基于ACFM技术焊缝跟踪传感器的磁场建模和信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着焊接成形技术对机械制造业各个领域的渗透,发展和应用新型焊接自动化技术将对国民经济起到巨大的作用,而焊缝跟踪技术正是焊接自动化研究的一个重要方面。针对工程常用的窄间隙I型对接坡口焊缝缺乏稳定有效的跟踪方法这一难题,结合交变磁场测量(ACFM)技术在无损检测领域的成熟应用,设计开发了一种基于ACFM原理的新型电磁传感器应用于焊缝跟踪。
     本文通过传感器的空间磁场建模,重点研究由工件焊缝引起的磁场畸变信号与焊缝位置之间的内在联系;并根据磁场信号低信噪比的特点以及焊接环境要求设计信号处理电路精确提取所需信号,同时对部分电路进行仿真优化。具体研究内容如下:
     (1)对交变磁场焊缝跟踪传感器的基础理论和可行性进行研究。分析了ACFM技术的基本原理和工作过程,在此基础上建立了空间磁场简化数学模型,完成了三维空间各个方向磁感应强度理论计算;研究了沿焊缝长度方向同一水平面上各点的磁场分布规律,以完成对焊缝起止点位置信息的获取;研究了垂直焊缝方向一定区域内的磁场分布规律,以完成对焊缝左右偏差方向和幅度信息的获取,并采用数值分析方法对分布曲线进行拟合,确定磁场强度和焊缝位置信息两者之间的近似函数关系;最终设计了焊缝跟踪传感器采集磁场畸变信号的工作流程图。
     (2)设计了以前置差分放大、50Hz工频陷波、高阶无漂移低通滤波为主的信号处理电路,并对其进行MATLAB仿真分析;鉴于模拟陷波器无法滤除残留工频谐波噪声,设计了阻带选择性高和信号失真度小的整系数多阻带带阻数字滤波器;针对复杂恶劣的焊接环境和跟踪系统的实时性对滤波器稳定性和响应速度的苛刻要求,提出极点重置理论改善滤波器品质,寻求最佳滤波性能;设计了一种正交锁定放大电路同时完成对磁场畸变信号幅值和相位信息的直流形式输出,提高焊缝跟踪传感器的精度。
     (3)用实验的方法验证信号处理电路设计的正确性和有效性,并且在此基础上通过测量能够表征磁场畸变信息的感应电压信号对垂直焊缝方向一定区域内的磁场分布规律进行验证;同时设计了开方电路完成对焊缝位置信息的提取。
As welding forming technology permeate to various areas of the mechanical manufacturing, development and application of new type welding automation technology will play huge role of national economy,and seam tracking technology is the important aspect of welding automation research.The narrow interval I type butt weld which comman used in engineering usual lack of stable and effective method of tracking, combined with the high frequency alternating magnetic fields measurements (ACFM) technology in use at Non-destructive testing fields, designing and developing a new electromagnetic sensor based on the principle of ACFM applied to seam tracking.
     In this paper,through the modeling of sensor,s space magnetic fields,focusing on that research the internal relationship between welding line position and magnetic field distortion signal which cause by welding line;and according to the magnetic fields signal characteristic of low SNR and the requirement of welding environment design signal processing circuit to pick up accurately required signal,meanwhile simulate part of the circuit to optimization. The main research content as follows:
     (1) Analyzed the basic theory and feasibility of ACFM seam tracking sensor. Analyzed the basic principle and working process of ACFM technology, and established the simplified mathematical model of space magnetic fields, completed the three-dimensional space each direction induction strength theory calculation; Study the magnetic fields distribution rule of each point in the same horizontal plane along welding line direction,get the location information of weld starting and terminal point; Study the magnetic fields distribution rule within a certain region along welding line vertical direction, get the direction and amplitude information of weld deviation, fitting for distribution curve with numerical analysis method, calculate the approximate function relationship between the magnetic field strength and weld location; finally designed work flowchart about seam tracking sensor to collect magnetic fields distortion signal.
     (2) Designed signal processing circuit based on differential amplifier、50Hz power frequency trap and high order no drift low pass filtering, and simulated using MATLAB/simulink; according to analog trap is unable to filter out the residual power frequency harmonics,designed the whole coefficient much stopband band-stop digital filter that with the characteristic of high stopband selectivity and low signal distortion degree; according to complex welding environment and real-time demanded of tracking system,ask for the filter have high stability and response speed,offer the theory of reset filter pole to improve filter quality, seek optimal filtering performance; designed a kind of orthogonal lock-in amplifier circuit to finish DC form output of magnetic fields distortion signal amplitude and phase information simultaneously, improve the accuracy of seam tracking sensor.
     (3) To proving the correct and effective of signal processing circuit with experiment,and on this basis measuring the induced voltage signal which can indicate magnetic fields distortion information,to proving magnetic fields distribution rule within a certain region along welding line vertical direction; and designed extracting square root circuit to obtain welding line location information.
引文
[1]赵熹华.焊接方法与机电一体化[M].北京:机械工业出版社,2001:5-10.
    [2]雷玉成,于治水.焊接成形[M].北京:化学工业出版社,2004:1-3.
    [3]陈善本.焊接过程现代控制技术[M].哈尔滨:哈尔滨工业大学出版社,2001:1-5.
    [4]林尚扬,陈善本,李成桐.焊接机器人及其应用[M].北京:机械工业出版社,2000:4-6
    [5]吕学勤,张轲,吴毅雄.焊缝自动跟踪的发展现状与展望[J].机械工程学报,2003,39(12):80-84
    [6]黄石生,高向东.焊缝跟踪系统的研究与展望[J].电焊机,1995(5):1-5
    [7]何金田,成连庆,李伟锋.传感器技术[M].哈尔滨:哈尔滨工业大学出版社,2004:1-6
    [8]贾剑平,张华,徐建宁.电弧传感器的研究现状与展望[J].焊接,2005(11):14-18
    [9]毛鹏军,黄石生,薛家祥等.弧焊机器人焊缝跟踪系统研究现状与发展趋势[J].电焊机,2001(10):9-12
    [10] Kodama M,Goda H,Iwabuti H.Arc sensor for simultaneous detection of torch aiming and gap Width-development of high frequency oscillation arc.Welding International,2001,15(12):952- 964
    [11] Kodama M.Simultaneous control of torch aiming and deposition rate to groove gap with high frequency oscillation arc sensor-development of high frequency oscillation arc.Welding Inter- National,2002,16(3):196-204
    [12] Kim C H,Na SJ.A study of an arc sensor model for gas metal arc welding with rotatin arc-part 1:dynamic simulation of wire melting.Processdings of the Institution of Mechanical Enginee- rs-Part B,London,2001,215(B9):1271-1279
    [13] Kim C H,Na SJ.A study of an arc sensor model for gas metal arc welding with rotatin arc-part 2:dynamic simulation of wire melting.Processdings of the Institution of Mechanical Enginee- rs-Part B,London,2001,215(B9):1281-1288
    [14] Jeong Sangkwun,Lee Gunyou.Development of high speed rotating arc sensor and seam track- Ing controller for welding robots.2001 IEEE ISIE,Pusan,2001,845-850
    [15] Hiroshi FUJIMURA,Eizo IDE,Hironori INOUE.Jiont Tracking Control Sensor of GMAW[J]. Transactions of Japan Welding Society,1987(1):32-40
    [16]野春博一.高速旋转电弧自动角焊法的开发[J].国外焊接,1987(3):21-26
    [17]费跃农.电弧传感器焊缝自动跟踪系统及电弧传感器基础理论研究[D].清华大学博士论文,1990
    [18]吴世德.电弧传感器焊缝跟踪系统的信息处理技术[D].清华大学博士论文,1997
    [19]孙华,王炎,周卫东等.CO2气体保护焊焊缝跟踪的信息处理技术[J].哈尔滨理工大学学报1998(8):40-43
    [20]洪波,周葵,李湘文等.基于旋转电弧传感的焊缝偏差信息提取方法[J].焊接学报,2010,31( 9):5-8
    [21]陈志国,任传富.接触式自动焊缝跟踪传感器的研究[J].热加工工艺,2007,36(7):86-88
    [22]程岩.超声波传感器焊缝跟踪系统的研究[J].仪器仪表用户,2005,12(6):11-12
    [23]李顺华,胡绳荪.超声波传感器在焊缝跟踪的应用[J].焊接设备与材料,2000,29(5):33-34
    [24] Fenn R Lu Y.Real-time welding quality control and assessment system[J].Insight Non-Destr Test Cond Monit,1997,39:93-96
    [25] Umeagukwu,Charles.Roboticac oustic seam tracking:system development and application[J]. IEEE Transactions on Industrial Electronics,1998,36:338-348
    [26]尹懿,洪波,张晨曙等.光电传感式焊缝自动跟踪系统[J].焊接学报,2006,27(9):93-98
    [27]曹莹瑜,黄民双,蒋力培等.一种新颖的接触式光电焊缝跟踪传感器[J].电焊机,2008,38(2): 21-23
    [28]谢望.光电传感器技术的新发展及应用[J].仪器仪表用户,2005,12(5):1-2
    [29]李来平.弧焊机器人视觉传感技术[J].现代焊接,2007(8):1-5
    [30]王伟,邹奇仕,朱六妹等.视觉传感焊缝跟踪技术的发展状况及实施方案探讨[J].电焊机, 2002,32(5):1-8
    [31]刘苏宜,王国荣,钟继光.视觉系统在机器人焊接中的应用和展望[J].机械科学与技术,2005 24(11):1296-1300
    [32]吴林,陈善本.智能化焊接技术[M].北京:国防工业出版社,2000:208-213
    [33]谢志孟,高向东.基于视觉传感的焊缝跟踪技术研究和展望[J].焊接,2005(4):5-9
    [34] Bob Irving.Sensors and Controls Continue to Close the Loop in Arc Welding[J].Welding Journal,1994(4):31-36
    [35] Sharif L H.Sensing and Digital control of weld pool with visual welding robot[A].6th Annual Conference of IEEE[C],Nagoya,2000:1521-1526
    [36]吴林,徐庆鸿.焊接过程的微计算机测试和控制[M].北京:新时代出版社,1986:156-163
    [37] Zhang Hua,Liao Baojian,Pan Jiluan.Real-time measurement of temperature field by colorim- etric method.SPIE[J].1996,2894
    [38]许志祥等.X射线焊缝图像计算机质量检测[J].焊接学报,1992(1):1
    [39]虞湘宾等.小波变换的快速算法研究及其在图像处理中的应用[J].电路与系统学报,2002 (6):13-17
    [40]乌日图.机器人焊接图像信息快速处理技术的研究[J].内蒙古工业大学学报,1997,16(1): 31-36
    [41]石永华,钟继光,刘桑.视觉传感及图像处理技术在焊接中的应用[J].电焊机,1999,29(9): 1-4
    [42]都东,邹怡蓉,常保华.焊接视觉传感及自动跟踪技术的现状与发展[J].航空制造技术,2010 (9):40-42
    [43]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2002:2-5
    [44]美国无损检测学会.美国无损检测手册(电磁卷)[M].上海:世界图文出版公司,1999:1-10
    [45]任吉林.电磁无损检测技术的新发展[J].无损检测,2001(5):1-4
    [46]杨宾峰,罗飞路,曹雄恒等.脉冲涡流无损检测技术在裂纹定量中的应用[J].无损检测,2005 27(6):291-293
    [47]孙永荪.国外漏磁探伤现状[J].无损检测,1986,8(11):304-307
    [48]余志,严长亮,白小亮等.钻杆缺陷的漏磁检测技术[J].无损检测,2010,32(3):189-191
    [49]林俊明.电磁(涡流)检测技术在中国[J].无损检测,2008,30(5):261-266
    [50] K.Chen,F.P.Brennan,W.D.Dover.Thin-skin AC field in anisotropic tectangular bar and ACPD stress measurement[J].NDT&E International,33(2000):317-323
    [51]徐根弟,崔纪纲.一种新型的无损检测诊断技术—交流电场探伤仪(ACFM)[A].救捞专业委员会2005年学术交流会论文集,2005:157-159
    [52]陈建忠,史耀武.无损检测交变磁场测量法[J].无损检测,2001,23(3):96-99
    [53]赵海涛.基于交变磁场测量技术的金属表面缺陷检测系统的研究与实现[D].国防科技大学硕士论文,长沙:2005
    [54]赵艳丽.交流电磁场检测信号处理方法及应用研究[D].中国石油大学硕士论文,东营: 2009
    [55]亓和平.交流电磁场检测技术装备及应用[J].石油机械,2005,33(6):77-80
    [56] Topp D,Jones BA.Operational experience with the ACFM inspection technique for sub-sea weld inspection[J].Environmental Engineering,1994,7(1):9-13
    [57] M.Ph.Papaelias,M.C.lugg,C.Roberts,C.L.Davis.High-Speed insecption of rails using ACFM techniques[J].NDT&E International,2009,42(2009):328-335
    [58]李伟.基于交流电磁场的缺陷智能可视化检测技术研究[D].中国石油大学博士论文,东营:2007
    [59]康中尉,罗飞路,胡媛媛等.交变磁场测量数学模型及类匀强场的建立[J].无损检测,2004, 26(11):545-551
    [60]赵玉丰,朱荣新,杨宾峰等.基于交变磁场测量技术的裂纹缺陷定量检测仿真分析与实验研究[J].测试技术学报,2009,23(6):550-556
    [61]冯蒙丽,王丽,丁红胜.电磁反演与交变磁场方法的金属表面缺陷检测[J].测试技术学报, 2007,21(4):324-328
    [62]沈豪.转向架构架探伤的交流电场探测法[J].电力机车与城轨车辆,2004,27(1):40-41
    [63]李安强.基于交变磁场测量(ACFM)技术的焊缝跟踪系统的研究[D].湘潭大学硕士论文,湘潭:2007
    [64]安藤弘平.焊接电弧现象[M].北京:机械工业出版社,1985:10-16
    [65]李力等.机械信号处理及其应用[M].武汉:华中科技大学出版社,2007:2-8
    [66]谷萩隆嗣.数字滤波器与信号处理[M].北京:科学出版社,2003
    [67]周利清,苏菲.数字信号处理基础[M].北京:北京邮电大学出版社,2005:4-10
    [68]周洪,孟正大.电弧传感焊缝跟踪的信号处理[J].华中科技大学学报,2008,36(I):122-125
    [69]杜建辉,石永华,王国荣等.基于旋转电弧传感器的水下电弧焊信号处理[J].电焊机,2009,39(12):63-66
    [70]洪波,黄俊,潘继銮等.新型埋弧焊焊缝跟踪系统的信号处理方法[J].焊接学报,2006,27(7): 53-56
    [71]薛家祥,刘晓,张丽玲等.基于小波变换的MAG焊焊缝跟踪[J].焊接学报,2006,27(6):13-16
    [72]陈建辉,高向东,刘明涛等.基于卡尔曼滤波的焊缝跟踪技术研究[J].焊接技术,2008,37(1): 11-12
    [73]李晓辉,汪苏,刘小辉等.焊接机器人智能化的发展[J].电焊机,2005,35(6):39-41
    [74]谭一炯,周方明,王江超等.焊接机器人技术现状与发展趋势[J].电焊机,2006,36(3):6-10
    [75] Park,Joong-Jo.Development of the 6-axis force-moment sensor for an intelligent robots gri- pper[J].Sensors & Actuators A:Physical,2005,118(1):127-134
    [76]陈善本.智能化机器人焊接技术研究进展[J].机器人技术与应用,2007(5):8-11
    [77]廖家平,张晨曙,尹懿.焊接机器人焊缝跟踪技术的发展状况及趋势[J].现代焊接,2010(4): 1-3
    [78] A.M.Lewis,D.H.Michael,M.C.Lugg.Thin-skin electromagnetic fields around surface-breaking cracks in metals.J.Appl.Phys,1998,64:3777-3784
    [79]齐玉良,陈国明,张彦延.ACFM的数值模拟及信号敏感性仿真分析.中国石油大学学报(自然科学版),28(3):65-68
    [80] H.Hoshikawa,K.Koyama.Basic study of a new ECT using uniform rotating direction eddy current.Review of progress in Quantitative Nondestructive Evaluation,1997,Vol.16
    [81] H.Hoshikawa,K.Koyama.Nihon University.Eddy Current Distribution induced by Uniform Eddy Current Probe.Lzumicho Narashino Chiba 275-8575,Japan
    [82]赵近芳.大学物理学[M].北京:北京邮电大学出版社,2002:226-230
    [83]薛年喜.MATLAB在数字信号处理中的应用(第2版)[M].北京:清华大学出版社, 2008:162-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700