油井管接口螺纹力学行为和磁化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油井管是石油钻采工业中必不可少的重要物资,其质量安全关系着整个采油作业的顺利进行,无论是新产品出厂及使用前还是旧产品的修复过程中都需要进行无损检测。接口螺纹部位是油井管最薄弱的环节,油井管表面损伤、滑脱、断裂裂纹往往发生在该处。选取P110油管接头为研究对象,在弹塑性力学的基础上对处于机紧状态下相互啮合的内外螺纹各扣牙的力学行为进行分析,通过建立数学模型的解析法和有限元分析的数值模拟方法,对该接头内外螺纹各扣牙表面的受力情况及力学分布规律进行研究,分析表明各螺纹牙上受力分布很不均匀,两端的几个扣牙受力最大,危险首先发生在该扣牙处,因此,对油井管的检测重点应在接口两端数牙。选择磁化方式及参数,采用有限元分析方法对P110油管接口螺纹区域的磁场分布进行模拟,在接口顶端加10 mm厚的垫块同时线圈长度往油管内部延长15 mm后,得到了竖直方向的沿螺纹各扣牙表面均匀分布的电磁场,以检测螺纹表面的横向裂纹;同时对油管接口部位中心导体法磁化过程进行模拟,得到了以导体为中心,沿螺纹牙走向分布的环形磁场,以检测螺纹表面的纵向裂纹。此外,为研究缺陷的尺寸参数对漏磁场的影响,以磁偶极子理论为依据,建立了螺纹表面裂纹以及近表面孔洞型缺陷的磁荷模型,分析了缺陷各尺寸参数对漏磁场的影响,得出在裂纹深宽比比较大的情况下,裂纹深度越大或裂纹宽度越大,漏磁场信号均越大,缺陷越容易检出,而且,缺陷的检出存在一定的范围;对于孔洞型缺陷,缺陷尺寸越大,距离表面位置越近,漏磁信号越明显,缺陷越容易检出,缺陷的检出同样存在一定的检测范围。由于油井管螺纹表面大多为沿螺纹牙走向分布的横向裂纹,采用有限元分析法重点对螺纹表面根部横向裂纹的漏磁场分布进行了模拟,分别建立了不同位置、不同尺寸参数的裂纹,对缺陷周围的漏磁场进行模拟,得出在模拟过程中施加的磁化电流作用下,只能检测裂纹中心距离螺纹根部0.45 mm之内的裂纹。裂纹大小、形状均对漏磁信号有重要的影响,裂纹越大越容易检出,在距离螺纹牙底0.45 mm处的裂纹,当深度为0.6 mm时,宽度小于0.6 mm的就可能造成漏检。此外,裂纹深宽比或者宽深比在1/2和1/1时,漏磁信号最明显,这种形状的裂纹最容易被检出。
Oil well tube is the absolutely necessary material in the petroleum drilling industry,and the whole production work depends on its quality safety.So nondestructive testing should be implemented on new products before being used and old ones during repairing process.Oil well tubing thread is the weakest link,surface injury spondylolisthesis and fracture crack usually occur firstly.P110 tubing joint is selected as the study object and mechanical behavior of meshing thread under the compact status is analyzed based on plastoelasticity.Mechanical behavior of the joint thread surface and distribution law are researched by establishing mathematical model and finite element analysis.It turns to be that the stress distribution of thread teeth is quite uneven,and stress on the several thread teeth of the two ends of the tubing joint is quite large.Invalidation occurs there firstly.Therefore nondestructive testing should be implied mainly on the several thread teeth of the two ends of the tubing joint . Suitable magnetization mode and parameters are selected and magnetic field distribution of P110 tubing joint thread is simulated by using finite element analysis method.Vertical electromagnetic field uniformly distributed along each thread tooth surface is obtained by applying a cushion block with 10 mm depth and a coil 15mm longer than before.Transverse crack on the thread surface can be found out by using this kind of magnetic field.Meanwhile,center conductor magnetization process is simulated and annular magnetic field along thread surface is obtained.Vertical crack on the thread surface can be found out by using this kind of magnetic field.In addition,in order to research defect size parameters effect on leakage magnetic field,crack magnetic charge model on the thread surface and hole type defect magnetic charge model under the thread surface are established based on the magnetic dipole theory.Each defect size parameter effect on leakage magnetic field is analyzed,and it turns to be that when the ratio of depth to width of the crack is large,the leakage magnetic field signal increases when the depth or the width of the crack increases.But also,there exists a range of the defect detection.For hole type defect,the leakage magnetic field signal increases when the size of the defect is bigger or it is nearer to the thread surface,and then,it is easier to be found.And also,there exists a range of the defect detection.As most of the defects on the thread surface are transverse cracks,leakage magnetic field of transverse crack in the bottom of the thread tooth is mainly simulated and cracks with different positions and size parameters are made.The leakage magnetic field of each kind of crack is simulated and it turns to be that under the magnetization current during the simulation only cracks in 0.45 mm range from the bottom of the thread tooth can be found.In addition,the size and shape of the crack have a big effect on the leakage magnetic signals.The bigger the crack is,the easier it is to be found.When the crack with a depth of 0.6 mm is 0.45 mm far from the bottom of the thread tooth it cannot be found when its width is smaller than 0.6 mm.Moreover,when the ratio of depth to width or width to depth of the crack is 1/2 or 1/1,the leakage magnetic field is much more obvious and it is easier to find this kind of crack.
引文
[1]黄志潜,李平全,刘天民,等.石油工业发展对油套管和管线管的要求与对策[J].石油专用管,1998,(4):1-10
    [2]李鹤林,吉玲康,谢丽华.中国石油钢管的发展现状分析[J].河北科技大学学报,2006,27(1):1-5
    [3]李欣,张毅,张汝忻.我国油井管需求量、生产能力及价格综合分析[J].钢管,2000,29(1):10-14
    [4]雷毅,许晓峰,余圣甫.新一代超级钢铁材料在石油工程建设中的应用及展望[J].石油工程建设,2006,32(2):1-4
    [5]程伟,黄曙荣,陈健生.全自动荧光磁粉检测系统[J].无损检测,2000,12(11):505- 508
    [6] SHELIKHOV G S.The Effect of Coagulation of magnetic Particles on the detectability of flaws in magnetic-powder inspection[J].Russian Journal of Nondestructive testing,2004,40(6):401-405
    [7] MUZHITSKII V F,KULEMIN E A.Magnetic and Magnetoluminescent Materials for magneticpowder Tests on Russia,s Market[J].Russian Journal of Nondestruct-ive testing,2003,38(11):829-831
    [8] SKEIE K,HAGEMAIER D J.Quantfging particle inspection[J].Materials evaluati-on,1988,(5):48-52
    [9]郁有文.涡流传感器在无损探测中的应用——金属管道、导线探测仪[J].传感技术,1996,(3):52-55
    [10]钱晋武,沈林勇,程维明,等.微小管道涡流检测机器人系统研究[J].机器人,2001,23(23):127-132
    [11]金万里,鲍士艳.远场涡流检测技术在电厂钢管检验中的应用[J].无损探伤,2000,24(4):47-48
    [12]龙伟,周明,黄杰.在役管道超声检测系统的现状及发展趋势[J].中国机械工程,1996,7(2):52-54
    [13]焦敬品,何存富,吴斌等.管道超声导波检测技术研究进展[J].实验力学,2002,17(1):1-8
    [14]杨叔子,康宜华.钢丝绳断丝定量检测原理与技术[M].北京:国防工业出版社,1995:3-7
    [15]何辅云,赖志荣.漏磁NDT原理的研究[J].合肥工业大学学报(自然科学版),1994,17(3): 28-32
    [16]康宜华,武新军,杨叔子.磁性无损检测技术中的磁化技术[J].无损检测,1999,21(5):206-209
    [17]康宜华,武新军,杨叔子.磁性无损检测技术中磁信号测量技术[J].无损检测,1999,21(8):340-343
    [18]康宜华,武新军,杨叔子.磁性无损检测技术的分类[J].无损检测,1999,21(2): 58-64
    [19] LORD W,HWANG J H.Defect characterization from magnetic leakage fields[J].British Jour-nal of NDT,1977,19(1):14-20
    [20] FORSTER F.New findings in the field of nondestructive magnetic leakage field inspection[J].NDT Int.,1986,19(1):3-13
    [21] STANLEY R K.Magnetic methods for Wall Thickness Measurement and Flaw D-etection in Ferromagnetic Tubing and Plate[J].INSIGHT,1996,38(1):51-55
    [22] JUNGER M, BROOK C.Beginner’s Guide to Principles,Sensor Selection and Evaluation Te-chniques for Magnetic Leakage Flux Testing[J],British Journal of NDT,1990,32(10):513- 515
    [23]丁劲峰,康宜华,郝鹏程.油管螺纹检测传感器的设计[J].仪表技术与传感器,2006,(1):4-5
    [24]戴光,吴磊,王文江.抽油机井油管螺纹的磁记忆检测技术[J].大庆石油学院学报,2005,29(1):61-63
    [25]刘锦生,刘东明.对钻铤超声波探伤的分析与讨论[J].无损探伤,1998,(3):19-22
    [26]周迪生.在役高压双头螺栓的超声波检测[J].无损检测,1999,21(12):563-564
    [27]陈金国,仓恒川,谢超军.钻铤螺纹疲劳裂纹的超声波检测[J].石油矿场机械,2003,32(3):65- 68
    [28]彭应秋,朱惠,张东鑫,等.管状螺纹联接件超声探伤方法研究[J].无损检测,1999,21(7):297- 299
    [29]刘庆民,王龙山,陈向伟,等.电极圆锥内螺纹的无损检测[J].光学技术,2005,31(2):309-311
    [30]亓和平.交流电磁场检测技术装备及应用[J].石油机械,2005,33(6):77-80
    [31] API Spec 5,Tubing and Casing.American Petroleum Institute[S],1925
    [32] WEINER P D,SEWELL F P.New Technology of Improved Tubular Connection Performance[J].APE Paper 1601,1966
    [33] BLOSE T L.Leak Resistance Limit-Tubular Products[J].ASME Paper,1970,(9):70-73
    [34] ASBILL W T, PATTILLO P D, ROGERS W M.Investigation of API 8 RoundCasing Conn-ection Performance- PartⅠ:Introduction and Method of Analysis,PartⅡ:Stress and criteria,PartⅢ:Steal ability and Torque[J].ASME Paper,1984,(3):50-55
    [35] MITCHELL R F,ALLEN M B,JOHN G C.Investigation of Leak Rating in API 8 Round Connection[J],1989,(11):15-21
    [36] ASSANEL A P,DVORKIN E N.Finite Element methods of OCTG Threaded Connections[J].Computer & Structures,1993,47(4/5):723-734
    [37] ASSANELL A P.Effect of Imperfections of the Real Surface on the Distributionof Contact Stresses:Deviation from the Circular Shape in a Section[C].CINI Internal Report,1994:1-94
    [38] SCHWIIND B E,CHAPPELL J F,KATSOUNAS A T.Threaded Connection Lim-it State Eq-uations for Use in LERD Tubular Design[C].OTC Pater 7939,the 27th Annual OTC,Houst-on,1995:50-72
    [39]高连新,金烨,史交齐.圆螺纹套管接头应力分布规律研究[J].机械强度,2004,26(1):42-48
    [40]杨贵通.弹塑性力学引论[M].北京:清华大学出版社,2004:2-5
    [41]卜炎.螺纹联接设计与计算[M].北京:高等教育出版社,1985:1-13
    [42]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990:60-110
    [43]山本晃.螺纹联接的理论与计算[M].郭可谦,高素娟,王晓凤,等译.上海:上海科学技术文献出版社,1984:42-43
    [44]彭成勇,楼一珊,朱亮,等.钻铤螺纹联接载荷分布规律与疲劳失效[J].断块油气田,2006,13(6):58-61
    [45]白葳,喻海良.通用有限元分析ANSYS8.0基础教程[M].北京:清华大学出版社,2003:1-7
    [46]王治国,张毅.API圆螺纹油管接头上扣与拉伸过程的有限元应力分析[J].钢管,2001,30(3):20-25
    [47]齐俊林,罗维东,张宏,等.圆螺纹套管接头上扣与滑脱的数值模拟[J].石油大学学报,1998,22(4):68-71
    [48]李斌,杨智春.圆螺纹套管接头的抗压缩极限载荷分析[J].机械强度,2003,25(2):167-169
    [49]袁光杰,林元华,姚振强,等.API偏梯形套管螺纹连接的接触应力场研究[J].钢铁,2004,39(9):35-38
    [50]何富君,张瑞杰,兰爽,等.J55油管螺纹工作特性研究[J].石油矿场机械,2004,33(3):18-21
    [51]袁光杰,姚振强.油套管螺纹连接抗粘扣技术的研究现状及展望[J].钢铁,2003,38(11):66-69
    [52] ISO/CD 13679 Petroleum and natural gas industries.Testing procedures for Casing and TubingConnections[S],2000
    [53]杨析,吕拴录.国产73.3 mm×5.51 mm J55 TBG油管上卸扣特性试验研究[J].石油专用管,2000,8(1):22-29
    [54]王玺,夏柏如,王青华.API圆螺纹连接上卸扣过程中温度场分布的实验研究[J].现代地质,2004,18(4):591-594
    [55]练章华,刘永刚,唐波,等.套管接头泄漏和滑脱机理探讨[J].石油钻采工艺,2004,26(1):9-12
    [56]孟庆武,徐景生,何富君,等.大庆油田脱扣油管失效分析[J].大庆石油学院学报,1998,22(1):83-84
    [57]崔旭明,何富君,谭云,等.油管的疲劳强度分析[J].应用力学学报,2003,20(1):129-132
    [58]王心吟,邵清华,綦耀光,等.油管联接螺纹失效综合分析[J].石油矿场机械,2002,31(2):50-53
    [59]孟庆武,徐景生,王宇,等.大庆油田断裂油管失效分析[J].大庆石油学院学报,1998,22(1):85-86
    [60]王贤琴,阮江军,杜志叶.钢管漏磁探伤中孔洞缺陷的漏磁场分析[J].无损检测,2005,27(12):649-651
    [61]严密林,赵国仙,白真权,等.大庆油田某井油管外壁腐蚀失效分析[J].中国腐蚀与防护学报,2001,34(10):48-49
    [62]杨建华,耿文宾.濮城油田井下管杆偏磨腐蚀因素分析及防止对策[J].石油仪器,2003,17(6):52-54
    [63]靳从起,赵普春,王世录,等.W22区块油井管杆腐蚀偏磨治理技术[J].钻采工艺,2000,23(1):32-35
    [64]吴则中,田丰.进一步提高我刚油管检测与修复的技术水平[J].石油机械,1997,25(11):43-46
    [65]盛剑霓.电磁场数值分析[M].北京:科学出版社,1984:10-15
    [66]曾余庚,徐国华等.电磁场有限单元法[M].北京:科学出版社,1982:8-11
    [67] FORSTER F.New findings in the field of nondestructive magnetic leakage field inspection[J].NDT INTERNATIONAL,1986,19(1):3-13
    [68] BAINTON K F.Charactering defects by determining magnetic leakage field[J].NDT Internati-onal.1979,10(5):253-260
    [69]杨洗陈.漏磁探伤中漏磁场与缺陷的相互作用理论[J].无损检测,1979,1(6):9-12
    [70]徐章遂,徐英,王建斌,等.裂纹漏磁定量检测原理与应用[M].北京:国防工业出版社,2005:9-10
    [71]徐章遂,靳英卫,张政保,等.铁磁材料组合型裂纹的漏磁数学模型[J].兵器材料科学与工程,2001,(2):3-6
    [72]美国无损检测学会.美国无损检测手册(磁粉卷)[M].上海:出版社,1994:187-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700