融合网络传输性能的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电信网、广播电视网以及互联网三网融合的进一步推进,各大运营商的业务互相渗透,衍生出了更加复杂的新业务,对网络系统提出了新的需求。对于广电运行商,有线电视网的双向网改造的日益深入和下一代广播电视网战略的进一步实施,用户的双向交互数据业务需求日益增加,使得对带宽资源的竞争也日益激烈。如何有效地利用已有的资源,保证业务的QoS需求,提高系统的传输效率,创造最大化的价值,是目前急迫需要解决的问题。
     本文主要的研究目标在于定位融合网络环境下传输性能的瓶颈和影响因素的同时,提出适用于融合网络的解决方法与技术,着重解决IP over DVB封装协议和调度算法、传输控制协议TCP以及网络层与传输层协议报头优化在融合网络中面临的问题,对应的主要贡献和创新点总结如下所示。
     首先研究IP over DVB封装协议和调度算法的优化,主要包括以下两点:
     1.针对现有IP over DVB封装协议存在的硬件支持不好或者封装效率低下的问题,提出了一种兼容DSM-CC段格式的,支持将多个IP数据包在同一个封装段中传输的封装协议(高效段封装协议)。通过理论与实验证明该封装协议在保证一定灵活性的同时,与多协议封装相比,在实际实验场景中的封装效率平均提高1.4%,特别针对小数据包,如100字节的IP数据包,封装效率最大可由53.2%提升至95.7%。
     2.针对DVB-C2下传统调度算法时延特性差和系统吞吐率下降的问题,提出了一种考虑DVB-C2链路容量可变且其数据调度与系统的传输效率紧耦合特点的两级调度模型,并在该模型的基础上,提出了考虑DVB-C2系统传输效率以及业务类型的二级调度算法。该模型与算法具有良好的时延特性、公平性和复杂度,而且仿真实验表明该模型与算法适用于链路容量变化的场景,与WRR等传统调度算法相比,更好的保证了业务的时延需求,系统的吞吐率提升了10.7%。
     其次,研究融合网络传输控制协议TCP优化,主要贡献和创新点如下:
     3.针对融合网络下传输控制协议TCP吞吐率降低的问题,提出了一种适用于融合网络的,基于区分数据包类型的分裂连接方法,并在有线电视网端采用了定制的TCP拥塞控制算法。仿真实验与分析表明本文所提算法与传统算法相比,具有更高的系统吞吐率。
     4.为进一步提升融合网络中有线电视网端TCP性能和能够更好的满足业务QoS需求,提出了应用于有线电视网的,基于业务感知的跨层传输层协议优化方法:根据预分配的带宽以及业务的QoS需求,统计最小拥塞窗口,初始慢启动阈值以及最大拥塞窗口等参数。实验与分析表明,在带宽预分配网络环境中,与传统的TCP协议相比,所提算法在吞吐率、公平性、以及稳定性方面均有明显的提升,同时能够更好的满足业务的QoS需求。
     最后,研究和解决网络层与传输层协议报头优化在融合网络中面临的问题:
     5.为了减少IP/UDP协议报头冗余信息带来的额外开销,提高带宽利用率,结合传统报头压缩技术和融合网络的特点,提出了一种应用于HFC的IP/UDP报文传输优化方法,利用IP over DVB封装协议中reserved、MAC等字段或者逻辑通道定位方法等方式来唯一标识报文,压缩IP/UDP全部报头字段而不引入其他字段,提高了系统的报头压缩增益、时延增益、带宽增益以及封装效率,同时考虑终端不还原UDP/IP头部的情形,为终端提供灵活的接收方式。
     6.针对TCP的SACK选项冗余信息的问题,为提升TCP性能,特别是非对称融合网络下的性能,提出了修正的自适应调整SACK机制,让SACK块描述字段大小根据网络实时特性进行自适应调整,并通过MA-SACK-Filtering机制,减少不必要的上行MA-SACK,最后通过仿真实验,验证了算法的有效性,与SACK算法相比,系统吞吐率最多提升了78.1%。
As the convergence of telecommunication network, broadcast network and Internet accelerates, the services of different network operators penetrate mutually, which will bring much more complex new service forms and propose additional demand for network system. For television network operators, with the development of two-way cable television network transformation and further implementation of the Next Generation Broadcast networks, the need for two-way interactive service increases day by day which leads to more competing for bandwidth resource. How to guarantee the QoS of service, improve the transmission efficiency of the system and create maximum value is an emergency problem.
     The goal of this paper is to analyse the bottleneck and factors of the transmission performance and propose methods and techniques for converged network, which focus on handling with the problems of encapsulation protocol and data scheduling of IP over DVB, transport control protocol and the network layer and the transport layer protocols header optimization. The contributions and innovations are shown as below.
     First, we study the improvement of encapsulation protocol and data scheduling of IP over DVB, mainly including following two aspects:
     1. For badly hardware support or inefficient encapsulation problems of encapsulation protocol for IP over DVB, an encapsulation protocol called Effective Section Encapsulation(ESE), which is compatible with DSM-CC, is proposed. Multiple IP packets are allowed to be encapsulated in one section through ESE. As the simulation result shows, this new encapsulation method not only keeps flexibility, but also has higher encapsulation efficiency than MPE, especially for small packets, encapsulation efficiency can be improved from53%to95.7%when the length of IP packet is100B.
     2. For the problems of traditional scheduling algorithm over DVB-C2, which include bad delay characteristics and decline in system throughput, a two-level scheduling model and corresponding adaptive scheduling algorithm against the characteristics of DVB-C2are proposed. The algorithm considers the transmission efficiency and types of service. Theoretical analysis and simulation shows that the model and algorithm has good delay characteristic, fairness and complexity, suitable for the scene that link capacity is volatile. What's more, it provides a better guarantee of delay requirement and throughput of the system (10.7%improvement) than the traditional scheduling algorithm, like WRR.
     Then, the improvement of TCP over the converged network is studied:
     3. For the problem that the throughput of TCP declines over the converged network, a split algorithm base on distinguishing packet type is proposed and a tailored TCP algorithm called controlledTCP for HFC which is single-hop route and controllable is proposed. Compared with customary algorithm, the proposed algorithm has a better throughput.
     4. To improve the performance of TCP over the converged network and meet the QoS requirements of service, a cross-layer TCP optimization method base on service awareness is proposed. According to the pre-allocated bandwidth and QoS requirements, the minimum congestion window, the initial slow start threshold and the maximum congestion window are calculated. Theoretical analysis and simulation shows that compared with the traditional TCP algorithm, the proposed algorithm not only has a better performance in throughput, fairness and stability, but also meet the QoS requirements of service better.
     Last, we focus on the problems that the network layer and the transport layer protocols header optimization over the converged network:
     5. To save bandwidth and improve the utilization of bandwidth, an UDP/IP header compression method for HFC is proposed. The method utilizes the field in encapsulating protocol of IP over DVB like the reserved field and MAC field or the method to locate logical channel to identify the packet. The method compresses the entire head of IP/UDP by the information of the bottom layer protocol, and it provides a flexible receive mode for the terminal by considering the situation of no need to restore the UDP/IP head. The simulation shows that this method is more flexible and provides a better header compression, delay and bandwidth gain than other methods.
     6. For the problem of TCP SACK option redundant information, in order to improve the performance of TCP, especially over the asymmetric converged network, a scheme called Modified Adaptive SACK Filtering is proposed, which adjusts the size of the block information in SACK option according to the real-time characteristics of network. Furthermore, the scheme decreases some useless MA-SACK packet to alleviate the process pressure of router. Based on the simulation results, the effectiveness is verified:compared with SACK, the throughput is promoted by78.1%at most.
引文
[1]中华人民共和国国民经济和社会发展第十个五年计划纲要[R].北京:全国人民代表大会,2001.
    [2]中华人民共和国国务院.推进三网融合的总体方案[R].北京:中华人民共和国国务院,2010.
    [3]中国下一代广播电视网(NGB)自主创新发展战略研究报告[R].北京:NGB总体专家委员会,2010.
    [4]国家高性能宽带信息网暨中国下一代广播电视网自主创新合作协议书[R].中华人民共和国科技部和国家广播电影电视总局,2008.
    [5]三大运营商2012年报解读[EB/OL].http://www.c114.net/news/41/a755053.html.
    [6]络达咨询.中国有线数字电视产业链发展状况及预测分析报告(2012年版)[R].,2012.
    [7]DVB. DVB Specification for data Broadcasting[S].1996.
    [8]Fairhurst G, Collini-Nocker B. Unidirectional Lightweight Encapsulation (ULE) for Transmission of IP Datagrams over an MPEG-2 Transport Stream (TS)[S].2005.
    [9]Fairhurst G, Collini-Nocker B. Extension Formats for Unidirectional Lightweight Encapsulation (ULE) and the Generic Stream Encapsulation (GSE)[S].2008.
    [10]DVB. Generic Stream Encapsulation(GSE) Protocol[S].2007.
    [11]DVB. Information technology-generic coding of moving pictures and associated audio information-part6:Extensions for digital storage media command and control (MPEG-2 DSM-CC)[S].1998.
    [12]DVB. Generic Stream Encapsulation (GSE) Implementation Guidelines[S].2009.
    [13]DVB. Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2)[S].2009.
    [14]Van Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links[S].1990.
    [15]Degermark, Nordgren B, Pink S. IP Header Compression[S].1999.
    [16]Casner S, Jacobson V. Compressing IP/UDP/RTP Headers for Low-Speed Serial Links[S]. 1999.
    [17]Bormann C, Burmeister C, Degermark M. Robust Header Compression(ROHC): Framework and four profiles:RTP, UDP, ESP, and uncompressed[S].2001.
    [18]IETF. TCP Selective Acknowledgement Options(RFC 2018)[S].1996.
    [19]DVB. Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite application (DVB-S2)[S].2005.
    [20]李华.下一代广播电视网络(NGB)技术融合及自主创新发展研究[J].广播电视信息,2013,3:33-37.
    [21]黄铭IPQAM系统硬件设计与实现[D].华中科技大学,2011.
    [22]Cablelabs. Data Over Cable Service Interface Specification (DOCSIS 1.0)[S].1998.
    [23]Cablelabs. Data Over Cable Service Interface Specification (DOCSIS 1.1)[S].1999.
    [24]Cablelabs. Data Over Cable Service Interface Specification (DOCSIS 2.0)[S].2002.
    [25]Cablelabs. Data Over Cable Service Interface Specification (DOCSIS 3.0)[S].2008.
    [26]唐明光.EOC原理及应用技术[R].大庆市广电,2010.
    [27]张常亮.IPQAM系统复用技术研究与实现[D].重庆大学,2008.
    [28]陈伟,李荆生,童晓光.IPTV与IPQAM体系架构及其关键技术比较研究[J].电视技术.2012,36(16).
    [29]雷维礼,马立香.接入网技术[M].北京:清华大学出版社,2006.
    [30]韩锐.HFC接入网资源管理关键技术研究[D].中国科学院研究生院,2011.
    [31]王勇.有线电视双向网改造的思考及应用[J].电视技术.2008,32(9):48-49.
    [32]张晓贝,王一.有线电视网络双向改造的几种方案分析与探讨:第五届京、津、沪、渝有线电视技术研讨会暨第五届全国城市有线电视技术研讨会[Z].重庆:2007.
    [33]李俊玮,孙曙和,陈雪EPON在双向HFC宽带接入中的应用[J].广播与电视技术.2007,34(11):80-83.
    [34]高宗敏DOCSIS3.0——第三代电缆数据传输系统(1)第一章DOCSIS——有线双向宽带网的主流技术[J].有线电视技术.2011(01):111-118.
    [35]Kramer G, Mukherjee B, Pesavento G. Ethernet PON (ePON):Design and Analysis of an Optical Access Network[J]. Photonic Network Communications.2001,3:307-319.
    [36]Kramer G, Pesavento G. Ethernet passive optical network (EPON):building a next-generation optical access network[J]. Communications Magazine, IEEE.2002,40(2): 66-73.
    [37]王蕾.NGB跨域业务本地支撑关键技术研究[D].中国科学院研究生院,2010.
    [38]郑艳伟.融合网络多通道协同传输关键技术研究[D].中国科学院研究生院,2012.
    [39]DVB. Digital broadcasting systems for televison, sound and data services; Framing structure, channel coding and modulation for cable systems[S].1994.
    [40]DVB. Digital broadcasting systems for televison, sound and data services; Framing structure, channel coding and modulation for Satellite[S].1995.
    [41]DVB. Digital Video Broadcasting (DVB);Framing structure.channel coding and modulation for digital terrestrial television V1.5.1 [S].2004.
    [42]DVB. Framing structure, channel coding and moudulation for a second generation digital terrestrial television broadcasting system(DVB-T2)[S].2006.
    [43]13818-1 I. Information technology-generic coding of moving pictures and associated audio information-part1:systems[R].,1998.
    [44]IETF. The NewReno Modification to TCP's Fast Recovery Algorithm[S].2004.
    [45]Fall K R, Stevens W R. TCP/IP Illustrated, Volume 1:The Protocols, Second Edition[M]. Pearson Education,2012.
    [46]Ren F. Modeling and Improving TCP Performance over Cellular Link with Variable Bandwidth[J]. Communications Magazine, IEEE.2011,10(8):1057-1070.
    [47]Ceco A, Nosovic N. Performance comparison of different TCP versions designed for networks with high speeds and over long distances[C]//MIPRO,2011 Proceedings of the 34th International Convention,2011:500-504.
    [48]Elrakabawy S M, Lindemann C. A Practical Adaptive Pacing Scheme for TCP in Multihop Wireless Networks[J]. Networking, IEEE/ACM Transactions on.2011,19(4):975-988.
    [49]Gu Y, Grossman R L. UDT:UDP-based Data Transfer for High-Speed Wide Area Networks[J]. Computer Networks (Elsevier).2007,51(7):1777-1799.
    [50]Ha S, Rhee I, Xu L. CUBIC:a new TCP-friendly high-speed TCP variant[J]. Newsletter ACM SIGOPS Operating Systems Review.2008,42(5):64-74.
    [51]IETF. Highspeed TCP for large congestion windows[S].2003.
    [52]Luglio M, Sanadidi M Y, Gerla M, et al. On-board satellite "split TCP" proxy[J]. Selected Areas in Communications, IEEE Journal on.2004,22(2):362-370.
    [53]Matsumoto M, Yamamoto M. Performance evaluation of flow fairness in proxy-based TCP for ad hoc networks[C]//Communications, Computers and Signal Processing (PacRim),2011 IEEE Pacific Rim Conference on,2011:780-785.
    [54]Idhayamalar J, Rao B S. Split-TCP proxy based performance enhancement over wireless cellular link[C]//Computing, Communication and Applications (ICCCA),2012 International Conference on,2012:1-5.
    [55]Xiaolong L, Yousefi'Zadeh H. RAPPEP:A framework for deploying router-assisted congestion control protocols at TCP performance enhancement proxy[C]//Wireless Communications and Networking Conference (WCNC),2012 IEEE,2012:2478-2482.
    [56]李长龙6LoWPAN技术的研究与头部压缩的实现[D].吉林大学,2011.
    [57]Hui J, Thubert P. Compression Format for Ipv6 Datagrams in 6LoWPAN Networks[S]. 2008.
    [58]Wikipedia. IP over DVB[Z].2012:2012.
    [59]田进.团结协作扎实工作积极稳妥推进三网融合[R].北京:,2011.
    [60]Mayer A, Collini-Nocker B, Vieira F, et al. Analytical and Experimental IP Encapsulation Efficiency Comparison of GSE, MPE, and ULE over DVB-S2[C]//Satellite and Space Communications,2007. IWSSC '07. International Workshop on,2007:114-118.
    [61]王重钢,隆克平,龚向阳,et a1.分组交换网络中队列调度算法的研究及展望[J].电子学报.2001,29(4):553-559.
    [62]Bennett J, Zhang H. Hierarchical packet fair queueing algorithms[J]. IEEE/ACM Transations on Networking.1997,5(5):675-689.
    [63]Golestani S J. A self-clocked fair queueing scheme for broadband applications[C]//IEEE INFOCOMM'94,1994:636-645.
    [64]Wu J, Liu J, Zhao W. Utilization-Bound Based Schedulability Analysis of Weighted Round Robin Schedulers [C]//Real-Time Systems Symposium,2007. RTSS 2007.28th IEEE International,2007:336-435.
    [65]Lenzini L. Tradeoffs between low complexity, low latency, and fairness with deficit round-robin schedulers[J]. IEEE/ACM Transactions on Networking.2004,12(4):681-693.
    [66]Ramabhadran S, Pasquale J. The Stratified Round Robin Scheduler:Design, Analysis and Implementation[J]. Networking, IEEE/ACM Transactions on.2006,14(6):1362-1373.
    [67]Martinez-Morais R, Alfaro-Cortes F J, Sanchez J L. Providing QoS with the Deficit Table Scheduler[J]. Parallel and Distributed Systems, IEEE Transactions on.2010,21(3):327-341.
    [68]Yifei H, Songlin S, Xiaojun J, et al. A novel scheduler of GSE over DVB-S2[C]//Broadband Network and Multimedia Technology (IC-BNMT),2010 3rd IEEE International Conference on,2010:1140-1144.
    [69]Chaput E, Beylot A L, Baudoin C. Packet Scheduling Over DVB-S2 Through GSE Encapsulation[J]//Global Telecommunications Conference,2008. IEEE GLOBECOM 2008. IEEE,2008:1-5.
    [70]Fairhurst G, Giambene G, Giannetti S, et al. Multimedia traffic scheduling in DVB-S2 networks with mobile users[C]//Satellite and Space Communications,2008. IWSSC 2008. IEEE International Workshop on,2008:211-215.
    [71]Tropea M, Veltri F, De Rango F, et al. Two Step Based QoS Scheduler for DVB-S2 Satellite System[C]//Communications (ICC),2011 IEEE International Conference on,2011:1-5.
    [72]Rendon-Morales E, Mata-Diaz J, Alins J, et al. Adaptive Packet Scheduling for the Support of QoS over DVB-S2 Satellite Systems[C]//International Federation for Information Processing,2011:15-26.
    [73]Pradas D, Vazquez-Castro M A. NUM-Based Fair Rate-Delay Balancing for Layered Video Multicasting over Adaptive Satellite Networks[J]. Selected Areas in Communications, IEEE Journal on.2011,29(5):969-978.
    [74]Stiliadis D, Varma A. Latency-rate servers:a general model for analysis of traffic scheduling algorithms[C]// INFOCOM'96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking the Next Generation. Proceedings IEEE,1996:111-119.
    [75]Daniel L, Kojo M. Enhancing TCP with cross-layer notifications and capacity estimation in heterogeneous access networks:Local Computer Networks (LCN),2012 IEEE 37th Conference on[Z].2012:38,392-400.
    [76]胡海波.无线异构网络发展综述[J].现代电信科技.2009(12):19-30.
    [77]Marchese M. QoS over heterogeneous Networks[M]. WILEY,2007.
    [78]毕元梅,徐昌彪,尤齐.异构网络中TCP面临的问题及解决方案[J].2008(2):39-43.
    [79]Bakre A, Badrinath B R. I-TCP:Indirect TCP for Mobile Hosts[C]//Proceedings of ICDCS 1995,1995:136-143.
    [80]Brown K, Singh S. M-TCP:TCP for mobile cellular networks[J]. ACM Computer Communications Review.1997,27(5):19-43.
    [81]Bin Z, Lu Y, Zhichen C. A network intrusion detection system with the snooping agents[C]// Computer Application and System Modeling (ICCASM),2010 International Conference on, 2010:V3-V232.
    [82]Dutta D, Zhang Y. An active proxy based architecture for TCP in heterogeneous variable bandwidth networks[C]//Global Telecommunications Conference,2001. GLOBECOM '01. IEEE,2001:2316-2320.
    [83]Osada S, Wang H, Yokohira T, et al. Throughput Optimization in TCP with a Performance Enhancing Proxy[C]//Communication Technology,2006. ICCT'06. International Conference on,2006:1-6.
    [84]Srivastava V, Motani M. Cross-Layer Design:A Survey and the Road Ahead[J]. IEEE Comm. Magazine.2005,43(12):112-119.
    [85]Van Der Schaar M, Sai S N. Cross-layer wireless multimedia transmission:challenges, principles, and new paradigms[J].2005,12(4):50-58.
    [86]Harhalakis S, Samaras N, Vitsas V. An Experimental Study of the Efficiency of Explicit Congestion Notification[C]//Informatics (PCI),2011 15th Panhellenic Conference on, 2011:122-126.
    [87]Balakrishnan H, Padmanabhan V N, Seshan S, et al. A comparison of mechanisms for improving TCP performance over wireless links[J]. Networking, IEEE/ACM Transactions on. 1997,5(6):756-769.
    [88]Buchholcz G, Ziegler T, Van Do T. TCP-ELN:on the protocol aspects and performance of explicit loss notification for TCP over wireless networks[C]//Wireless Internet,2005. Proceedings. First International Conference on,2005:172-179.
    [89]俞一凡.第四代移动通信系统的跨层设计研究[D].北京邮电大学,2006.
    [90]顾明,张军.适用于卫星网络的TCP跨层改进机制[J].电子与信息学报.2008,30(8):1815-1819.
    [91]Mukaidani H, Lin C, Xuemin S. Stable Queue Management for Supporting TCP Flows over Wireless Networks[C]//Communications (ICC),2011 IEEE International Conference on, 2011:1-6.
    [92]Mung C. To layer or not to layer:balancing transport and physical layers in wireless multihop networks[C]//INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies,2004:2525-2536.
    [93]Bin L, Martins P, Samhat A E, et al. A Layer 2 Scheme of Inter-RAT Handover between UMTS and WiMAX[C]//Vehicular Technology Conference,2008. VTC 2008-Fall. IEEE 68th,2008:1-5.
    [94]Caini C, Firrincieli R, Cruickshank H, et al. Satellite communications:From PEPs to DTN[C]//Advanced satellite multimedia systems conference (asma) and the 11th signal processing for space communications workshop (spsc),2010 5th,2010:62-67.
    [95]Elloumi O, Golmie N, Afifi H, et al. A study of TCP dynamics over HFC networks[C]// Global Telecommunications Conference,1998. GLOBECOM 1998. The Bridge to Global Integration. IEEE,1998:545-550.
    [96]Won-Tae K, Jin-Tae K, Nae-Jin K, et al. A study on the end-to-end performance of TCP over ABR at the HFC network using an ATM backbone network[C]//TENCON 99. Proceedings of the IEEE Region 10 Conference,1999:1395-1398.
    [97]Wanjiun L. The behavior of TCP over DOCSIS-based CATV networks[J].2006,54(9): 1633-1642.
    [98]Ucb/lbnl/isi/vint. NS-2 2,34[Z].2011.
    [99]Perry E, Ramanathan S. Network management for residential broadband interactive data services[J]. IEEE Communications Magazine.1996,34(11):114-121.
    [100]Wei D X, Cao P. A linux TCP implementation for NS2[Z].2006.
    [101]Jacobson V. Modified TCP Congestion Control and Avoidance Algorithms[S].1990.
    [102]Chai W, Pavlou G. Cross-layer enhancement to TCP slow-start over geostationary bandwidth on demand satellite networks[C]//7th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking,2007:86-98.
    [103]M M, J S, J M. The macroscopic behavior of the TCP congestion avoidance algorithm[J]. ACM SIGCOMM Computer Communication Review.1997,27(3):67-82.
    [104]Wei D X, Cheng J, Low S H, et al. FAST TCP:Motivation, Architecture, Algorithms, Performance[J]. Networking, IEEE/ACM Transactions on.2006,14(6):1246-1259.
    [105]章健军.无线传感器网络中报头压缩算法研究与实现[D].湖南大学,2009.
    [106]Cheng-Yuan H, Cheng-Yun H, Jui-Tang W. Performance Improvement of Delay-Based TCPs in Asymmetric Networks[J]. Communications Letters, IEEE.2011,15(3):355-357.
    [107]Balakrishnan H, Padmanabhan V N. How network asymmetry affects TCP[J]. Communications Magazine.2001.
    [108]Fei G, Liansheng T. Improving FAST TCP Performance in Asymmetric Networks[C]// Wireless Broadband and Ultra Wideband Communications,2007. AusWireless 2007. The 2nd International Conference on,2007:56.
    [109]Rai I A, Hellen T. On improving the TCP performance in asymmetric wireless mesh networks[C]//Communications, Computing and Control Applications (CCCA),2011 International Conference on,2011:1-6.
    [110]Pelletier G, Sandlund K, Ericsson. Robust Header Compression(ROHC):A profile for TCP/IP(ROHC-TCP)[S].2007.
    [111]Liu Y, Ye M, Zhang H. The improvement of TCP performance in bandwidth asymmetric network[C]//Personal, Indoor and Mobile Radio Communications,2003. PIMRC 2003.14th IEEE Proceedings on,2003:482-486.
    [112]周逻理.基于Linux平台的ROHC (?)(?)头压缩系统的研究与实现[D].北京:北京邮电大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700