突发事件发生后不实信息的传播问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2011年日本大地震后,有关碘盐抗辐射的不实信息引发抢购食盐风波引起了民众恐慌,造成了极其混乱的局面,严重影响了人民的正常生活,大大降低了人民生活的幸福指数。事实表明,不实信息尤其是负面消极信息的广泛传播,会产生极其恶劣的影响,往往比直接的突发事件本身更能影响广大群众的正常工作与生活,甚至危机社会和政治的稳定。
     突发事件发生后,人们对于信息的渴求异于平常,如果这个时候政府和媒体对信息的传播不加以透明化、详细化、控制化,可能会导致小道消息满天飞、人们心理情绪极度紧张、各种慌乱不时发生,造成比自然灾害本身更加严重的后果。相反,如果在政府、媒体、公众三者之间存在一个畅通的信息传播渠道和有效的信息传播模式,则有利于降低社会恐慌、减少事件中不良效应的扩展与传播、搭建信息上下沟通的平台,而且能够更好的建立政府和媒体的公信力,树立二者良好的形象。
     论文以不实信息为研究主体,以系统动力学为基础,针对现代不实信息传播的新特点,从个体对于信息的认知模式、社会层面的不实信息分析方法和传播规律、以及应急管理层面的政府决策对于不实信息传播的影响,系统地研究在非常规突发事件发生后个体的不实信息认知和情绪、不实信息传播规律、控制策略以及官方应急处理与不实信息传播之间的关系,从而提高政府有关部门对不实信息和舆情的判断能力和公共宣传能力,通过不同情景下有效地干预、控制和引导社会公众行为提供决策理论、方法和决策支持工具。
     第一章是绪论部分,这部分内容主要阐述本研究选题的背景、研究的技术路线,并且讨论了研究主要创新点和所期望达到的研究目标。
     第二章是文献综述部分,分析和探讨已有信息传播的相关研究,包括对已有的研究进行回顾,评论已有方法的不足,确定需要进一步研究的方向。
     第三章是相关概念,鉴于目前对于信息的定义界定存在模糊的情况,论文基于谣言、谎言等信息,首次界定了不实信息的概念。
     第四章研究了有关不实信息的竞争传播问题。主要包括两个方面:一是,有关信息本身的竞争与传播;按照不实信息的定义,不实信息本身实际包含反应实际情况的真实信息,同时包含由于在传播中扭曲或者人为捏造的虚假信息。民众如何从混乱的不实信息中辨识真实信息和虚假信息,避免造成社会损失,是作者研究的一个出发点。基于Gilpin-Ayala扩散模型,建立突发事件中不实信的竞争扩散与传播模型,并对模型的动态过程进行深入分析。二是,有关不实信息受众个体之间的竞争,可以说“不实信息止于智者”,所谓的“智者”假设是理性人群,他们对于不实信息有自己的理解与认识;与之对应存在一部分有限理性人群,他们对不实信息一时不能辨识,极有可能相信并积极传播。结合定量动力学模型进一步阐述谚语的理论意义,利用微分动力系统理论研究了不实信息的传播规律,探讨不实信息传播的最终稳定性状态,得到了不实信息是否蔓延的阈值。通过对参数的控制,可以调整不实信息控制策略,为管理者在舆论控制决策中提供理论支持和决策依据。
     第五章在经典的不实信息传播模型的基础上,考虑了不实信息传播的潜伏阶段,分别考虑潜伏阶段的个体是否传播不实信息的动力学模型,探讨不实信息的传播机理,得到不实信息控制的阈值,最后比较了两种情形下的控制策略的异同,得到应急管理的启示与思考。
     第六章主要研究了不实信息在传播过程中的影响因素,个体的心理效应对于不实信息传播的影响。本文考虑一个受到个体心理效应影响的不实信息传播率,以非线性的形式体现在不实信息传播的动力学模型中,通过比较与数据的模拟说明了非线性传播率的合理性。在此基础上,探讨了不实信息控制的阈值,对应提出了不实信息应急管理的建议与策略。
     第七章基于系统动力学的思想,提出了不实信息的动态传播模型,刻画了科普教育以及媒体覆盖对于不实信息传播的影响,分析了模型的稳定性态。为了克服静态决策的局限性,论文基于最优控制理论的方法,构建了社会效用最大化得控制模型,利用庞特里亚金最大值原理,进一步探讨得出了不实信息传播的动态最优控制策略。最后,基于模型推导结论和数据模拟,说明了最优控制的优势所在,提出了在应急管理中不实信息的控制建议与思考,为应急管理奠定了理论基础和决策依据。
     第八章主要探讨以政府为代表的不实信息管理者在应急处理中扮演的角色,借助交互模型刻画应急处理效用与不实信息传播效用之间的相互影响,动态掌握二者的之间的交互关系,通过模型的分析与探讨,在不同的情况下,管理者应急投入相应也不同,进而保证应急管理的社会效用最大化。
     第九章是对全文研究工作的总结。其中包括主要研究结论、关键创新点、管理启示、研究局限与研究展望等。
     本文的创新点主要体现在以下几个方面:
     (1)鉴于目前对于流言的定义界定存在模糊的情况,论文基于谣言、谎言等不同观点,首次界定了不实信息的概念。
     (2)研究了有关不实信息的竞争传播问题,分别从信息本身的角度和信息传播受众的角度来研究,可以更加全面的剖析有关不实信息传播过程中的竞争问题,丰富了目前信息竞争的研究。
     (3)结合不实信息传播的实际,论文探讨了具有潜伏期的不实信息传播问题。分别考虑潜伏阶段的个体是否传播不实信息的动力学模型,探讨不实信息的传播机理,拓展了经典的信息传播模型,模型结果更加符实际情况,得到的管理学启示更有说服力。
     (4)研究不实信息在传播过程中的影响因素,考虑个体的心理效应,媒体覆盖,科学知识普及等都对于突发事件后的不实信息传播造成影响,从控制论的角度探讨了外界因素对于不实信息传播的最优控制问题。本研究所提出的模型将进一步丰富在信息的传播理论,提供了信息研究的新视角。
     (5)借助交互模型刻画应急处理效用与不实信息传播效用之间的相互影响,动态掌握二者的之间的交互关系,有利于管理者在实际管理中对于应急救援和信息控制的平衡,保证应急策略的高效性,减少社会损失。
After the earthquake in Japan last year, the unconfirmed information about edible iodinsalt with the functionality of anti-radiation had already triggered stampedes at supermarketsfor iodin salt, which had aroused the people’s extreme panic in the chaotic situation, andseriously influenced people's life, it actually causing lower average levels of happiness andlife satisfaction. In fact, the spread of the unconfirmed information which can create anodious influence, especially the fake information, can easily affect people’s work and lifethan the disastrous itself, and even trigger social unrest and snowball into a political crisis.
     People are hungry for information about the emergency event after the interruption, somegossip of the emergencies news will fill all the place if the government departments andmedia deliberately make information asymmetry, vague, non-transparent. Consequently,many people suffer from the stress and anxiety, which can certainly lead to very seriousconsequences in the emergent event. On the contrary, if the government, media and the publiccommunicate closely with each other, then correct, timely information channels can be easilyobtained and made available to all. This will help reduce the social panic and adverse effectsof the expansion and dissemination of the unconfirmed information, and build the platformand standardized disclosure mechanism of information,.This will enhance people’s trust inthe government and media, it is very critical in establishing the positive image for them.
     In this paper, the unconfirmed information is the research subjects, it is based on systemdynamics and the new features of unconfirmed information transmission process. This studyincludes: the cognitive mode of the information of the individual, the analytied methods andpropagation law for unconfirmed information from the social dimension, and the significant implication for unconfirmed information spreading generated by the authorities’ actions.Then, people’s emotional and cognitive, the propagation and control strategies, the relationbetween authorities’ actions and unconfirmed information spreading were researchedsystematically. That will be helpful for judgment and publicity planning capabilities of theauthorities for unconfirmed information in emergency event. By effective intervening,controlling and guiding public social behavior,it will provide a theory and decisionsupporting tools for managers
     Chapter1is introduction. The research expatiates on the thesis’s research background,why the thesis focuses on this issue, how does this thesis is conducted, the main innovativepoints of this paper, and the expecting objectives of this research.
     Chapter2is literature review and evaluation. The research analyzes and reviews prioralliance related researches, including the existing researches, and also examines theinsufficiencies of the current methods.
     Chapter3is about related concepts, because of the exacting vaguer definitions of gossip,a new concept of the unconfirmed information is introduced.
     Chapter4is about competition for unconfirmed information. Firstly, competition for theunconfirmed information spreading itself is researched. Unconfirmed information involvesthe true news and fake messages, people need to make sense out of confusion and uncertainty,it is a key to preventing the accident and easing loss of the accident, this is also why thisarticle chooses this field as main research objective. Competitive model about unconfirmedinformation is proposed based on Gilpin-Ayala diffusion model, and procedure ofcompetition and diffusion is analyzed thoroughly. Secondly, competition among the targetedaudience is studied. It is said that unconfirmed information stops at the wise, who has goodidentifiable ability for unconfirmed information. Other people are considered as the limitedrationalists, thus these two group of people need to compete. In this study, the quantitativeanalysis with the support of the dynamic mathematics model is proposed. Using the theory of differential dynamical system, the status and stability of the rumor spreading are analyzed.After the propagation regularity of rumors is discussed, the thresholds are obtained. Thecontrol policies for rumor spreading are obtained by adjusting the parameters. The results ofthe thesis will provide the theoretical support to information control and can be referral fordecision makers’management on public opinions.
     Chapter5researches unconfirmed information transmission model with incubation. Itincorporates infectious force in the latent period. The mechanism of the unconfirmedinformation transmission is discussed, the threshold of control of unconfirmed informationcan be obtained, the similarities and differences of control strategies are compared,suggestions and inspirations to emergency management are achieved.
     Chapter6researches dynamical behavior of a transmission model with psychologicaleffect. The unconfirmed information transmission model with nonmonotonic incidence rate isproposed, which describes the psychological effect of certain serious information on thecommunity when the number of the infectives gets larger. The feasibility and rationality ofthis method are proved by the result of example. Finally, we outlined some strategies formanagers that can contribute to rumor control in an emergent event.
     Chapter7researches the optimal control for unconfirmed information. In this study, thedissemination of unconfirmed information after the emergency occurs is researched based ondynamic method. Firstly, the dynamic model for unconfirmed information spreading isproposed, which depicts the impact of media coverage and science education on thetransmission dynamics of information, and then the stability analysis is studied. Secondly, Inorder to overcome the limit of traditional methods of the static decision problem, the dynamicoptimal control for the transmission unconfirmed information is proposed based on thetheorem of the optimal control. An optimal objective based on the maximum social utility isestablished and the optimal solution is acquired by using the Pontryagin maximum principle.Compared with traditional control method, dynamic optimal control method has the obvious superiority in modeling. Based on the above generalizations, the paper presents somestrategies for unconfirmed information spreading and puts forward emergencydecision-making theoretical foundation and methodology basis.
     Chapter8researches an interplay model for authorities’ actions and unconfirmedinformation spreading. In this study, we present a simple model to describe the interplaybetween rumor spreading and authorities’ actions in emergency situation based on utilitytheory. By drawing from differential equations we find that it is possible to minimize negativesocial utility of rumor spreading in the control of situation. At the same time, authorities’proactive actions can improve rumor management in emergency situation and yield positivesocial utility. Once the relation of those two elements is mastered, it will help maximizemanagement’s utility.
     Chapter9is conclusion and prospect. An overall summary is presented in this chapter,including important research conclusion, key contribution points, and suggestions tomanagement. This chapter also points out the research limitation and some suggestions forfuture research.
     This research includes the following contributions and innovations:
     (1)Because of the exacting vaguer definitions of gossip, a new concept of theunconfirmed information is introduced.
     (2) Competition for unconfirmed information is researched from the angle of theunconfirmed information itself and the targeted audiences, respectively. A betterunderstanding of the competition for unconfirmed information spreading is achieved in thispaper. The study will fill up the blank of competition information research.
     (3)The unconfirmed information transmission model with incubation is proposed,which incorporates infectious force in the latent period. Some modifications and extensionfor the classical model of information spreading are obtained. This result meets the actualcircs better and easier to be understood.
     (4)Some factors affecting the unconfirmed information transmission are considered,such as psychological effect for individual, media coverage and science education. Anoptimal objective based on the maximum social utility is established and the optimal solutionis acquired by using the Pontryagin maximum principle. The research to the optimal controltheory has provided a new visual angle to unconfirmed information spreading and hasenriched information research at the same time.
     (5)We present a simple model to describe the interplay between rumor spreading andauthorities’ actions in emergency situation based on utility theory. Only on this condition, itcan contribute to grasp the law of interplay relations better. This will induce emergencymanager to balance the emergency rescues with the control of information. It can guaranteethe efficiency for emergency strategies, minimize the losses caused by the disaster.
引文
Allport.G.W,Postman.L.1947. An analysis of rumor. Public Opinion Quarterly,10(4):501-517.
    Allport.G.W,Postman.L.1947. The Psychology of Rumor. NewYork:Henry Holt.1947:164.
    Allport.G.W,Postman.L.1975. The Psychology of Rumor.2nd ed.New York: Russell and Russell.
    Anguelov.R, Dumont.Y, Lubum. J.2009. Comparison of some standard and nonstandard numericalmethods for the MSEIR epidemiological model
    Angelis.E.D, Delitala.M.2006. Modelling complex systems in applied sciences; methods and tools of themathematical kinetic theory for active particles, Mathematical and Computer Modelling,43(11-12):1310-1328.
    Autiero.M, Smet.F.D, Claes F,et al.2005. Role of neural guidance signals in blood vessel navigation,Cardiovascular Research,65(3):629-638.
    Bame.N, Bowong.S, Mbang J, et al.2008. Global stability analysis for SEIS models with n latent classes.Math Biosci Eng.5(1):20-33.
    Banasiak.J, Lachowicz.M, Moszyski.M.2003. Topological chaos: When topology. meets medicine AppliedMathematics Letters,16(3):303-308
    Bailey.N.T.J.1975. The Mathematical Theory of Infectious Diseases and Its Applications. New York:Hafner Press.
    Barbu. J.V.1984b. The time optimal control problem for parabolic variational inequalities, Appl. Math.Optim,11,1-22.
    Belen.S, Pearce.C. E.M.2004. Rumours with general initial conditions. The ANZIAM Journal,45:393-400
    Belen.S, Yal inKaya.C, Pearce.C. E. M.2005. Impulsive control of rumours with two broadcasts. TheANZIAM Journal,46:379-391
    Belen. Selma,2008. The behaviors of stochastic rumours. Thesis (Ph.D.)-University of Adelaide, Schoolof Mathematical Sciences.
    Belen.S.E. Kropat.G.W. Weber.2009. On the classical Maki–Thompson rumour model in continuoustime.Central European Journal of Operations Research,1-17.
    Bernouli D.1760. Essai d'une nouvelle analyse de la mortalite causee par la petite verole et des avantagesde l'inoculation pour al prevenir, in Memoires de Mathematiques et de physique[J]} Paris: AcademieRoyale des Sciences,1-45.
    Bordia.P.1996, Studying verbal interaction on the internet: the case of rumor transmission research.Behavior Research Methods,Instruments and Computers,28(2):149-151.
    Bordia.R,Rosnow.R.L.1998, Rumor rest stops on the information highway-transmission patterns in acomputer-mediated rumor chain. Human Communication Research,25(2):163-179.
    Castillo.C.C, Feng.Z, Huang.W.2002. Mathematical Approaches for Emerging and Re-EmergingInfectious Diseases: An Introduction, Springer Verlag.
    Castillo.C.C, Song.B.2004. Dynamical models of tubercolosis and their applications, Math. Biosci.Eng,1361-404.
    Chebotarev.N.G, Meiman.N.N.1949. The Routh-Hurwitz problem for polynomials and entire functions.Trudy Mat. Inst. Steklov.,26, Acad. Sci. USSR, Moscow–Leningrad,3–331.
    Chen.O.1999. Obstacle control problem for semilinear elliptic variational inequalities. SIAM J. ControlOptim., Vol.38.
    Cintro n. A.-Arias.2006. Modeling and parameter estimation of contact processes, Cornell UniversityPhD thesis.
    Cintron.Arias.A.,2006. Modeling and parameter estimation of contact processes. Cornell University,Doctor of Philosophy.
    Daley.D.J, and Kendal.D.G.1965. Stochastic rumours, J. Inst. Maths Applics,42-55
    Daley.D.J, Gani.J.2001. Epidemic modelling: an introduction. Cambridge; New York: CambridgeUniversity Press.
    Danzig. E.R., Thayer. P.W., Galanter.L.R.1958. The Effects of a Threatening Rumor on a Disaster-StrickenCommunity, National Academy of Science–National Research Council,Washington, DC.
    Danielsen.M.J, Thomas.B.2008. Rumours interplay in disaster management. International Journal of RiskAssessment and Management,(17)334-350
    Dickinson.R.E, Pearce. C. E. M.2003. Rumours, Epidemics, and Processes of Mass Action: Synthesis andAnalysis, Mathematical and Computer Modeling,38:1157-1167
    DiFonzo.N,Bordia P.2000. How top PR professionals handle hearsay: corporate rumors,their effects,and strategies to manage them. Public Relations Review,26(2):173-190.
    DiFonzo.N,Bordia P.2002. Organizational behavior and human decision processes.88(2):785-800.
    Dodd S.C.1958. Formulas for spreading opinions. Public Opinion Quarterly,22(4):537-554.
    D'Onofrio.A..2006. On a family of models of cell division cycle, Chaos Solitons and Fractals,27(5):1205-1212.
    Duan.L.X, Lu.Q.S, Yang.Z.Z, et al.2004. Effects of diffusion on a stage-structured population in a pollutedenvironment, Applied Mathematics and Computation,154(2):347-359.
    Esteva.L, Matlas.M.,2001. A model for vector transmitted diseases with saturation incidence Journal ofBiological Systems,9(4).
    Fattorini. H.O.1999. Infinite dimensional optimization and control theory, Encyclopedia of Math. and ItsApplications62, Cambridge University Press.
    Fisher.D.R.1998. Rumoring theory and internet-a framework for analyzing the grass roots. Social ScienceComputer Review,16(2):158-168.
    Feng.Z, Thieme.H.R.2000. Endemic models with arbitrarily distributed periods of infection, I: Generaltheory, SIAM. J. Appl.61:803.
    Fleming.W.H, Rishel.R.W.1975. Deterministic and Stochastic Optimal Control[M]. New York:SpringerVerlag.
    Fonzo.D.N,Bordia.P.2000. How top PR professionals handle hearsay: corporate rumors,their effects,and strategies to manage them[J].Public Relations Review,26(2):173-190.
    Gani.J.1984. Matrix-Geometric Methods for the General Stochastic Epidemic Math Med Biol.(1(4):333-342.
    Gani.J, Purdue.P.2000. The Maki-Thompson Rumour Model: A Detailed Analysis. EnvironmentalModelling and Software,15:(8)721-725.
    Gao.H, Li.X.2000. Necessary conditions for optimal control of elliptic systems, J.Austral.Math, Soc. Ser B41,229-236.
    Gao.H, Pavel.N.2003. Optimal control problems for a class of semilinear multisolution elliptic equations toappear in J. Optim. Theory and Appl.38(2),353-380.
    Gao.S.J, Chen.L.S.2005. Dynamic complexities in a single-species discrete population model with stagestructure and birth pulses, Chaos, Solitons and Fractals,23(2): S19-527.
    Gao.S.J, Chen.L.S, Teng.Z.D.2008. Pulse vaccination of an SEIR epidemic model with time delay,Nonlinear Analysis: Real WorldApplications,9(2):599-607.
    Ghezzi.L.L, Piccardi.C.1997. PID control of a chaotic system: An application to an epidemiological model,Automatica,33(2):181-191.
    Gilpin.M.E, Ayala.F.J.1973. Global models of growth and competition, Proc.Nat. Acad.Sci. USA70,3590–3593.
    Goffman.B.W, Newill. V.A.1964. Communication and epidemic processes. Nature,204,225.
    Greenhalgh D., Dielrmann.O., Mart C.M,2000. Subcritical epdemic steady states in mathematical modelsfor animal infections with incomplete immunity. Math Biosci,165:1-25.
    Hahn.J, Edison.T.2001. A note on stability analysis using bode plots. Chemical Engineering Education,208-211.
    Han.L. Ma.Z and Hethcote.H.W.2001. Four predator prey models with infectious diseases. Mathl.Comput. Modelling,34,849–858
    Hale.J.K.1969.Ordinary differential equations. New York: Wiley-Interscience.296-297.
    Hall.S:1997.Cultural Representations and Signifying Practices[M]. London: Sage Publications.
    Herzog.G, etc.,2004. Nonautonomous SEIRS and Thron models for epidemiology and cell biology.Nonlinear Anal.,5,33-44.
    Hethcote.H.W, Vanden.D.P.1991. Some epidemiological models with nonlinear incidence [J], J. Math.Biol.29:271-287.
    Hethcote.H.W.2000. The mathematics of infectious diseases.SIMAReview,42(4):599-653.
    Hethcote.H.W, Ma Z, Liao S.2002. Effects of quarantine in six endemic models for infectious diseases,Math. Biosci.,180:141-160.
    Hui.J, Chen.L.2004. Impulsive vaccination of SIR epidemic models with nonlinear incidence rates.Discrete and Continuous Dynamical Systems, series B,4:595-605.
    Huo.L.A, Huang.P.Q, Fang.X,2011.An interplay model for authorities’ actions and rumor spreading inemergency event Physica A: Statistical Mechanics and its Applications,390,(20)1,3267-3274
    Herzog.G, etc.,2004. Nonautonomous SEIRS and Thron models for epidemiology and cell biology.Nonlinear Anal.,5,33-44.
    Jaeger.M.E, Anthony..M,Rosnow.R.L.1980. Who hears what from whom and with what effect: a study ofrumor. Personality and Social Psychology Bulletin,6(3):473-478.
    Jin.Z, Ma.Z.E, Han.M.A.2006. Global stability of an SIRS epidemic model with delays, Acta MathematicaScientia,26B(2):291-306.
    Jung.C.G,1917. AContribution to the psychology of rumor, in C. Jung (Ed),Collected Papers on analyticalPsychology, NewYork: Moffit Yard, pp,166-199.
    Joseph.P. LaSalle.1976. The stability of dynamical systems[M]. Philadelphia: SocFor Indust&Applied.
    Jong.M.C.M., Diekmann.O.Weasterbeek.J.A..P.1994. How does transmission depend on popsize? Humaninfections disease, epidemic models(Mollison D.ed.), Cambridge University Press, Cambridge, UK,84-94.
    Kawachi.K.2008. Deterministic models for rumor transmission. Nonlinear Analysis: Real WorldApplications9:1989-2028.
    Kawachi.K, Seki.M ect.2008. A rumor transmission model with various contact interactions, Journal ofTheoretical Biology253:55–60
    Kloedena1.P. E,Pearson.R.A.2005. The numerical solution of stochastic differential equations. TheANZIAM Journal,46:379-391
    Knapp.R.H.1944. A psychology of rumor. Public Opinion Quarterly,8(1):22-37.
    Kapferer.J.N.1984. Les Chemins de la Persuasion. Paris: Dunod.
    Kapferer J.N.1990. Rumors-Uses, Interpretations, and Images. New Brunswick: Transaction Publishers.
    Kermack.M, Mckendrick. A.1927. Contributions to the mathematical theory of epidemics: Part I. Proc.Roy. Soc. A,115:700-721.
    Klaus.Dietz.1967. Epidemics and Rumours: A Survey. Journal of the Royal Statistical Society. Series,130,(4):505-528
    Klein.E, Laxminarayan.R, Smith.D.L, Gilligan.C.A:2007. Economic incentives and mathematical modelsof disease. Envir. Dev. Economics,12:707-732.
    Kermack.M, Mckendrick.A.1932. Contributions to the mathematical theory of epidemics: Part II. Proc.Roy. Soc. A138:55-83.
    Kuang.Y, Delay.2004. Differential Equations with Applications in Population Dynamics[M]. AcademicPress, London.
    Lazarsfeld.P: Radio and the Printed Page.1940. An Introduction to the Study of Radio and Its Role in theCommunication of Ideas. NewYork: Duell Sloan, and Pearce.
    Lasswell.H.1971. Propaganda Technique in the World War. Cambridge: MIT Press.
    Lebensztayn.E, Machado F.P, Rodríguez P.M.2011. On the behaviour of a rumour process with randomstifling. Environmental Modelling&Software26,517-522
    Lefevre.C, Picard.P.1994. Distribution of the Final Extent of a Rumour Process. Journal ofAppliedProbability,31(1): p.244-249.
    Liu.W.M, Levin.S.A, Iwasa.Y.1986. Influence of nonlinear incidence rates upon the behavior of SIRSepidemiological models, J. Math. Biol.,23:187-204.
    Liu.W.M, Hethcote.H.W and Levin.S.A.1987. Dynamical behavior of epidemiological model withnonlinear incidence rates.J.MathBiol,25:359-380.
    Li.G.H Jin.Z.2005. Global stability of an SEI epidemic model with general contact rate, Solitons&Fractals,23(3).997-1004
    Li.Z.X, Geni Gupur, Zhu. G.T.2009. Existence and Uniqueness of Endemic States for the Age-structuredMSEIR Epidemic Model, ORIGINALPAPERS.18,3,441-454
    Li.J.Q, Ma.Z.E.2002. Qualitative analysis of SIS epidemic model with vaccination and varying totalpopulation size, Math.Comp. Model.35:1235-1243.
    Li. M.Y. Wang. L.2002. Global stability in some SEIR epidemic models. IMA,126,295-311.
    Li.M.Y., Muldowney.J.S.1996. Ageometric approach to the global-stability problems, SIAM J Math Anal,27,1070-1083.
    Lizana.M, Rivero.J.1996. Multiparametric bifurcations for a model in epidemiology. J. Math. Biol.35:21-36
    Liu.Z., Lai.Y.C, et al.2003. Propagation and immunization of infection on general networks with bothhomogeneous and heterogeneous components. Physical Review E,67(3):031911.
    Lou. H.W,2002. An optimal control problem governed by quasilinear variational inequalities,SIAM J.Control and Optim., Vol.41No.4.
    Lu.Z, Chi.X, Chen.L.2002. The effect of constant and pulse vaccination on SIR epidemic model withhorizontal and vertical transmission, Math Comput. Model,36(10):1039-1057.
    Lu.Z.H, Gao.S.J, Chen L S.2003. Analysis of an SI epidemic model with nonlinear transmission and stagestructure. Acta Math. Sci.4:440-446.
    Lukes.D.L.1982. Differential Equations: Classical to Controlled. NewYork:Academic Press.
    Lv. H., Wang.C.2006. Proliferation mechanism of the significant emergent events, Journal of WUT(Information Management Engineering.28(9)7–10.
    Ma.R.2005. Media, Crisis, and SARS:An Introduction. Asian Journal of Comm-unication15(3):241-246.
    Maki.D,Thomson.M.1973. Mathematical Models and Applications. New Jersey: Prentice-Hall,Englewood Cliff.
    Mena-lorca.J, Hethcote.H.W.1992. Dynamic models of infections disease as regulations of populatiomsize,J. Math. Biol.30:693-716.
    Michael.Y.L, John.R.G, Wang.L.C, et al.1999. Global dynamics of a SEIR model with varying totalpopulation size, Mathematical Biosciences,160:191-213.
    Moreno.Y, Nekovee.M, et al.2004. Dynamics of rumor spreading in complex networks. Physical ReviewE69(6):066130.
    Malthus.T.R.1798. An essay on the principle of population as it affects the future improvement of society,with remarks on the speculations of M.Godwin, M.Condorcot, and other writers, J.Johnson, London.
    Murray.J.D.1980. Mathematical Modeling in Epidemiology. Berlin:Springer.
    Muldowney.J. S.,1990. Compound matrices and ordinary di,}'erential equations, Rocky Mount. JMath.20,857-872.
    Pendleton.S.C.1998. Rumor research revisited and expanded. Language&Communication,1(18):69-86.
    Perko.L.1996. Diferential Equations and Dynamical Systems, Springer-Verlag, New York.
    Philip.D.L.2010. The Pontryagin Maximum principle. M403Lecture Notes, March.
    Pearce.C.E.M.2000. The exact solution of the general stochastic rumour. Mathematical and ComputerModelling.31(10-12): p.289-298.
    Peterson.W,Gist.N.1951. Rumor and public opinion. American Journal of Sociology,57(2):159-167.
    Picard.P., Lefevre.C,1990. A Unified Analysis of the Final Size and Severity Distribution in CollectiveReed-Frost Epidemic Processes. Advances inApplied Probability,22(2): p.269-294.
    Pielou.E.C,1977. Mathematics Ecology. New York, Wiley.
    Pinho.M.R. Ferreira.M.M, Ledzewicz.U, et al.2005. A model for cancer chemotherapy with state-spaceconstraints, Nonlinear Analysis,63(5-7):2591-2602.
    Pitte.B.,1987. On Spreading a Rumor. Journal onApplied Mathematics,47(1):213-223.
    Pittel.B.,1990. On a Daley-Kendall Model of Random Rumours. Journal of Applied Probability,27(1):14-27.
    Proctor.P.1988. Longman English-Chinese Dictionary of Contemporary English[M]. Hong Kong:Longman Group (Far East) Ltd1243.
    Rapoport.A., Rebhun.L.1952.On the mathematical theory of rumor spread. Bulletin of MathematicalBiology.14(4):375-383.
    Rapoport.A.1953. Spread of information through a population with socio-structural bias: I. Assumption ofTransitivity. Bulletin of Mathematical Biology.15(4):523-533.
    Rosnow.R.L, Fine.G.A.1976. Rumor and Gossip: The Social Psychology of Hearsay. New York: ElsevierNorth-Holland.
    Rosnow.R.L.1991. Inside rumor: a personal journey. American Psychologist,46(5):484-496.
    Ross.R.1911. The Prevention of Malaria,2nded,Murray, London.
    Ruan.S.G, Wang.W.D.2003. Dynamic behavior of an epidemic model with a nonlinear incidence rate.J.Diff. Eqns.18:135-163.
    Shi.S.Z.1988. Optimal control of strong monotone variational inequalities. SIAMJ. Control andOptim.Vol.26.
    Smith.M.C.1981, On the generalized Nyquist stability criterion, International Journal of Control Volume34, Issue5,885-920
    Smith.H.L.1988. Systems of ordinary differential equations which generate an order preserving flow.SIAM Rev,30,87-113.
    Stone.L, Shulgin B, Agur Z.2000. Theoretical examination of the pulse vaccination policy in the SIRepidemic model. Math.Comput.Modelling,31:207-215.
    Sudbury.A..1985. The Proportion of the Population Never Hearing a Rumour. Journal of AppliedProbability,22(2): p.443-446.
    Sun.P, Yang.X. B.2000. Dynamic behaviors of the Ricker population model under a set of randomizedperturbations, Mathematical Biosciences,164:147-159.
    Tchuenche et al.2011. The impact of media coverage on the transmission dynamics of human influenza.BMC Public Health11(Suppl1):S5.
    Thompson.K A2003.DeterministicApproach to the Spread of Rumors, Technical Report BU-1642-M,
    Vanden.D.P, Watmongh.J.2000. A simple SIS epidemic model with a backward bifurcation [J], J. Math.Biol.40:525-540.
    Walker.C.J,Beckerle.C.A.1987. The effect of anxiety on rumor transmission. Journal of Social Behaviorand Personality,2(3):353-360.
    Wang.G.S.2000.Optimal control of parabolic differential equations with two point boundary stateconstraint, SIAbI J. Control and Optim., Vol.38,1639-1654.
    Wang.W.D, Ma.Z.E.2002. Global dynamics of an epidemic model with time delay. Nonlinear Analysis:Real WorldApplications,3(3):365-373.
    Wang.W.D.2002. Global behavior of an SEIRS epidemic model with time delays, Applied MathematicsLetters,15(4):423-428.
    Wang.W.D, Mulone.G, Salemi.F, et al.2001. Permanence and stability of a stage-structured predator-preymodel, Journal of Mathematical Analysis andApplications,262(2):499-528.
    Wang.J, Wang.K.2004. The optimal harvesting problems of a stage-structured population, AppliedMathematics and Computation,148(1):235-247.
    Wang.W.M, Wang.X.Q, Lin.Y.Z.2008. Complicated dynamics of a predator-prey system with Watt-typefunctional response and impulsive control strategy[J), Chaos, Solitons and Fractals,37(5):1427-1441.
    Wang.X.Q, Wang.W.M, Lin.X.M.2008. Chaotic behavior of a Watt-type predator-prey system withimpulsive control strategy, Chaos, Solitons and Fractals,37(3):706-718.
    Ware.N.C, Wyatt.M.A, Tugenberg.T.2005. Adherence, stereotyping and unequal HIV treatment for activeusers of illegal drugs, Social Science and Medicine,61(3):565-576.
    Watson. R.,1987. On the size of a rumour. Stochastic Processes and their Applications,27:141-149...
    William, Stern.1902. Zur psychologie der Aussage.Experimentelle Untersuchungenu ber..Erinnerungstreue, in Zeitschrift fu r die gesamte Strafrechtswissenschaft,22:315.
    Wu.L, Feng.Z.2000. Homoclinic bifurcation in an SIQR model for childhood disease, J. Diff. Eqns.168:150-167.
    Xiang.X.L,1997. Necessary conditions of optimality for differential inclusion on Banach spaces,Nonlinear Analysis, Vol.30.223-245
    Xiao.Y.N, Chen.L.S.2002. A SIS epidemic model with stage structure and a delay [J], ActaMath.Appl.Sinica, English Series.18:607-618.
    Xiao.Y.N, Chen.L S.2001. Effects of toxicants on a stage-structured population growth model, AppliedMathematics and Computations,123(1):63-73.
    Xu.R, Chen.L.S, Hao.F.L.2005. Periodic solutions of an n-species Lotka-Volterra type food-chain modelwith time delays, Applied Mathematics and Computation,171(1):511-530.
    Yang.G.Q.2003. Uncertainty, break and Government crisis management, Economic Management13,14–20.
    Ye.Y.1995. Qualitative Theory of Polynomial Differential Systems, Shanghai Scientific and TechnicalPublishers, Shanghai.1–618,
    Yoshida.N, Hara T.2007. Global stability of a delayed SIR epidemic model with density dependent birthand death rates, Journal of Computational and Applied Mathematics,201(2):339-347.
    Zanette.D. H.2002. Dynamics of rumor propagation on small-world networks. Physical Review E65(4):041908.
    Zhang.T.L, Teng.Z.D.2008. Pulse vaccination delayed SEIRS epidemic model with saturation incidence.Applied Mathematical Modeling,32(7):1403-1416.
    Zhang.G.S, Wang.Y.F.2007. Minimal wave speed in a diffusive epidemic model with temporal delayApplied Mathematics and Computation,188(1):275-280.
    Zhang.Z.L, Zhang.Z.Q,2009. An interplay model for rumor spreading and emergency development.PhysicalA.388:4159-4166.
    Zhao L C, Zhang Q L, Yang Q C.2003. Optimal impulsive harvesting for fish populations, Journal ofSystem Science and Complexity,16(4):466-474.
    Zhou.J., Liu.Z, et al.,2007. Influence of network structure on rumor propagation. Physics Letters A,368(6):458-463.
    奥尔波特,2003,谣言心理学,刘水平等译,沈阳:辽宁教育出版社。
    巢乃鹏,黄娴.2004.网络传播中的“谣言”现象研究.情报理论与实践,27(6):586-589
    陈力丹.1999.舆论学—舆论导向研究.北京:中国广播电视出版社.
    陈兰荪.1991.数学生态模型与研究方法,北京:科学出版社,199-232.
    陈长坤,李智,孙云凤.2008.基于复杂网络的灾害信息传播特征研究.灾害学,23(4):126-129.
    董媛媛.2006.论灾害报道的有效传播—新闻价值与社会效果的平衡.新闻知识,(12):35-37.
    官建文.2006.构筑防堵网络谣言的有效机制.新闻战线.
    胡钰.2000.大众传播效果.北京:新华出版社:113-116.
    胡汝鼎主编,1963.第一届国际自动化学术会议论文选集,上海:上海科学技术出版社.
    霍良安,黄培清,2011.突发事件中的谣言扩散问题研究---以日本大地震为例,情报杂志77-81.
    江万秀等,1991.谣言透视,北京:群众出版社.
    荆海英,赵立纯.1998.微生物连续培养模型的溢流量控制,生物数学学报,13(5):599-603.
    荆海英.2002.可再生性资源开发系统的调控与最优管理,沈阳:辽宁人民出版社,166-180.
    卡普费雷,1991.谣言,郑若麟、边芹译,上海:上海人民出版社。
    刘建明,2000,舆论传播.北京:清华人学出版社。
    吕文凯,2008,舆论学简明教程.郑州:郑州大学出版社:87-95.
    陆征一,周义仓.2005.数学生物学进展.北京:科学出版社,5-7.
    罗斯诺,费恩,1990.流言,唐晖等译,北京:国际文化出版公司.
    马本堃,高尚惠,孙熠.1995.热力学与统计物理学.第2版.北京:高等教育出版社.204-286.
    马知恩,周义仓,王稳地,靳祯.2001.传染病动力学的数学建模与研究.北京:科学出版社.
    马知恩.1996.种群生态学的数学建模与研究,合肥:安徽教育出版社,1-40.
    马知恩.2000.种群动力学与流行病动力学.西安:西安交通大学出版社.
    马知恩.周义仓.2005.常微分方程定性与稳定性方法,北京科学出版社.
    沙莲香.1987,社会心理学.北京:中国人民大学出版社。
    邵成刚.2003.胆小的传谣人传播谣言的Potts模型.武汉:华中科技大学,10-20.
    王军,王辉.2002.具有种群动力学和非线性接触率的SIRS流行病模型,兰州大学学报(自然科学版),38(1);22-29.
    王树禾.1999.微分方程模型与混沌,合肥:中国科学技术大学出版社.
    汪小帆,李翔,陈关荣.2006.复杂网络理论及其应用.北京:清华大学出版社.
    夏征农.1999,辞海,上海:上海辞书出版社,第1158页.
    徐克.1999.生物数学,北京:科学出版社,1-11.
    宣慧玉,张发.2008.复杂系统仿真及应用.北京:清华大学出版社3-101.
    许鹏远.2007.复杂网络伤的传染病模型研究.大连:大连海事大学博士学位论文,33-39
    杨建雅,张凤琴.2006.一类具有垂直传染的SIR传染病模型,生物数学学报,21(3);341-344.
    闫萍.2008.潜伏期的无免疫型传染病动力学模型解的适定性.生物数学学报,23(2):245-256
    雍炯敏,楼红卫.2006.最优控制理论简明教程.北京:高等教育出版社.
    赵越.2005,谣言传播与控制纵横谈.沈阳:辽宁大学,3-18.
    赵立纯,荆海英.1999.微生物连续培养模型的最优溢流量控制,生物数学学报,14(1):32-35.
    赵立纯,张庆灵,杨启昌.2003.三种群食物链系统的耗散性控制,生物数学学报,18(1):82-92.
    赵立纯,张庆灵,杨启昌.2005.具有阶段结构单种群系统的诱导控制,数学物理学报,25A(5):710-717.
    郑亚楠.2006.公共危机事件中新闻媒介的社会功能.中国广播电视学刊,(2):31-33.
    周义仓.1999.具有年龄与病程结构的流行病模型及其渐近性态,西安交通大学博士论文.
    邹琳,彭子舟,邹武杰.2009.处置气象灾害中处置气象灾害中与电视媒体合作机制的思考,第26届中国气象学会年会气象灾害与社会和谐分会场论文集.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700