption rates of loblolly and ponderosa pine in response to CO2 enrichment[J].PlantSoil,1997,190:1-9.
    [77]BassiriRad H,Thomas R B.Reynolds J F,et al.Differential responses of root uptake kinetics of NH4+and NO3- to enriched atmospheric CO2 concentration in field grown Loblolly pine[J].Plant Cell Environ,1996,19:367-371.
    [78]Bauhus J,Khanna P K,Menden N.Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia meamsii[J].Canadian Journal of Forest Research,2000,30(12):1886-1894.
    [79]Benye Xi,Ye Wang,Liming Jia,et al.Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain:Implications for irrigation water management[J]. Agricultural Water Management,2013,117:83-92.
    [80]Block R M A,Van Rees K C J.Knight J D.A review of fine root dynamics in Populus plantations[J].Agroforestry System,2006,67:73-84.
    [81]Box J E Jr.Modern Methods for root investigation[M]//Waise Y,Eshel A,Kafkafi U eds.Plant Roots:The Hidden Half:second edition,revised and expanded.New York:Marcel Dekker,Inc,1996:193-233.
    [82]Burke M K,Raynal D J.Fine root growth phenology,production and turnover in a northern hardwood forest ecosystem[J].Plant and Soil,1994,162:135-146.
    [83]Burke M K,Raynal D J.Mrrchell M J.Soil nitrogen availability influences seasonal carbon allocation patterns in sugar maple(Acer saccharum)[J].Canadian Journal of Forest Research,1991,22:447-456.
    [84]Burton A J,Pregitzer K S,Hendrick R L.Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forest[J].Oecologia,2000,125:389-399.
    [85]Canadell J Jackson R B,Ehleringer J R,et al.Maximum rooting depth of vegetation types at the global scale[J].Oecologia,1996,108:583-595.
    [86]Cheng X R,Huang M B,Shao M A,et al.A comparison of fine root distribution and water consumption of mature Caragana Korshinkii Kom grown in two soils in a semiarid region[J].Plant Soil,2009,315:149-161.
    [87]Coleman M.Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization[J].Plant and Soil,2007,299:195-213.
    [88]Cornelissen J H C,Lavorel S,Garnier E,et al.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J].Australian Journal of Botany,2003,51:335-380.
    [89]Craine J M,Froehle J,Tilman D G,et al.The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients[J].Oikos,2001,93(2):274-285.
    [90]Crookshanks M,Taylor G.Arabidopsis thaliana:A model system to study the effects of elevated CO2 on tree root growth[J].J ExpBot,1996,47(Supp):39.
    [91]Dewar R C,Ludlow A R & Doughterty P M.Environmental influences on carbon allocation in pines[J].Ecological Bulletins,1994,43:92-101.
    [92]Einsmann J C,Jones R H,Mou P,et al.Nutrient foraging traits in 10 co-occuring plant species of contrasting life forms[J].J Ecol.,1999,87:609-619.
    [93]Eissenstat D M.Caldwell M M.Competitive ability is linked to rates of water extraction[J].Oecologia,1988,75(1):1-7.
    [94]Eissenstat D M.On the relationship between specific root length and the rate of root proliferation:a field study using citrus rootstocks[J].New Phytologist,1991,118(1):63-68.
    [95]Eissenstat D M.Root structure and function in an ecological context[J].New Phytologist,2000,148:353-354.
    [96]Eissenstat D M,Van Rees K C J.The growth and function of pine roots[J].Ecological Bulletins,1994,43,76-91.
    [97]Eissenstat D M,Wells C E,Yanai R D,et al.Building roots in a changing environment:implications for root longevity[J].New Phytol,2000,147:33-42.
    [98]Eissenstat D M,Yanai R D.The ecology of root Iifespan[J].Advances in Ecological Research,1997,27:1-60.
    [99]Fabiao A,Madeira M,Steen E,et al.Development of root biomass in an Eucalyptus globulus plantation under different water and nutrient regimes[J].Plant and Soil,1995,168/169:215-223.
    [100]Fransen B,Kroon H D,Berendse F.Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability[J].Oecologia,1998,115(3):351-358.
    [101]Gaudinski J B,Trumbore S E,Davidson E A,et al.The age of fine root carbon in three forests of the eastern United States measured by radio carbon[J].Oecologia,2001,129:420-429.
    [102]Gholz H L.Organic matter dynamics of fine roots in plantations of slash pine in north Florida[J].Can.J.For.Res.,1986,16:529-538.
    [103]Gill R A.Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J].New Phytologist,2000,147:13-31.
    [104]Gordan W S,Jackson R B.Nutrient concentration in fine roots[J].Ecology,2000,81(1):275-280.
    [105]Grier C C.Biomass distribution and above-and belowground production in a young and mature Abies amabilis zone ecosystems of the washionton cascades[J].Canadian Journal of Forest Research,1981,11:155-167.
    [106]Guo D L,Mitchell R J,Hendricks J J.Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J].Oecologia,2004,140(3):450-457.
    [107]Hajiboland R,Yang X E,R L mheld V,et al.Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficientand Zn-inefficient rice (Oryza sativaL) genotypes[J].Environmental and Experimental Botany,2005,54(2):163-173.
    [108]Hamilton J G,DeLucia E H,George K,et al.Forest carbon balance under elevated CO2[J].Oecologia,2002,131:250-260.
    [109]Harris W F.Comparison of belowground biomass of nature deciduous forest and Loblolly pine plantations[J].Pedobiologia,1977,17:369-381.
    [110]Hendrick R L,Pregitzer K S.Temporal and depth-related patterns of fine root dynamics in northern hardwood forests[J].Ecology,1996,77(1):167-176.
    [111]Hendrick R L,Pregitzer K S.The dynamics of fine root length,biomass,and nitrogen content in two northern hardwood ecosystems[J].Canadian Journal of Forest Research,1993,23(4):2507-2520.
    [112]Hendricks J J,Aber J D.Nadelhoffer K J,et al.Nitrogen controls on fine root substrate quality in temperate forest ecosystems[J].Ecosystems,2000,3:57-69.
    [113]Hodge A.The plastic plant:root responses to heterogeneous supplies of nutrients[J].New Phytologist,2004,162(1):9-24.
    [114]Howard Skinner R,Hanson J D,Benjamin J G.Root distribution following spatial separation of water and nitrogen supply in furrow irrigated corn[J].Plant and Soil,1998,199:187-194.
    [115]Jackson R B,Mooney H A,Schulze E D.A global budget for fine root biomass.surface area and nutrient contents[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94:7362-7366.
    [116]Jaime Cavelier,Joseph Wright S,Johanna Santamara.Effect of irrigation on litterfall,fine root biomass and production in a semideciduous lowland forest in Panama[J].Plant and Soil.1999,211:207-213.
    [117]Joslin J D & Henderson G S.Organic matter and nutrients associated with fine root turnover in a white oak stand[J].Forest Science,1987,33:330-346.
    [118]Katterer T,Fabiao A,Madeira M,et al.Fine root dynamics,soil moisture and soil carbon content in Eucalyptus globulus plantation under different irrigation and fertilization regimes[J].For.Ecol.Manage 1995,74:1-12.
    [119]Kern C C,Friend A L,Johnson J M F,et al.Fine root dynamics in a developing Populus deltoides plantation[J].Tree Physiology,2004,24(6):651-660.
    [120]Keys M R,Grier C C.Above-and belowground net productivity in 40-year-old Douglas fir stands on low and high productivity sites[J].Canadian Journal of Forest Research,1981,11:599-605.
    [121]King J S,Albaugh T J,Allen H L,et al.Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine[J].New Phytol,2002,154:389-398.
    [122]King J S.Thomas R B,Strain B R.Morphology and tissue quality of seedling root systems of Pinus teada and Pinus ponderosa as affected by varying CO2,temperature,and nitrogen[J].Plant and Soil,1997,195(1):107-119.
    [123]Larigauderie A,Reynolds J F,Strain B R.Root response to CO2 enrichment and nitrogen supply in Loblolly pine[J].Plant and Soil,1994,165:21-32.
    [124]Lee K H,Jose S.Soil respiration,fine root production and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient[J].For.Ecol.Manage,2003,185(3):263-273.
    [125]Magill A H,Aber J D.Berntson G M,et al.Long-term nitrogen additions and nitrogen saturation in two temperate forests[J].Ecosystems,2000,3(3):238-253.
    [126]Majdi H.Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce in northern Sweden[J].Tree Physiol,2001,21(14):1057-1061.
    [127]Majdi H.Nylund J E.Does liquid fertilization affect fine root dynamics and lifespan of mycorrhizal short roots?[J].Plant and Soil,1996,185(2):305-309.
    [128]Marschner H,Kirkby E A,Cakmak T.Effect of mineral nutritional status on shoot-root partitioning of photoassilates and cycling of mineral nutrients[J].J.Exp.Bot.,1996,47:1255-1263.
    [129]McClaugherty C A.The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems[J].Ecology,1982,63:1481-1490.
    [130]Nadelhoffer K J.The potential effects of nitrogen deposition on fine root production in forest ecosystems [J].New Phytologist,2000,147(1):131-139.
    [131]Norby R J,Jackson R B.Root dynamics and global change:Seeking an ecosystem perspective[J].New Phytologist,2000,147:3-12.
    [132]Ostonen I,L Hmus K,Lasn R.The role of soil conditions in fine root ecomorphology in Norway spruce(Picea abies(L.)Karst) [J].Plant Soil,1999,208(2):283-292.
    [133]Peter Schippers,Han Olff.Biomass partitioning, architecture and turnover of six herbaceous species from habitats with different nutrient supply[J].Plant Ecology,2000,149:219-231.
    [134]Pregitzer K S,Deforest J L,Burton A J,et al.Fine root architecture of nine North American trees[J].Ecological Monographs,2002,72(2):293-309.
    [135]Pregitzer K S,Hendrick R L,Fogel R.The demography of fine roots in response to patches of water and nitrogen[J].New Phytol,1993,125(3)575-580.
    [136]Pregitzer K S,King J S,Burton A J,et al.Responses of tree fine roots to temperature[J].New Phytologist,2000,147:105-115.
    [137]Pregitzer K. S,Zak D R,Curtis P S,et al.Atmospheric CO2,soil nitrogen and turnover of fine roots[J].New Phytologist,1995,129:579-585.
    [138]Price J S.Hendrick R L.Fine root length production,mortality and standing root crop dynamics in an intensively managed sweetgum(Liquidambar styraciflua L.) coppice[J].Plant and soil,1998,205:193-201.
    [139]Pronk A A,De Willigen P,Heuvelink E,et al.Development of fine and coarse roots of Thuja occidentalis'Brabant'in non-irrigated and drip irrigated field plots[J].Plant and soil,2002,243:161-171.
    [140]Qi J.Marshall J D,Mattson K G.High soil carbon dioxide concentration inhibit root respiration of Douglas fir[J].New Phytol,1994,128:435-442.
    [141]Raich J W,Nadelhoffer K J.Below ground carbon allocation in forest ecosystems[J].Global Trends.Ecology,1989,70(5):1346-1354.
    [142]Reich P B,Walters M B.Ellsworth D S,et al.Relationships of leaf dark respiration to leaf nitrogen,specific leaf area and leaf life-span:a test across biomes and functional groups[J].Oecologia,1998,114(4):471-482.
    [143]Robinson D.The responses of plants to non-uniform supplies of nutrients[J].New Phytol,1994,127:635-674.
    [144]Santantonio D,Hermann R.K.Standing crop,Production and turnover of fine roots on dry moderate and wet sites of mature Douglas fir in western Oregon[J].Annales des Sciences Forestiers,1985,42:113-142.
    [145]Schenk H J,Jackson R B.The global biogeography of roots [J]. Ecological Monographs,2002,72:311-328.
    [146]Silver W L,Miya R K.Global patterns in root decomposition:Comparisons of climate and litter quality effects[J].Oecologia,2001,129(3):407-419.
    [147]Singh K P,Singh R P.Seasonal variations in biomass and energy of small roots in tropical dry deciduous forest,Varanasi[J].India.Oikos,1981,37:88-92.
    [148]Singh K P,Srivastava S K.Seasonal variation in the spatial distribution of root tips in teak plantations in the Varanasi Forest Division[J].India.Plant and soil,1984,84:93-104.
    [149]Steele S J,Gower S T,Vogel J G,et al.Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitova Canada[J].Tree Physiology,1997,17:577-587.
    [150]Stevens M H H,Shirk R,Steiner C E.Water and fertilizer have opposite effects on plant species richness in a mesic early successional habitat[J].Plant Ecology,2006,183:27-34.
    [151]Sun O J,Sweet G B,Davis M R.Comparative mineral nutrition of Nothofagus solandri var.cliffortioides(Hook.f.) Poole andN.menziesii(Hook. f.) Oerst.seedlings[J].New Zealand Journal of Forest Science,2001,31:157-169.
    [152]Teskey R D,Hinckley T M.Influence of temperature and water potential on root growth of white oak[J].Physiologia Plantarum,1981,52:363-369.
    [153]Vamerali T,Saccomani M,Bonal S,et al.A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids[J].Plant and Soil,2003,255:157-167.
    [154]Vogt K A,Grier C C,Vogt D J.Production,turnover and nutrient dynamics of above-and belowground detritus of world forests[J]. Advances in Ecological Research,1986(15):303-377.
    [155]West J B,Espeleta J F,Donovan L A.Fine root production and turnover across a complex edaphic gradient of a Pinnuspalustris-Aristida stricta savanna ecosystem[J].Forest Ecology and Management,2004,189:397-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700