准连续介质方法在晶体微观变形多尺度模拟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子技术和微系统研究的发展,材料的微观力学性能越来越引起人们的关注。在载荷的作用下,微小构件常常会表现出与宏观条件下所不同的特性,例如高的强度、硬度、耐磨性、延展性、以及低温超塑性等。材料变形的微观机理研究也越来越受到人们的重视,近年来在理论和实验上的研究也取得不少进展。建立在连续介质理论基础上的传统宏观力学分析方法不再适用于微观尺度下材料变形的研究,而分子动力学、蒙特卡罗方法等微观尺度的模拟方法由于自由度过多导致计算量太大,无法在普通的计算机上实现较大模型的模拟。于是结合连续介质尺度和原子尺度的多尺度方法在计算机模拟中得到了广泛应用。
     准连续介质方法(Quasi-continuum Method,QC)是多尺度方法的一种。其核心思想是在变形梯度变化比较小的区域采用有限元方法以“代表原子”(Representative Atoms)进行粗化描述,通过适当的权重处理求出整个系统的能量,而不是求出所有原子的能量。在缺陷密度较高、变形梯度变化较剧烈的区域对每个原子采用分子动力学来描述。这样就可以在不失精确的情况下极大地减少问题的自由度和计算量,以实现较大尺寸试件的原子尺度模拟。
     本文采用QC方法对材料变形中产生的位错形核(Dislocation Nucleation)及孪生变形(Deformation Twinning,DT)的微观机理进行了分析,并讨论了该过程中呈现的尺寸效应,晶体取向效应和晶界效应及裂纹尖端扩展的变形过程,主要做了以下四个方面的工作:
     1)模拟了四种金属薄膜——铝(Al)、银(Ag)、镍(Ni)、钯(Pd)——在四种压头宽度下的纳米压痕过程,得到了载荷—位移曲线和应变能—位移曲线。同时计算出四种材料的纳米硬度,并对其硬度值和压头宽度的关系进行了讨论;结果表明材料对压痕响应的尺度效应很明显,模拟得到的临界载荷与采用能量理论估算的临界载荷基本一致,四种金属薄膜扩展位错宽度大小模拟值与理论值相一致:最后,从微观角度讨论了材料载荷—位移曲线突降和材料中位错形核之间的关系,并画出了位错形核的原子图,进一步揭示材料变形机理。
     2)模拟了单晶Al薄膜在三种不同晶体取向(分别为x[111],y[(?)10],z[(?)2]:x[(?)2],y[111],z[(?)10]:x[1(?)0],y[001],z[(?)0])条件下的纳米压痕响应,以此来探讨纳米压痕的晶体取向效应。得到了不同晶体取向下的载荷—位移曲线和微观原子图,同时观察到位错形核、孪生变形等一些独特的微观构造,模拟所得结果与相关实验现象一致。最后采用位错理论对不同晶体取向下纳米压痕响应的差异进行了讨论,并从微观变形机理的角度分析了产生这种差异的原因。
     3)模拟了存在晶界的Al薄膜的纳米压痕过程,探讨了纳米压痕的晶界效应。在加载过程中,对薄膜内部变形比较剧烈的部分画出原子图,并从微观角度分析产生剧烈变形的原因,同时对纳米压痕过程中的载荷—位移曲线和压头下方微结构的变化在有晶界与无晶界两种情况下的区别进行了分析;最后,讨论了位错在滑移过程中与晶界的相互作用。
     4)模拟了单晶Cu在拉伸(Ⅰ型加载)和剪切(Ⅱ型加载)两种加载模式,三种晶体取向条件下裂纹尖端的变形过程。观察到位错滑移和孪生变形现象,并对三种晶体取向下该现象的变形机制进行了分析。结果表明,不同的加载模式和不同晶体取向对模拟的结果影响很大。当位错滑移能力枯竭时,会产生{111}<112>孪生变形或位错形核。
As the development of Micro-electronics and Microsystems, researchers pay much attention on the micro-mechanical properties of materials. Because micro-components always show different characteristics from components in macro-scale (such as higher intensity, hardness, abrasion resistance, ductibility and low temperature super plasticity, etc), the microcosmic mechanism of deformation is important to study the properties of material in micro-scale. However, traditional methods based on continuum theories do not work in investigating the mechanism of micro-deformation, and microcosmic methods such as Molecular Dynamics and Monte Carlo method can not be used to simulate the deformation of a large region in common personal computers for its large computation memory caused by large degrees of freedom. In this situation, the multi-scale methods coupling atomistic scale and continuum scale are widely applied in computer simulations.
     The Quasi-continuum Method is developed as a typical multi-scale method. The key idea is that of selective representation of atomic degrees of freedom. Instead of treating all atoms making up the system, a small relevant subset of atoms is selected to represent, by appropriate weighting, the energetics of the system as a whole. Based on their kinematic environment, the energies of individual "representative atoms" are computed either in nonlocal fashion in correspondence with straightforward atomistic methodology or within a local approximation as befitting a continuum model. The representation is of varying density with more atoms sampled in highly deformed regions (such as near defect cores) and correspondingly fewer in the less deformed regions further away, and is adaptively updated as the deformation evolves.
     In this thesis, the effect of size, crystal direction, and grain boundary in micro-deformation are investigated using Quasi-continuum Method. The mechanisms of the dislocation nucleation and the deformation twinning are also have been analyzed. Based on the Quasi-continuum Method, the works of this thesis are as follows:
     1) The processes of nano-indention of four FCC metals (Al, Ag, Ni, and Pd) under four different indenters with various widths are simulated. Load-displacement curves, strain energy vs displacement curves, as well as nano hardness are obtained. The values of the critical load are in good agreement with theoretical values. The relation between rigidity and indenter width is discussed. The widths of extended dislocation are in agreement with theoretical values. To study the deformation mechanism, the dislocation pictures are plotted and the relation between load-displacement curves and dislocations are discussed.
     2) The nano-indention of Al film in three crystal orientations(x[111], y[-110], z[11-2]; x[-1-12], y[111], z[-110]; x[1-10], y[001], z[-1-10]) are simulated. Load-displacement curves and atomistic arrangements pictures are obtained. The results are in good agreement with experiments. Dislocations and deformation twining are observed in the simulation. The differences between different crystal orientations are analyzed by dislocation theory.
     3) The nano-indentation on an Al film with a grain boundary is simulated. The load-displacement curve and micro-structures under the indenter are compared with the situation with no grain boundary. The interaction between dislocations and grain boundary is analyzed.
     4) The deformation of crack tips in FCC Cu under modeⅠandⅡload in three crystal orientations are simulated. Dislocations and deformation twining are observed in the simulation. The deformation mechanisms in three crystal orientations arediscussed. From the results of the simulation, we can find that the {111}<112>deformation twinning and dislocation nucleation present itself when the slippage of the dislocation dried up.
引文
[1] Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002,419(31): 912-915
    
    [2] McFadden S X, Misra R S, Valiev R Z, et al. Low-temperature superplasticity in nanostructured nickel and metal alloys [J]. Nature, 1999, 398: 684-686
    
    [3] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocryystalline copper at room temperature [J]. Science, 2000, 287: 1463-1466
    
    [4] Feynman R P. There is plenty of room at the bottom [J]. Engineering and Science, 1960, 23(22):55-59
    
    [5] Gleiter H. Nanocrystalline materials [J]. Progress in Materials Science, 1989, 33: 223-315.
    
    [6] Philip K, Teri W O, Huang J L, et al. Electronic density of states of atomically resolved single-walled carbon nanotubes: van hove singularities and end states [J]. Physical Review Letters, 1999, 82(6): 1225-1228
    
    [7] Soong R K, Bachand G D, Neves H P, et al. Powering an inorganic nanodevice with a biomolecular motor [J]. Science, 2000,290: 1555-1558
    
    [8] Pei Q X, Lu C, Lee H P. Large scale molecular dynamics study of nanometric machining of copper [J]. Computational Materials Science, 2007,41: 177-185
    
    [9] Baskes M I, Melius C F, Wlison W D. Interatomic potentials and crystalline defects [M]. New York, Metallurgical Society of AIME, 1981
    
    [10] Mullins M, Dokainish M. Simulation of the (001) plane crack in alpha-iron employing a new boundary scheme [J]. Philosophical Magazine A, 1982,46: 771-787
    
    [11] Kohlhoff S, Gumbsch P, Fischmester H F. Crack propagation in bcc crystals studied with a combined finite-element and atomistic model [J]. Philosophical Magazine A, 1991, 64(4):851-878
    
    [12] Izumi S, Kawakami T, Sakai S. Study of a combined FEM-MD method for silicon [J]. JSME International Journal Series A, 2001, 44(1): 152-159
    
    [13] Rafii-Tabar H, Hua L, Cross M. A multi-scale atomistic-continuum modeling of crack propagation in a two-dimensional macroscopic plate [J]. Journal of Physics: Condensed Matter, 1998, 10:2375-2387
    
    [14] Robert R. Coupling of length scales in MEMS modeling the atomic limit of finite element [J]. Proceedings of SPIE, 2000, 11: 16-25
    
    [15] Smirnova J A, Zhigilei L V. Combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation[J].Computer Physics Communications,1999,118(1):11-16
    [16]Pillai A R,Miller R E.Crack behavior at bi-crystal interfaces:a mixed atomistic and continuum approach[J]Materials Research Society,2001,653:291-297
    [17]Tadmor E B,Ortiz M,Phillips R.Quasi-continuum analysis of defects in solids[J].Philosophical Magazine A,1996,73:1529-1563
    [18]倪玉山,王华滔.准连续介质方法及其应用[J].机械工程学报,2007,43:101-108
    [19]Rudd R E,Broughton J Q.Concurrent coupling of length scales in solid state systems[J].Physica Status Solidi B,2000,217(1):251-291
    [20]Knap J,Ortiz M.An analysis of the quasicontinuum method[J].Journal of the Mechanics and Physics of Solids,2001,49:1899-1923
    [21]Shilkrot L E,Miller R,Curtin W A.Coupled atomistic and dislocation plasticity[J].Physical Review Letters,2002,89(2):025501
    [22]Shenoy V B,Miller R,Tadmor E B,et al.Quasicontinuum models of interfacial structure and deformation[J].Physical Review Letters,1998,80(4):742-745
    [23]Shenoy V B,Phillips R.Finite temperature quasicontinuum methods[J].Materials Research Society,1999,538:465-471
    [24]Shenoy V B.Multi-scale modeling strategies in materials science-the quasicontinuum method[J].Bulletin of Materials Science,2003,26(1):53-62
    [25]Shenoy V B,Phillips R,Tadmor E B.Nucleation of dislocations beneath a plane strain indenter[J].Journal of the Mechanics and Physics of Solids,2000,48:649-673
    [26]Smith G S,Tadmor E B,Kaxiras E.Multiscale simulation of loading and electrical resistance in silicon nanoindentation[J].Physical Review Letters,2000,84(6):1260-1263
    [27]Smith G S,Tadmor E B,Bernstein N,et al.Multiscale simulations of silicon nanoindentation[J].Acta Materialia,2001,49:4089-4101
    [28]Sansoz F,Dupont V.Grain growth behavior at absolute zero during nanocrystalline metal indentation[J].Applied Physics Letters,2006,89:111901
    [29]Warner D H,Sansoz F,Molinari J E.Atomistic based continuum investigation of plastic deformation in nanocrystalline copper[J].International Journal of Plasticity,2006,22:754-756
    [30]Vardi A,Shapiro M,Anglin J R.Comment on "Quasicontinuum modeling of photoassociation"[J].Physical Review A,2002,65:027401
    [31]http://www.qcmethod.com
    [32]戴保东,程玉民.准连续体方法研究进展[J].力学季刊,2005,26(3):433-437
    [33]倪玉山,王华滔.晶体位错尺寸效应的多尺度分析[J].力学季刊,2005,3:366-369
    [34]曾凡林,孙毅.镍单晶薄膜纳米压痕的准连续介质模拟[J].固体力学学报,2006,27(4):341-345
    [35]黎军顽,江五贵.基于准连续介质法预测薄膜材料纳米硬度和弹性模量[J].金属学报.2007.8:851-856
    [36]Peng Chen,Yapeng Shen.Nanocontact between bcc tungsten and fcc nickel using the quasicontinuum method[J].International Journal of Solids and Structures,2008(Article in Press)
    [37]傅敏,王才会,洪友士.微米/纳米尺度的材料力学性能测试[J].力学进展,2000,30(3):391-399
    [38]Gouldstone A,Vliet K J,Suresh S.Simulation of defect nucleation in a crystal[J].Nature,2001,411:656
    [39]黎明,温诗铸.纳米压痕技术理论基础[J].机械工程学报,2003,39(3):142-145
    [40]Suresh S,Nieh T G,Choi B W.Nano-indentation of copper thin films on silicon substrates[J].Scripta Materialia,1999,41:951-967
    [41]Sneddon I N.The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile[J].International Journal of Engineering Science.1965,3(1):47-57
    [42]Oliver W C,Pharr G.M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583
    [43]Yue Z F,Eggeler G..Determination of elastic and creep properties of thin film systems from indentation experiments[J].Journal Materials Science Technology,2000,16:559-567
    [44]Doerner M F,Nix W D.Stresses and deformation processes in thin films on substrates[J].Solid State Material Science,1998,14:225-268
    [45]Bragg W L,Nye J F.A dynamical model of a crystal structure[J].Proceedings of the Royal Society A-mathematical Physical and Engineering Sciences,1947,190:474-481
    [46]李启楷,张跃,褚武扬.纳米压痕形变过程的分子动力学模拟[J].2004,12(40):1238-1242
    [47]Iglesias R A,Pleiva E.Two-grain nanoindentation using the quasicontinuum method: two-dimensional model approach[J].Acta Materialia,2006,54:2655-2664
    [48]Tangyunyong P,Thomas R C,Houston J E.Nanometer-scale mechanics of gold films[J].Physical Review Letters,1993,71:3319-3322
    [49]Sutton A P,Balluffi R W.Interfaces in crystalline materials[M],Clarendon Press,Oxford,1995
    [50]Wolf D,Yip S.Materials interfaces:atomic-level structure and properties[M].Chapman and Hall,1992:431
    [51]Kramer D E,Yoder K B,Gerberich W W.Surface constrained plasticity:oxide rupture and the yield point process[J].Philosophical Magazine A,2001,81:2033-2058
    [52]Tadmor E B,Ortiz M,Phillips R.Nanoindentation and incipient plasticity[J].Journal of Materials Research,1999,14(6):2233-2250
    [53]Knap J,Ortiz M.Effect of indenter-radius size on Au(001) nanoindentation[J].Physical Review Letters,2003,90:226102-226105
    [54]Godet J,Pizzagalli L,Brochard S,et al.Theoretical study of dislocation nucleation from simple surface defects in semiconductors[J].Physical Review B,2004,70:054109-1-8
    [55]王崇愚.多尺度模型及相关分析方法[J].复杂系统与复杂性科学,2004,1:9-19
    [56]霍德鸿,梁迎春,程凯.单晶铝微构件拉伸过程的分子动力学仿真研究[J].中国机械工程,2003,14(11):950-952
    [57]单德彬,袁林,郭斌.单晶铜弯曲裂纹萌生和扩展的分子动力学模拟[J].哈尔滨工业大学学报,2003,35(10):950-952
    [58]R Miller,Tadmor E B,Phillips R,et al.Quasicontinuum simulation of fracture at the atomic scale[J].Modelling and Simulation in Materials Science and Engineering,1998,6:607-638
    [59]Kucherov L,Tadmor E B.Twin nucleation mechanisms at a crack tip in an hcp material:Molecular simulation[J].Acta Materialia,2007,55:2065-2074
    [60]Nguyen O,Repetto E A,Ortiz M,Radovitzky R A.A cohesive model of fatigue crack growth[J].International Journal of Fracture,2001,110:351-369
    [61]阎守胜.固体物理基础[M].北京:北京大学出版社,2001
    [62]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988
    [63]方俊鑫,陆栋.固体物理学(上、下)[M].上海:上海科技出版社,1981
    [64]Daw M S,Baskes M I.Embedded-atom method:derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B, 1984, 29(12): 6443-6453
    
    [65] Norskov J K, Lang N D. Effective-medium theory of chemical binding: application to chemisorption [J]. Physical Review B, 1980, 21(6): 2131-2136
    
    [66] Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon [J]. Physical Review B, 1985, 31(8): 5262-5271
    
    [67] Baskes M I, Johnson R A. Modified embedded atom potentials for hcp metals [J]. Modelling and Simulation in Materials Science and Engineering, 1994,2(17): 147-163
    
    [68] Tersoff J. Empirical interatomic potential for silicon with improved elastic properties [J].Physical Review B, 1988, 38(14): 9902-9905
    
    [69] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [J]. Physical Review B, 1990,42(15): 9458-9471
    
    [70] Zienkiewicz O C. The finite element method, 4th edition [M]. London: McGraw -Hill,1991
    
    [71] Shenoy V, Miller R, Tadmor E, et al. An adaptive finite element approach to atomic-scale mechanics: the quasi-continuum method [J]. Journal of the Mechanics and Physics of Solids,1999,47(3): 611-642
    
    [72] Zanzotto G. The cauchy-born hypothesis, nonlinear elasticity and mechanical twinning in crystals [J]. Acta Crystallographica Section A, 1996, A52: 839-849
    
    [73] Harold S P, Patrick A K. A surface cauchy-born model for silicon nanostructures [J]. Computer Methods in Applied Mechanics and Engineering, 2008,197: 3249-3260
    
    [74] Ericksen J L. On the Cauchy-Born Rule [J]. Mathematics and Mechanics of Solids, 2008, 13: 199-220
    
    [75] Shimokawa T, Mortensen J J, Schiotz J, et al. Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region [J]. Physical Review B, 2004, 69:214104
    
    [76] Pandolfi A, Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations [J]. Engineering with Computers, 2002, 18: 148-159
    
    [77] Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 1397-434
    
    [78] Sanjay Kumar Khattri. A simple and effective mesh adaptation [J]. Applied Mathematics Letters, 2008 (Article in Press)
    
    [79] Nix W D. Mechanical properties of thin films [J].Metallurgical Transactions A, 1989, 20A: 2217-2245
    [80] Sutton A P, Pethica J B. Inelastic electron flow processes in nanometre volumes of solids [J]. Journal of Physics: Condensed Matter, 1990, 2: 5317-5326
    
    [81] Sharp S J, Ashby M F, Fleck N A. Material response under static and solid indentation loads [J]. Acta Materialia, 1993,41: 685-692
    
    [82] Qin J, Huang Y, Hwang K C, et al. The effect of indenter angle on the microindentation hardness [J]. Acta Materialia, 2007, 55: 6127-6132
    
    [83] Gane N, Bowden F P. The Direct Measurement of the strength of metals on a sub-micrometre scale [J]. Journal of Applied Physics, 1968,39:1432-1435
    
    [84] Nowak R, Li C L, Maruno S. Low-load indentation behavior of HfN thin films deposited by reactive rf sputtering [J]. Journal of Materials Research, 1997,12:64
    
    [85] Rittner J D, Seidman D N. <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies [J].Physical Review B, 1996, 54: 6999-7015
    
    [86] Rice J R. Dislocation nucleation from a crack tip: an analysis based on the peierls concept [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(2): 239-271
    
    [87] Gerberich W W, Nelson J C, Lilleodden E T. Indentation induced dislocation nucleation: the initial yield point [J].Acta Materialia, 1996, 44: 3585-3598
    
    [88] Jana H, Pavel S, Miroslav C, et al. Multiscale modelling of nanoindentation test in copper crystal [J]. Engineering Fracture Mechanics, 2008, 75: 3755-3762
    
    [89] Liu Y F, Giessen E V, Needleman A. An analysis of dislocation nucleation near a free surface [J]. International Journal of Solids and Structures, 2007,44: 1719-1732
    
    [90] Ward D K, Curtin W A, Qi Y. Mechanical behavior of aluminum-silicon nanocomposites: a molecular dynamics study [J]. Acta Materialia, 2006, 54: 4441 - 4451
    
    [91] Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: the force-matching method [J]. Europhysics Letters, 1994,26: 583-588
    
    [92] Phillips R, Rodney D, Shenoy V. Hierarchical models of plasticity: dislocation nucleation and interaction [J]. Modeling and Simulation in Materials Science and Engineering, 1999, 7: 769-780
    
    [93] Cordill M J, Moody N R, Gerberich W W. The role of dislocation walls for nanoindentation to shallow depths [J]. International Journal of Plasticity, 2008(Article in Press)
    
    [94] Jin J, Shevlin S A, Guo Z X. Multiscale simulation of onset plasticity during nanoindentation of Al (001) surface [J]. Acta Materialia, 2008(Article in Press)
    
    [95] Hirth J P, Lothe J. Theory of Dislocations-2nd Ed [M]. Krieger: Malabar, 1982
    [96] Gerold V. Structure of Solids [M]. Cambridge (New York), 1993
    
    [97] Groenou V, Broese A, Kadijk S E. Slip patterns made by sphere indentations on single crystal MnZn ferrite [J]. Acta Metallurgica, 1989, 37 (10): 2613-2624
    
    [98] Khan M Y, Brown L M, Chaudhri M M. Effect of crystal orientation on the indentation cracking and hardness of MgO single crystals [J]. Journal of Physics D: Applied Physics,1992,25(1A):257-A265
    
    [99] Stelmashenko N A, Walls M G, Brown L M, et al. Microindentations on W and Mo oriented single crystals: an STM study [J]. Acta Metallurgica et Materialia, 1993, 41(10):2855-2865
    
    [100] McElhaney K W, Vlassak J J, Nix W D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments [J]. Journal of Materials Research, 1998, 13 (5): 1300-1306
    
    [101] Lim Y Y, Chaudhri M M. The influence of grain size on the indentation hardness of high-purity copper and aluminum [J]. Philosophical Magazine A, 2002, 82: 2071-2080
    
    [102] Komanduri R, Chandrasekaran N, Raff L M. MD simulation of indentation and scratching of single crystal aluminum [J]. Wear, 2000,240: 113-143
    
    [103] Liang H, Woo C H, Huang H, et al. Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation [J]. Computational Methods in Engineering Science and Mechanics, 2004, 6(1): 105-114
    
    [104] Liu Y, Varghese S, Ma J, et al. Orientation effects in nanoindentation of single crystal copper [J]. International Journal of Plasticity, 2008 (Article in Press)
    
    [105] Tsuru T, Shibutani Y. Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu [J]. Physical Review B, 2007,75(3): 035415
    
    [106] Abu A R, Voyiadjis G Z. Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments [J]. International Journal of Plasticity, 2004, 20: 1139-1182
    
    [107] Liu Y, Wang B, Yoshino M, et al. Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(12): 2718-2741
    
    [108] Saraev D, Miller R E. Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings [J]. Acta Materialia, 2006, 54: 33-45
    
    [109] Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275-1277
    [110]陈奇志,黄一中,赵滨,褚武扬.薄晶体中位错滑移能力枯竭后的破坏模式[J].中国科学(E辑),1998,28(5):385-393
    [111]Aust K T,Chalmers B.Surface energy and structure of crystal boundaries in metals[J].Proceedings of the Royal Society of London.Series A:Mathematical and Physical Sciences,1950,204(1078):359-366
    [112]Gane N,Bowden F P.Microdeformation of solids[J].Journal of Applied Physics,1968,39:1432-1435
    [113]Bahr D F,Kramer D E,and Gerberich W W.Non-lineardeformation mechanisms during indentation[J].Acta Materiala,1998,46:3605-3617
    [114]Fancher R W,Watkins C M,Norton M G et al.Grain growth and mechanical properties of bulk polycrystalline silicon[J].Journal of Materials Science,2001,36:5441-5446
    [115]Kiely J D,Houston J E.Nanomechanical properties of Au[J].Physical Review B,1998,57:12588-12594
    [116]Ren L P,Bahr D F,Hoagland R G.Influence of grain boundary structure on liquid metal penetration behavior[J].Multiscale Phenomena in Materials,2000,578:411-416
    [117]Manika I,Maniks J.Size effects in micro- and nanoscale ndentation[J].Acta Materialia,2006,54:2049-2056
    [118]Ho J,Diana F.Interaction of lattice dislocations with a grain boundary during nanoindentation simulation[J].Materials Letters,2007,61:868-871
    [119]Tan H L,Yang W.Atomistic/continuum simulation of interface fracture[J].Acta Mechanica Sinica,1994,10:237-249
    [120]Rafii-Tabar H,Hua L,Cross M.A multi-scale numerical modelling of crack propagation in a 2D metallic plate[J].Journal of Computer-Aided Materials Design,1997,4:165-173
    [121]Gao H,Huang Y,Abraham F F.Continuum and atomisitc studies of intersonic crack propagation[J].Journal of the Mechanics and Physics of Solids,2001,49:2113-2132
    [122]Berk H,Barend J T,Erik V G.Molecular dynamics study of dislocation nucleation from a crack tip[J].Physical Review B,2005,71:054111
    [123]Khoei A R,Azadi H,Moslemi H.Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique[J].Engineering Fracture Mechanics,2008,75:2921-2945
    [124]Sinclair J E,Lawn B R.An atomistic study of cracks in diamond-structure crystals[J].Proceedings of the Royal Society of London,Series A,1972,329:83-103
    [125] Mullins M. Computer simulation of fracture using long range pair potentials [J]. Acta Materialia, 1984, 32: 381-388
    
    [126] Gumbsch P. An atomistic study of brittle fracture: toward explicit failure criteria from atomistic modeling [J]. Journal of Materials Research, 1995,10: 2897-2907
    
    [127] Matsumoto 0, Miyazaki S, Otsuka K, Tamura H. Crystallography of martensitic transformation in Ti-Ni single crystals [J]. Acta Materialia, 1987, 35: 2137-2144
    
    [128] Zuev L, Kartashova N, Danilov V, et al. Strain localization in a material with transformation-induced plasticity (NiTi single crystals) [J]. Technical Physics Letters, 1996,41(11): 1189-1192
    
    [129] Castrodeza E M, Bastian F L, Perez J E. Fracture toughness of unidirectional fiber-metal laminates: crack orientation effect [J]. Engineering Fracture Mechanics, 2005, 72:2268-2279
    
    [130] Sarioglu F, Orhaner F O. Effect of prolonged heating at 130°C on fatigue crack propagation of 2024 Al alloy in three orientations [J]. Materials Science and Engineering A, 1998,248:115-119
    
    [131] Andrea P, Robin C B. Relation between driving energy, crack shape, and speed in brittle dynamic fracture [J]. Physical Review B, 2005, 72: 054101-054111
    
    [132] Riedle J, Gumbsch P, Fischmeister H F. Cleavage anisotropy in tungsten single crystals [J]. Physical Review Letters, 1996, 76: 3594-3597
    
    [133] Hai S, Tadmor E B. Deformation twinning at aluminum crack tips [J]. Acta Materialia,2003,51:117-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700