水冷壁管腐蚀低频涡流检测的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水冷壁管是电站锅炉内部的主要构件,对其腐蚀缺陷的在线检测具有巨大的经济价值。低频涡流检测技术对管道内表面的缺陷具有较高的灵敏度,有着很好的应用前景。为了进一步了解该技术,使之更有效的应用于水冷壁管内壁腐蚀缺陷的检测,本文利用有限元分析软件ANSYS对低频涡流检测进行仿真研究,得出的结论将为实际的探头设计及检测提供理论依据。
     文章首先根据电磁感应原理对低频涡流检测的工作原理进行介绍,接着通过麦克斯韦方程组了解感应磁场和涡流在被测试件中传播的规律,得出检测试件的内表面缺陷时需要选择适当激励频率的结论,并提出利用相位差大小判断缺陷存在与否的方法。
     其次,对一套单通道低频涡流检测设备的电磁场问题进行合理的假设和定义后,建立其三维优化仿真模型,经求解分别得到有、无缺陷时试件表面涡流和感应磁场的矢量分布图,比较其感应电压曲线得出相位差;接着,分别对激励频率、信号幅度及检测线圈放置方式进行仿真计算,分析得出适合水冷壁管检测的各参数范围;并研究了不同缺陷形态下相位差的变化规律,验证了利用相位差大小判断缺陷方法的正确性。
     最后,通过增加检测线圈的个数增大探头扫差面积,探头在移动过程中方便的记录位置坐标和感应电压值,有效地提高了检测效率,从计算得到的相位差图形可以判断出缺陷的大致位置,并经实验验证了该方法具有一定的可行性和实用性。
     通过上述研究工作,为水冷壁管腐蚀多通道低频涡流检测装置提供有效的设计方案,在一定程度上提高了工作效率。
The water wall tube is the main structure inside the utility boiler, so its online detection of corrosion defects has an important economic value. The low-frequency eddy current testing technology has more sensitivity on detecting the defects inside pipeline wall, so it has a very good prospect. To learn more about it how to apply the water wall effectively, the paper adopts the finite element analysis software ANSYS to carry out low-frequency eddy current testing simulation , which conclusion will provide the theoretical basis for the actual design and testing of the probe.
     Firstly, the article briefly introduces the principles of low-frequency eddy current testing according to the principle of electromagnetic induction, and finds out the formulas about how eddy current and electromagnetic field spread along the pipeline result from Maxwell's equations in low-frequency eddy current testing. It reaches conclusion that detection of the inner surface defects which is obtained with different specimens needs to select the appropriate frequency, and proposes the method of according to the size of phase to judge whether defect exists or not.
     Secondly, it makes a reasonable assumptions and definition of issues for an one-channel device of low frequency eddy current electromagnetic field, and gets the three-dimensional simulation optimized model. After solving the model, receives the vector distribution of eddy current and magnetic field when there has or not has defect, and compares the two curves of the induced voltage. Then analyze the suit factors for water-wall tube by analyzing the frequency and signal amplitude of excitation and the pattern of detection coil place respectively,and studies the regular pattern of phase difference under different patterns of defects,which illustrates the correctness of the methods of determining whether defect exists or not based on the size of phase difference.
     Finally,increases the sweep area of the probe by increasing the numbers of the detection coil,records the location coordinates and the induced voltage value when it moves facilitate,the graphics of the phases can effectively determine the approximate location of defects.
     Through those researches, provides an effective program by designing multi-channel low-frequency eddy current testing device for the water-wall corrosion, to a certain extent, improves the work efficiency.
引文
[1]彭国达.锅炉水冷壁爆管分析[J].理化检验:物理分册.2003,11:38-40.
    [2]任吉林,林俊明等.电磁检测[M].北京:机械工业出版社.2000:46-48.
    [3]范弘.金属材料的涡流检测[M].北京:中国科学技术出版社.2006,20-23.
    [4]游风荷.涡流检测技术的某些新进展[J].无损检测.2001,23.2:70-73,77.
    [5]李人宪.有限元法基础[M].北京:国防工业出版社.2004:11-38.
    [6]刘春鑫,费跃农.低频涡流探伤的仿真研究[J].煤矿机械.2006,27.2,233-236.
    [7]刘春鑫.储罐底板腐蚀缺陷的低频涡流检测仿真与实验研究[D].深圳:深圳大学工程技术学院.2006.
    [8] Zhenmao Chen. Rapid Prediction of Eddy Current Testing Signals Using A-θMethod and Database[J]. NDT&E International.2000:46-49.
    [9]曲民兴、司家屯.电磁无损检测与数值计算第一讲:电磁无损检测的一般问题[J].无损捡测.1994,16.4:12-15.
    [10]曲民兴,司家屯.电磁无损检测与数值计算[J].无损检测.1994,16.6:172~177.
    [11]洛根著,伍义生等译.有限元方法基础教程(第二版) [M].北京:电子工业出版社,2003:7-23.
    [12]署恒木,仝兴华.工程有限单元法[M].东营:石油大学出版社,2003:20-23
    [13]杜平安,甘娥忠,于亚婷.有限元法的原理、建模及应用[M].北京:国防工业出版社.2004:9-15.
    [14]博嘉科技.有限元分析软件:ANSYS融会与贯通[M].北京:中国水利水电出版社.2002:5-11.
    [15]龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社.2003:9-46.
    [16] H刘涛,杨凤鹏H.精通ANSYS[M].北京:清华大学出版社.2002:14-17.
    [17]小飒工作室编.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社.2004:22-24.
    [18] WANG Yousheng, LIANG Ce. Analysis and Simulation on Magnetic Flux Leakage Signal of Flaw inside Pipe Based on ANSYS [J].Computer Measurement&Control,2005,13.3: 273-275.
    [19]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社.2004:12-31.
    [20]刘春鑫,费跃农,汪洋.仿真研究在低频涡流探伤中的应用[J].计算机仿真.2006,23.2:297-301.
    [21]蒋齐密,张新访等.电涡流检测系统的参数设置依据[J].无损检测.2001,23.3:100-102.
    [22]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社.2002:134-137.
    [23] L.B. Pedersen Eddy Current Testing of Thin Layer Using Co-Planar Coils. Research in Nondestructive Evaluation[J].2000,Volume12,Number l, April:70-74.
    [24]阎照文.ANSYS 10.0工程电磁技术与实例详解[M].北京:中国水利水电出版社. 2006:3-365.
    [25] A.Bermúdez, R.Rodríguez, P.Salgado.A Finite Element Method with Lagrange Multipliers for Low-Frequency Harmonic Maxwell Equations[J].SIAM J.Numer.Anal. 2002,40:1823–1848.
    [26] A.Bermúdez, R.Rodríguez, P.Salgado.Numerical Analysis of the Electric Field Formulation of an Eddy Current Problem[J].Numerical Analysis.2003,337:359–364.
    [27] A.Bermúdez, R.Rodríguez, P.Salgado.Numerical Treatment of Realistic Boundary Conditions for the Eddy Current Problem in an Electrode Via Lagrange Multipliers Preprint DIM 2002-11[D].Chile:University de Concepción.2002.
    [28] A.Bermúdez, J.Bullón, F.Pena, P.Salgado.A Numerical Method for Transient Simulation of Metallurgical Compound Electrodes [J].Finite Elem. Anal.Des.2003,39:283-299.
    [29]蒋齐密,张新访等.电涡流检测系统中的电磁场仿真[J].计算机仿真.2000,9:36-39.
    [30]F.Roper. A high-frequency eddy current method for the thickness measurement of thin metallic foils using ferrite-core transmission systems[J]. NDT&E International.2004,25:19-21.
    [31]李莺莺,靳世久,魏茂安.管道漏磁法检测的ANSYS仿真研究[J].无损检测.2005,33:192-194.
    [32]汪友生,梁策.管壁内部缺陷漏磁信号的ANSYS仿真与分析[J].计算机测量与控制.2005,13.3:273-275.
    [33]雷威,张小平,王保平等.电磁场理论及其应用[J].南京:东南大学出版社.2005:14-16.
    [34]聂绍龙,黄旭初,王宣银.微弱信号检测的原理及其实现[J].电测与仪表,2002,39.444:9-12.
    [35]苏金明,阮沈勇. matlab 6.1实用指南(上、下册)[M].北京:电子工业出版社.2002:11-45.
    [36]孙晓云,陈德智.通过扰动磁场识别缺陷[J].无损检测,2001,23.2:47.
    [37]蒋奇.管道缺陷漏磁检测量化技术及其应用研究[D].天津:天津大学,2003.
    [38]Sunho Yang. Finite element modeling of Current Pertu-bation Method of Nondestructive Evaluation Application[D]. Iowa: IowaState University,2000.
    [39] McNab and J.C.Hale.Electromagnetic Crack Detection in Ferrite steel[J].Journal of Nondestructive Evaluation.Voufme4.2002 Number3-4 ,December:167-169.
    [40] R.J.Ditchburn , S.K.Burke , M.Posada.Eddy-Current Nondestructive Inspection with ThinSpiral Coils : Long Cracks in Steel[J].Journal of Nondestructive Evaluation.2003,Volume22,Number2,June:348-350.
    [41] V.S.Khandetskii,V.A.Pashchenko,N.A.Matveeva.Fast Procedures of Crack Localization in Tested Objects Using Pulse Envelopes of Arbitrary Shapes[J].Russian Journal Of Nondestructive Testing.2001,Volume37.Number 1 ,January:30-32.
    [42]段权,程光旭.在役压力容器疲劳裂纹的涡流无损检测方法研究[J].化工机械.2000,27.4:208-210,227.
    [43]周小兵,康宜华,丁红霞.交流漏磁检测系统设计及实验研究[J].无损探伤.2006,39:20-23.
    [44]齐玉良,陈国明,张彦廷.交流电磁场检测数值仿真及其信号敏感性分析[J].石油大学学报:自然科学版.2004,28.3:65-68.
    [45] M.C.Petri, Y.C.Wel. Eddy Current Signal Deconvolution Technique of the Improvement Of Steam Generator Tubing Burst Pressure Predictions[J].Journal of Nondestructive Evaluation.2000 Volume19,Number4,December:187-189.
    [46] Gwan Soo Park,Eun Sik Park. Improvement of the Sensor System in Magnetic Flux Leakage-type Nondestructive Testing [J].IEEE Transactions on Magnetic.2002,38.2:1277-1280.
    [47] Cheng ChiTai,JohnC.Moulder. Bolt-Hole Corner Crack Inspection Using the Photo inductive Imaging Method.[J].Journal of Nondestructive Evaluation.2000,Volume19,Number3,September:24-26.
    [48] Gao Yinhan,Min Likai,Chen Runa,Shi Yingjun.Study of Honeycomb Probes Data Acquisition and Multi-processors System for Imaging[J].ISTM/5TH International Symposium on Test and Measurement.2003,Volume 1:555-558.
    [49] Gao Yinhan,Shi Yingjun,Chi Junfeng,Min Likai.Study of Eddy Detecting and Imaging Processing Technology[J].ISTM/5TH International Symposium on Test and Measurement.2003,Volume 3:2089-2092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700