计算智能及其在气象信息分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类智能的宏观分析能力主要体现在人们能从极不相同的粒度上观察和分析同一问题,人们不仅能在不同粒度的世界上进行问题求解,而且能够很快地从一个粒度世界跳到另一个粒度世界,往返自如,毫无困难。基于商空间粒度计算理论不但可以表示对象的属性,而且可以表示对象之间的结构关系,同时可描述各种不同粒度世界之间转移、变换、合成和分解等关系,这正是描述人类智能宏观分析能力的有力工具。
     人类智能的微观分析能力主要体现在可以从大量事物学习中归纳出规律。这种能力可以通过建立学习模型来实现。作为构造性机器学习方法基础的覆盖算法正是满足条件的学习模型之一,通过对覆盖算法的研究可以模拟人类智能微观学习能力。
     本文分别研究了商空间粒度计算理论和覆盖算法这两个模拟人类智能两大特点的模型,并将它们有机地结合在一起,以期为人类的某些智力行为建立适当的形式化模型,利用计算机再显人类智能的部分功能。本文将其应用于安徽省冬小麦产量预测中,给出了不同粒度下的预测模型,并通过实例说明该模型具有时间和空间普适性。
     主要工作包括:
     1.研究了商结构在商空间粒度计算理论中的突出作用。
     研究了商空间粒度计算理论中求解商空间的方法,讨论了如何分别从描述问题的三个因素——论域、属性、结构出发获取商空间,并给出具体思路,为第三章所述的基于粒度计算的覆盖算法提供理论基础,第六章所述的基于粒度计算的安徽省冬小麦产量的预测模型也是以此为基础;重点研究了商结构在商空间理论中的重要作用,将其作为商空间理论与粗糙集理论的主要区别之一。
     2.提出基于粒度计算的覆盖算法;将覆盖算法用于聚类研究。
     简要介绍了覆盖算法的雏形——领域覆盖及其交叉覆盖算法,结合商空间理论中属性颗粒化求解商空间的思想和合成方法,提出基于粒度计算的覆盖算法;将覆盖算法引入聚类领域,指出覆盖算法不但可以用于分类,也可以适用于聚类研究。
     3.提出覆盖算法的“最小覆盖原理”。
     从认识论的观点出发,对覆盖算法提出“最小覆盖原理”,并从几何意义上对最小覆盖的性质、特点进行深入研究,得出最小覆盖的充分必要条件,依此给出相应的求最小覆盖的算法;讨论了最小覆盖算法的复杂性;最后利用规划方法求解最小覆盖算法。
     4.给出概率模型下的覆盖算法。
     将核函数思想和全局最优思想引入覆盖算法,给出概率模型下的覆盖算法。该算法将覆盖算法中的决策函数改为核函数,然后从概率论中的“最大似然原理”的角度对覆盖算法进行优化,自动求解核函数中的参数,以解决一般核函数中参数选择的难题。
     5.以安徽省的部分城市建站以来的气象及其冬小麦产量信息为研究对象,建立不同粒度下的预测模型。
     1)构造原空间下的问题描述,安徽省每个城市每年的信息构成论域中的一个元素——样本,该样本由两大部分构成——特征属性和决策属性。
     2)分析了气象产量预测的一般方法,并说明这些方法存在的弊端,在此基础上加以改进,用以实现本文所建模型中决策属性处理模块的功能,经过产量阶段划分后,采用灰色模型求得相对气象产量,作为样本的决策属性。
     3)对论域和特征属性分别采用商空间计算理论中求解商空间的方法处理,以期从不同角度获取不同粒度下的预测模型。
     a)对论域颗粒化的方法:以江淮地区的城市为例,把结构上或功能上关系密切的元素划分为一类,得到[X]_(江淮),由此构造以江淮地区为整体的预测模型;
     b)对属性颗粒化的方法:对样本的特征属性即光水温进行不同时间段的划分,分别构成由[f]_旬、[f]_月、[f]_(混合)获取的商空间。
     4)最后在不同的空间中采用覆盖算法对这些样本进行学习,获得学习规则后,加以后处理获得预测产量值。
     5)该预测模型还将江淮地区不同城市不同时间的样本混合在一起学习测试,也可得到满意结果,说明该模型有空间时间普适性。
     本文的主要创新之处:
     1.从认识论的观点出发,对覆盖算法提出“最小覆盖原理”,从几何意义上对最小覆盖的性质、特点进行深入研究,得出最小覆盖的充分必要条件,依此给出相应的求最小覆盖的算法;讨论了最小覆盖算法的迭代次数估计。
     2.结合了商空间理论中属性颗粒化求解商空间的思想和合成方法,提出了基于粒度计算的覆盖算法。
     3.将商空间粒度计算理论和覆盖算法相结合,应用于安徽省冬小麦的产量预测,建立了安徽省冬小麦不同粒度下的产量预测模型。
The macroscopical analysis of human intelligence is mainly presented by the ability to conceptualize the world at different granules and translate from one abstraction level to the others easily. The theory of quotient space granular computing represents the attributes of an object as well as the relationship among objects, and at the same time, describes the transition, transformation, mergence and decomposition among different grain-size worlds, therefore, this theory is a powerful tool to describe the macroscopical analysis ability human intelligence.
     The microscopical learning of human intelligence is mainly presented by the ability to summarize rules by learning large amounts of things, which can be realized through learning models. Covering algorithm, as the basis of constructive machine learning method, is one of the models that accord, which can simulate the microscopical learning ability of human intelligence.
     This dissertation studies quotient space granular computing theory and covering algorithm, which are the two models simulating human intelligence in two different ways, aimed at establishing formalized model for certain intelligent behavior and re-displaying partial function of human intelligence. The combination of the both is applied in the yield forecast of the winter wheat in Anhui Province, which forms the forecast models at different grain-size worlds. Experiments illustrate the universality of models.
     The dissertation includes:
     1. The outstanding function of quotient structure in quotient space granular computing theory is analyzed.
     To construct a proper abstraction level for a problem solver, how to obtain quotient space from the aspects of domain, attribute and structure are discussed to form a concrete idea, which serve as the theoretical basis for covering algorithm based on granular computing in Chapter Three, and the forecast model of winter wheat in Anhui Province based on granular computing in Chapter Six. The study is emphasis on the important function of quotient structure in quotient space theory, which is also considered as one of the major differences between quotient spacea theory and rough set theory.
     2. The covering algorithm based on granular computing is put forward, and the covering algorithm is applied in clustering fields.
     The rudiment of covering algorithm, including domain covering algorithm and alternative covering algorithm, is briefly introduced in this dissertation. Covering algorithm based on granular computing is put forward with relation to mergence method and attribute-granulation method in quotient space theory. Moreover, covering algorithm is introduced into clustering field, and that covering algorithm is applicable to clustering as well as classification is also indicated.
     3. The principle of "minimum covering" in covering algorithm is put forward.
     The principle of "minimum covering" in covering algorithm is put forward from the epistemological points of view, and the properties and characteristics of the minimum covering are further explored. The principle of"minimum covering" on covering algorithm is put forward from the perspective of geometry to form the sufficient and necessary conditions of minimum covering, and accordingly, the minimum covering algorithm. The complexity of minimum covering algorithm is also discussed. At last the minimum covering is solved with a programming way.
     4. Probability Model of Covering Algorithm is given.
     The kernel function and the idea of global optimization are introduced into covering algorithm to form the probability model of covering algorithm. In this algorithm, the decision function of covering algorithm has been changed into kernel function, and then the optimization is processed from the point of maximum likelihood principle of the statistical model to realize the automatic computing of the parameter of kernel function, which offers a way to solve the problem of parameter selection of kernel function.
     5. Forecasting modcls in different graih-size worlds are formed, according to the information of local weather and the yield of winter wheat collected from observatories that have been established in some of the cities in Anhui Province.
     1) Issue description is constructed in original space. The annual information from each city of Anhui Province forms an element in domain, namely, sample, which comprises two parts- characteristic attributes and decision attribute.
     2) The general methods of weather yield forecast are analyzed in this dissertation, and the disadbantages of these methods are pointed up. The improvement, accordingly, is put forward to realize the function of the process module of decision making attribute in the model constructed in this dissertation. After the yield phases are divided, the gray model is adopted to calculate the relative weather yield, which serves as the decision attribute of the sample.
     3) The methods of domain-granulation and attribute-granulation in quotient space theory are adopted to form different forecast models at different grain-size worlds.
     a) The granulation of domain: Cities between Yangtze River and Huai Rivers are set as examples. The elements which are closely related in structure or function belong to the same classification called [X]_(jianghuai), which forms a forecast model, setting areas between Yangtze River and Huai Rivers as the whole.
     b) The granulation of attribute: The characteristic attributes of the sample, such as sunlight, water and temperature, are granulated by time stages to construct the quotient set [f]_(ten-days), [f]_(month) and [f]_(mix), respectively.
     4) At last, covering algorithm is adopted to carry out rules on these samples collected at different granules, and then forecast the real amount of yield.
     5) Samples about different cities between Yangtze River and Huai River are also mixed for learning and the results are satisfactory, which demonstrate the model is universal
     The innovations of this dissertation are as follows:
     1. The principle of"minimum covering" of covering algorithm is put forward from the epistemological points of view, and the properties and characteristics of the minimum covering are further explored from the perspective of geometry to form the sufficient and necessary conditions of minimum covering, and accordingly, the minimum covering algorithm. The estimation of iteration times of minimum covering algorithm is also discussed.
     2. Covering algorithm based on granular computing is put forward with relation to mergence method and attribute-granulation method in quotient space theory.
     3. The combination of both quotient space theory and covering algorithm is applied in the yield forecast of the winter wheat in Anhui Province to form yield forecast models at different grain-size worlds.
引文
[1] Z. Pawlak. Rough Sets Theoretical Aspects of Reasoning about Data [J]. Dordrecht, Boston, London :Kluwer Academic Publishers, 1991.
    [2] L.A.Zadeh. A Theory of Approximate Reasoning [M]. , New York: Machine Intelligence, 1979: 149-194.
    [3] 张钹,张铃.问题求解理论及应用[M].北京:清华大学出版社,1990.
    [4] Zadeh L A. Fuzzy Logic=Computing With Words [J]. IEEE Transactions on Fuzzy Systems, 1996(4): 103-111.
    [5]Zadeh L.A. Towards Theory of Tuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic [J]. Fuzzy Sets and Syatema, 1997(19):111-127.
    [6] Zadeh L A. Announcement of GrC, 1997, http://www.cs.uregina.ca/~yyao/GrC/
    [7] Yao, Y.Y., and Chen, X.C. Neighborhood Based Information Systems [J].Proceedings of the 3rdJoint Conference on Information Sciences, Vol 3: Rough Set &Computer Science Research Triangle Park, North Carolina, USA, March 1-5 1997:154-157.
    [8] Y. Y Yao, Granular Computing: Basic Issues and Possible Solutions [J]. Proc. of fifth Joint Conference on Information Sciences, Vol.1, Atlantic City, New Jersey, USA, 2000:186-189.
    [9] Y.Y. Yao, and X. Li. Comparison of Rough-Set and Interval-Srt Models for Uncertain Reasoning [J]. Fundamental Informatics, 1996(27):289-298.
    [10] Y.Y. Yao and Ning Zhong. Granular Computing Using Information Table [A], In T.Y Lin, Y.Y Yao, and L. A. Zadeh (editors) Data Miming, Rough Sets and Granular Computing[C], Physica-Verlag, 2000:102-124.
    [11] Y.Y Yao, K. Song and L.V. Saxton. Granular computing for the organization and retrieval of scientific XML documents [J]. Proceedings of the Sixth International Conference on Computer Science and Informatics, 2002:377-381.
    [12] Y.Y Yao, and J.T. Yao, Granular computing as a basis for consistent classification problems[J]. in Proceedings of PAKDD'02 Workshop on Toward the Foundation of Data Mining, 2002: 101-106.
    [13] Yao, Y.Y. Modeling data mining with granular computing[J]. Proceedings of the 25th Annual International Computer Software and Applications Conference (COMPSAC 2001) 2001:638-643.
    [14] Yao, Y.Y., Liau, C.-J. A generalized decision logic language for granular computing[J]. Proceedings of FUZZ-IEEE'02 in the 2002 IEEE World Congress on Computational Intelligence, 2002:1092-1097.
    [15] Yao, Y.Y., Liau, C.-J., Zhong, N. Granular computing based on rough sets, quotient space theory, and belief functions[J]. Proceedings of ISMIS'03,2003:152-159.
    [16] Yao, Y.Y., Zhong, N. Granular computing using information tables[J]. In: Data Mining, Rough Sets and Granular Computing, Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (Eds.). Physica-Verlag, Heidelberg.2002:102-124.
    [17] Ling Zhang, Bo Zhang. The Quotient Space Theory of Problem Solving[J]. Fundamenta Informaticae, IOS Press(Poland) ,2004,59 (2,3):287-298.
    [18] 张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776.
    [19] 张燕平,张铃,夏莹.商空间理论与粗糙集的比较[J].微机发展,2004,Vol14.No.10:21-24.
    [20] Zhang Ling. Granular Computing based on Rough Sets, Quotient Space Theory, and Belief Functions [J]. Lecture Notes in Computer Science,vol.2871,2003:152-159.
    [21] 张铃,张钹.M-P神经元模型的几何意义及其应用[J].软件学报,1998(5):334-338.
    [22] Ling Zhang, Bo Zhang. A Geometrical Representation of McCulloch-Pitts Neural Model and Its Applications[J].IEEE Trans. on Neural Networks, July 1999, Vol.10, No.4:925-929.
    [23] 张铃,张钹.多层前向网络的交叉覆盖设计算法[J].软件学报,199,10(7)9:737-742.
    [24] Zadeh L A. The Key Roles of Information Granulation and Fuzzy Logic in Human Reasoning [A]. In: Hyatt Red Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, FUZZ-IEEE' 96[C]. Germany: Physica Verlag GmbH Heidelberg, 1996:100-196.
    [25] Zadeh L A. Some Reflections on Information Granulation and Its centrality in Granular Computing,Computing With Words,the Computational Ttheory of Perceptions and Precisiated Natural Language[A]. In:Lin T Y, ed.Data Mining ,Rough Sets and Granular Computing[M].Germany:Physica Verlag GmbH Heigelberg,2002:110-153.
    [26] Sukhamay Kundu.The Normal Form of a Granular Fuzzy Function [J]. Fuzzy Sets and Systems,2001(124):97-107.
    [27] Amitava Roy, Pa Sankar K. Fuzzy Discretization of Feature Space for a Rough Set Classifier[J].Pattern Reconition Letters,2003(24):895-902.
    [28] Swiniarski Roman W.Andrzej Skowron. Rough Set Methods in Feature Selection Letters,2003 (24): 833-849.
    [29] Theresa Beaubouf, Petry Frederick E,Gurdial Arora. Information Theoretic Measures of Uncertainty for Rough Sets and Rough Relational Database[J]. Journal of Information Sciences, 1998 (109): 185-195.
    [30] Guan J.W.,Bell D A. Rough Computational Methods for Information Systems[J].Artificial Intelligence, 1998(105):77-103.
    [31] Allen JF. Maintaining Knowledge About Temporal Intervals [J]. Communications of the ACM, 26(11), 1983: 832-834.
    [32] Allen J.F. Towards A General Theory of Action and Time [J]. Artificial Intelligence 1984 (23): 123-154.
    [33] AllenJ.F. Planning Using A Temporal World Model [J]. IJCAI-83 :741-747.
    [34] 刘清.Rough集及Rough推理[M].北京:科学出版社,2001.
    [35] 史忠植.知识发现[M].北京:清华大学出版社,2002.
    [36] 张文修,吴伟志.粗糙集理论与方法[M].北京:科学出版社,2001.
    [37] Y.Y.Yao, Wong S.K.M.,Wang L.S. A Nonnumeric Approach to Uncertain Reasoning[J]. International Journal of General Systems, 1995, 23(2):343-359.
    [38] 张铃.关于前向神经网络的设计问题[J].安徽大学学报(自然科学版),1998,VOL.22,NO.3:31-41.
    [39] W.S.McCulloch and W.Pits. A Logical Caculus of the Ideas Immanent in Nervous Activity[J].Bulletin of Math. Biophysics, 1943(5): 115-133.
    [40] www.ics.uci.edu/mlearn/mlrepository.html
    [41] Vapnik.V.N. Statistical Learning Theory[M]. New York: John Wiley & Sons, INC,1998.
    [42] 张铃.基于核函数的SVM机与三层前向神经网络的关系[J].计算机学报,2002,25(9):696~701.
    [43] 张铃.基于核函数的SVM与三层前向神经网络的关系[J].计算机学报,July2002,VOL.25,NO.7:696-700.
    [44] 边肇祺,张学工.模式识别[M].北京:清华大学出版社,2001.
    [45] 张燕平.提取特征规则的重复覆盖算法[J].安徽大学学报,2002(3):9-13.
    [46] 张燕平,张铃.吴涛.机器学习中的多侧面递进算法MIDA[J].电子学报,2005,vol33.no 2:327-331.
    [47] K.H.Chuang, M.J.Chiu, C.C.Lin and J.H.Chen. Model-Free Functional MRI Analysis Using Kohonen Clustering Neural Network and Fuzzy C-means[J]. IEEE Trans. On Medical Imaging,1999, vol.18(12):1117-1128.
    [48] K.Horota and W.Pedrycz. Fuzzy computing for data mining[J]. Proceeding of the IEEE,1999, vol 87(9):1575-1600.
    [49] Nozha Boujemaa. On Competitive Unsupervised Clustering[J]. IEEE Trans. 2002:631-634.
    [50] Mr G.P.Scott, Dr D.I.Clark and Dr Tuan Pham. A Genetic Clustering Algorithm Guided by a Descent Algorithm[J]. IEEE Trans. 2001:734-740.
    [51] A.K.Tain, M.N.Murty, P.J.Flyn. Data Clustering :A Review[J]. ACM Computing Surveys, September 1999, vol 31, NO.3:264-323.
    [52] Tapas Kannngo, David M.Mount, Nathan S.Netanyahu, Christine D.Piatko, Ruth Silverman and Angela Y.Wu. An Efficient k-means Clustering Algorithm: Analysis and Implementation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,July 2002, vol 24, NO.7:881-892.
    [53] Chih-Ping Wei, Yen-Hsien Lee and Che-Ming Hsu. Empirical Comparison of Fast Clustering Algorithms for Large Data Set[J]. IEEE Proceedings of the 33rd Hawail International Conference On System Sciences ,2000:1-10.
    [54] Z.Huang. Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical Values[J]. Data Mining and Knowledge Discovery, 1998, vol 2, NO.3:283-304.
    [55] M.Halkidi,Y.Batistakis and M.Vazirgiannis. Clustering algorithms and validity measures[J]. IEEE Trans.2002:3-22.
    [56] Boriana L.Milenooova and Mareos M.Campos. O-Cluster:Scalable Clustering of Large High Dimensional Data Sets[J]. IEEE Trans.2002:290-297.
    [57] Osmar R.Zaiane and chi-Hoon Lee.Clustering Spatial Dala in the Presence of Obstacles: A Density-Based Approach[J].IEEE Proeeding of the International Database Engineering and Applications Symposium(IDEAAS'02).
    [58] Alexandex Hinneburg, Daniel Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise[J]. Proceedings of KDD Conference, 1998
    [59] 赵艳厂,谢帆,宋俊德.一种新的聚类算法:等密度线算法[J].北京邮电大学学报,June 2002,vol 25.NO.2:8-13.
    [60] Linde,Y.,A.Buzo & R.M.Gray. An Algorithm For Vector Quantizer Design[J].IEEE Transactions on Communication COM-28, 1980: 84-95.
    [61] 北京大学数学系几何与代数教研室代数小组,高等代数[M],北京:高等教育出版社,1978.
    [62] Jaewook Lee, Daewon Lee. An Improved Cluster Labeling Method for Suport Vector Clustering [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MARCH 2005, VOL.27, NO.3:461-464.
    [63] Tao Ban, Shigeo Abe. Spatially Chunking Support Vector Clustering Algorithm [J]. IEEE 2004: 413-418.
    [64] 吴涛,张燕平,张铃.前向神经网络交叉覆盖算法的一种改进[J].微机发展,2003,Vol.13.No.3:50-52.
    [65] 张旻,程家兴.基于粒度计算和覆盖算法的信号样式识别[J].计算机工程与应用,2003(24):56-59.
    [66] 张旻,张铃,程家兴.一种加权的构造型神经网络覆盖算法设计与实现[J].计算机工程,2005,vol.3,no.2:36-38.
    [67] 张燕平.基于商空间的构造性数据挖掘方法机器应用[D].安徽大学,2003.
    [68] 赵姝.基于交叉覆盖算法的入侵检测[J].计算机工程与应用,2005,vol41.no.1:141-143.
    [69] 张燕平,张铃,段震.构造性核覆盖算法在图像识别中的应用[J].中国图象图形学报,2004,Vol.9,No.11:1304-1308.
    [70] 吴涛,张铃,张燕平.机器学习中的核覆盖算法[J].计算机学报,2005,Vol.28,No.8:1295-1301.
    [71] 徐峰,李旸,吴涛,张铃.基于核函数的构造型二分覆盖算法[J].计算机工程与应用,2004(9):21-23.
    [72] 赵姝,张燕平,张媛,陈传明.基于交叉覆盖算法的改进算法—核平移覆盖算法[J].微机发展,Nov.2004,Vol.14,NO.11:1-3.
    [73] Dempster, A.P.,Laird,N.M.,Rubin,D.B.,Maximum Likelihood From Incomplete Data Using the EM Algorithm(with discussion).J.R.Stat.Soc.Ser.B, 1977:1-38.
    [74] 李国师,肖军.芝麻产量及气候生产力模式研究[M].安徽农业气象科技材料选编(内部资料),安徽省气象局业务处,1984:1-5.
    [75] 安徽省冬小麦产量预报研究协作组.安徽省冬小麦产量气象预报方法[J]in我国粮食产量气象预测预报研究[M].北京:气象出版社,1989:247-249.
    [76] 刘典昱,李国师,王稳成.淮北平原冬小麦产量气候预测模式[J]in我国粮食产量气象预测预报研究[M].北京:气象出版社,1989:250-252.
    [77] 张爱民,马晓群,盛绍学,杨太明.安徽省农业气象灾害定量监测评估研究[J].安徽农业科学,2004(4):746-748.
    [78] 李小英,彭望,曹彤.在遥感时间序列数据分析中马尔柯夫链方法与空间信息最佳结合的探讨[J].北京师范大学学报(自然科学版),2002,Vol.38,No.5:19-22.
    [79] 徐炳南,张裕发,罗纲,汤苾.用带周期分量的多元回归模型预测贵州气象灾害变化趋势[J].贵州气象,1999,Vol.23,No.3:28-33.
    [80] 范锦龙,孟庆岩,吴炳方,周心铁.基于农业气象模型的农作物单产预测系统[J].中国农业气象,2003,Vol.24,No.2:46-48,51.
    [81] 庄立伟,王馥棠,王石立.农业气象产量预测业务系统的研制[J].应用气象学报,1996,Vol.7,No.3:294-299.
    [82] 邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [83] 南都国,吴溪涌.作物产量灰色马尔柯夫链预测模型[J].中国农业气象,1997,Vol.18,No.1:44-48.
    [84] 祁宦,王颖,王昉.灰色-马尔柯夫链预测棉花产量(单产)[J].安徽农业科学,2002,30(1):152-154.
    [85] 张淑娟,何勇.基于趋势—状态预测方法的粮食产量预测[J].浙江大学学报(农业与生命科学版),2001,27(6):673-676.
    [86] 陈平,潘荣山,李来根.宣城地区粮食总产的灰色马尔柯夫链预测方法[J].安徽农业科学,2000,28(4):554-556.
    [87] 段利忠,刘思峰.基于改进B-P算法的内蒙古粮食产量中长期预测[J].西北农林科技大学学报(自然科学版),2003,Vol.31,No.3:175—182.
    [88] 赵之砚,金一泓.回归神经网络对我国粮食产的预测[J].技术经济,2003,第八 期(总第188期).
    [89] 王启平.BP神经网络在我国粮食预测中的应用[J].预测,2002,VOL.21,NO.3:79-80.
    [90] 海铮,王俊.S拟合与BP神经网络的结合及其在粮食产量预测中的应用[J].粮食加工与食品机械,2005.7:66-68.
    [91] 何晓群,刘文卿著.应用回归分析[M].北京:中国人民大学出版社,2001年6月第1版.
    [92] [美]S.Weisberg著.应用回归分析[M].北京:中国统计出版社,1998年3月第1版.
    [93] 迟灵芝.指数平滑法在粮食产量预测中的应用[J].本溪冶金高等专科学校学报,Dec.2004,Vol.6,No.4:14-15.
    [94] 郭建敏.灰色系统的建模[J].大同职业技术学院学报,2003.3,VOL.11,NO.1:70-75.
    [95] 樊新海,苗卿敏,王华明.灰色预测GM(1,1)模型及其改进与应用[J].装甲兵工程学院学报,2003.3,VOL.17,NO.12:21-23。
    [96] 马晓群,陈晓艺,盛绍学.安徽省冬小麦渍涝灾害损失评估模型研究[J].自然灾害学报,2003,vol.12,No 1:158-162.
    [97] 毕守东,王冬平.安徽省粮食产量的最优加权组合预测[J].预测.2000(3):70-72.
    [98] 吴春霞,何勇,蔡建平.组合预测方法及其在粮食产量预测中的应用[J].农业系统科学与综合研究,2002.2,Vol 18,No.1:17-19.
    [99] 韩永翔,尹东.作物产量预报新方法研究[J].干旱地区农业研究,Sept.2002,VOL.20.NO.3:124-127.
    [100] 刘可群,赵建辉,杨红青.冬小麦产量形成过程与气象条件关系的模拟研究[J].中国农业气象,1994.8,Vol.15,No.4:1-4.
    [101] 张力,张保华.气象产量分析[J].中国农业气象,2004.2,Vol.25,No.1:22-24.
    [102] 陈怀亮,王良宇,杜明哲,付祥健.产量阶段的划分及应用[J].中国农业气象,1999.5:16-20.
    [103] 黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,1990:265-266.
    [104] 肖智,郑大霞.基于粗糙集的组合预测方法在粮食产量预测中的应用[J].统计与决策,知识丛林,2005.4:130-132.
    [105] 吴建生,金龙,农吉夫.遗传算法BP神经网络的预报研究和应用[J].数学的实 践与认识,Jan,2005,VOL.35,NO.1:83-88.
    [106] 徐进,李玉民.基于遗传神经网络的粮食产量系统预测方法研究[J].现代化农业,2001(9):29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700