基于比较测量法的光学电流互感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学电流互感器(OCT)具有绝缘性能好、频带范围宽、动态范围大、体积小、重量轻等优点,被认为是传统电磁式电流互感器(CT)的理想替代品。OCT经历了几十年的发展,仍未能在电力系统中得到大面积的推广应用,其主要原因是OCT的性能容易受环境因素如温度、振动等的影响,在长期运行过程中往往表现出相对时间的长期漂移。
     本文针对OCT易受环境因素影响的特点,提出了一种新型的基于比较测量法的光学电流互感器(以下简称比较式OCT)。比较式OCT在原有OCT的基础上引入了一个参考磁场,通过将被测电流磁场与参考磁场进行比较,得到与环境温度无关,仅与被测电流磁场的大小有关的最终测量结果。这种方法对传感头内部的线性双折射和传感材料的Verdet常数同时进行了补偿,具有从前的OCT补偿方法所不具备的优点。
     本文首先论述了比较式OCT的传感机理,对比较式OCT实现有效补偿的过程进行了理论论证。在此基础上,设计了比较式OCT的传感头结构。设计时着重考虑了光路设计和磁路设计两方面,确定了以条状玻璃构成、空间上相互垂直、两传感臂相互独立的光路结构,以及测量磁场与参考磁场相互正交,参考臂有效路径上的平均磁场尽可能大的磁路结构。同时为了克服条状传感头对位置的敏感性,设计了传感头固定装置。
     然后研究了比较式OCT的解调过程中需要解决的两个关键问题——直流磁场的精确解调和交流微弱信号的精确检测。针对参考直流磁场的精确解调,设计了双输入双输出的解调方法。该方法无论是对交流磁场还是对直流磁场都可以实现精确解调,还可以消除光路、电路的不一致以及光源波动带来的测量误差,是对从前解调方法存在的缺陷的改善。针对交流微弱信号的检测,摒弃了以前模拟解调的方法,设计了基于高精度数据采集卡和LabVIEW平台的全数字化解调系统,大大提高了比较式OCT整体的准确度和稳定性。
     接着,对比较式OCT的性能进行了理论分析和计算。比较式OCT可以看作是直流测量系统和交流测量系统的集成,这两个系统都经历了传感、光电转换、信号采集和解调计算四个主要过程。对主要过程中各个非理想因素对交流系统和直流系统的影响分别进行了分析和计算,得到传感头起偏器和检偏器之间的夹角偏离45°是比较式OCT的主要系统误差之一的结论,并针对该系统误差提出了改进措施。
     最后对比较式OCT进行了较系统的试验研究。试验研究包括了设计试验和比较试验两大部分。设计试验为传感头结构的合理设计提供了帮助,具体包括磁路设计试验和参考磁场受交流磁场影响试验。比较试验通过灵敏度比较、误差比较、抗干扰性能比较、温度性能比较及抗光源波动影响比较等一系列较系统的试验,对普通块状OCT和比较式OCT各方面性能进行了比较,一方面证实了比较式OCT结构设计的合理性,双输入双输出解调方法的优越性,另一方面也证实了基于比较测量法这种补偿手段的有效性,它使OCT抗环境因素干扰的能力特别是温度特性得到了很大的改善。
Optical current transformer (OCT) is regarded as a perfect substitute for traditional current transformer because of its inherent advantages such as high electrical insulation, broad frequency band, large dynamic range, small volume, light weight and so on. However, OCT is not popularized in electrical power system yet after several decades’development. The main reason is that OCT is sensitive to external environment factors such as temperature, vibration et al. A gradual sensitivity drift happens in its long-term outdoor running.
     A novel OCT based on comparative measurement is proposed to compensate the sensitivity drift of ordinary OCT. The OCT based on comparative measurement introduces a permanent magnetic field as the reference, an eventual result can be obtained which is irrelevant to environment factors but only proportional to the magnetic field intensity caused by the primary current. The comparative OCT compensates both the linear birefringence that exists in the sensor head and variety of Verdet constant of sensing material. In a word, the comparative OCT has more advantages than other OCT compensation schemes.
     The sensing principle of comparative OCT is expounded firstly. And based on the principle, the structure of comparative OCT’s sensor head is designed. The light path design and the magnetic path design are the two most important hands. The eventual light path is structured by two independent, perpendicular strips of glass. And the magnetic path design make that the measured current magnetic field is vertical to the reference magnetic field, also the average magnetic intensity is as much as possible. At the same time, a pair of tongs is designed to fix the relative position between the primary conductor and the sensor head, thus the measuring result of the OCT made up of strips of glass is repeatable.
     Then, two key problems in signal demodulating are pointed out. One is the right demodulating of reference DC magnetic field. The other is the accurate detecting of weak modulated signal. A dual-input and dual-output demodulating scheme is applied to solve the former problem. This demodulating scheme makes up for the shortages of former schemes. It can demodulate both AC magnetic field and DC magnetic field accurately, and can eliminate the error caused by the unbalance of light path or circuit and the fluctuation of light intensity. In order to detect the weak modulated signal accurately, former analog demodulating system is replaced by an all-digital demodulating system, which is in fact a virtual instrument based on a high accurate data acquisition card and LabVIEW graphic language. The all-digital demodulating system benefits the accuracy and stability of the comparative OCT greatly.
     The comparative OCT is the integration of a DC system and an AC system. Both of them include four main parts: sensing, O/E transversion, sampling and demodulating. Every possible error source in these parts is respectively analyzed in each system. The conclusion that, the departure from 45°of included angle between the polarizer and the analyzer is one of the main system errors of the comparative OCT, is obtained. Some measures are taken for decreasing the error.
     At last, a series of tests including design tests and comparing tests are carried out. The design tests tend to provide helps for the sensor head structure design. The comparing tests including sensitivity, error and temperature comparing verify the superiority of the dual-input and dual-output demodulating scheme and the effectiveness of the compensation method based on comparative measurement. The performance relative to environment factors of the comparative OCT is much better than the ordinary one.
引文
[1] S. Saito, Y. Fujii, J. Hamasaki et al. The laser current transformer for EHV power transmission lines, IEEE J.QE, 1966, Vol.QE-2: 255-259
    [2]刘公强,乐志强,沈德芳.磁光学.上海:上海科学技术出版社, 2001. 35~36
    [3] Emerging Technologies Working Group. Optical current transducers for power systems: a review. IEEE Transactions on Power Delivery, 1994, 9(4): 1778~1788
    [4] Edward A. Ulmer, Jr., Square D. A high-accuracy optical current transducer for electric power system. IEEE Transactions on Power Delivery, 1990, 5(2): 892~898
    [5] R W Miller, B K Taylor, R E Jones. A new optical current transducer. IEE colloquium on Instrumentation in the electrical supply industry, 29 Jun 1993: 2/1-2/3
    [6] H. Katsukawa, H. Ishikawa, H. Okajima et al.. Development of an optical current transduser with a bulk type Faraday sensor for metering. IEEE transactions on Power Delivery,1996,11(2): 702~707
    [7]李庆波,王慧丽,冯瑞颖等.全光纤及其它光学电流传感器技术发展现状.传感器技术,2002,21(7): 1~4
    [8] K. Bohnert,P. Gabus,J. Nehring et al.. Temperature and vibration insensitive fiber-optic current sensor. Journal of Lightwave Technology, 2002, 20(2): 267~276
    [9] V. P. Gubin, V. A. Isaev, S. K. Morshnev et al.. All-fiber optical sensor of electrical current with a SPUN fiber sensing element. Proc. SPIE, 2006, 6251: 62510P-1~62510P-9
    [10] Tingyu Wang, Chengmu Luo, Shengxuan Zheng. A fiber-optic current sensor based on a differentiating Sagnac interferometer. IEEE Transactions on Instrumentation and Measurement, 2001, 50(3): 705~708
    [11] R. Minkner, J. Schmid. A new flexible fiber optic current-measuring-system for AC-and DC-current in high voltage systems. Eleventh International Symposium on High Voltage Engineering, 23-27 Aug. 1999, Vol.1: 29~32
    [12]王政平,康崇,张雪原等.光学电流互感器的问题与解决对策.传感器技术,2005,24(5): 5~7
    [13] T. sato, G. Takahashi, Y. Inui. Method and apparatus for optically measuring a current. European Patent, 0088419A1, Sep., 1983.
    [14] B. C. B. Chu, Y. N. Ning, D. A. Jackson. Faraday current sensor that uses a triangular-shape bulk-optic sensing element. Optics Letters, 1992, 17(16): 1167~1169
    [15] T. Yoshino, T. Takahashi, M. Gojyki et al.. Polygonal Faraday effect current sensor with polarization-preserving dielectric mirrors. SPIE, 1994, 2292: 34~41
    [16] B. C. B. Chu, Y. N. Ning, D. A. Jackson. Faraday current sensor that uses a triangular-shaped bulk-optic sensing element, Optics Letters, 1992, 17(16): 1167~1169
    [17] Y. N. Ning, B. C. B. Chu, D. A. Jackson. Miniature Faraday current sensor based on multiple critical angle reflections in a bulk-optic ring. Optics Letters, 1991, 16(24): 1996~1998
    [18] Y. N. Ning, D. A. Jackson. Faraday effect optical current clamp using a bulk-glass sensing element. Optics Letters, 1993, 18(10): 835~837
    [19] P. G. Gard. On the influence of thin films on total reflection. Optics and Spectroscopy, 1959, 6: 334~341
    [20] J. Apfel. Phase retardance of periodic multiplayer mirrors. Appl. Opt. , 1982, 21(4): 733~738
    [21] Eberhard Spiller. Totally reflecting thin-film phase retarders. Appl. Opt. ,1984, 23(20): 3544~3549
    [22] Z. P. Wang, Z. J. Huang, C. Kang et al.. Optical current sensing element with single medium layers for high voltage applications. Optics & Laser Technology, 1999, 31:455~458
    [23]黄宗军,王政平,孙伟民等.反射相移对Faraday电流传感器灵敏度及稳定性影响的理论分析.光子学报,1998,27(3): 243~247
    [24]孙伟民,王政平,黄宗军等.反射相移对光学玻璃电流传感器抗电磁干扰能力的影响.光子学报,1998,19(9): 1249~1254
    [25]王政平,李庆波,刘晓瑜等.线性双折射对光学玻璃电流传感器输出特性影响的理论分析.光子学报,2004,33(7): 818~822
    [26]王政平,吴强,李庆波等.线性双折射温度特性对光学电流互感器影响的理论分析.光子学报,2005,26(2): 272~276
    [27]王政平,刘晓瑜,王晓忠.线性双折射的波长累积效应对OCS的影响.光子学报,2005,26(6): 811~813
    [28]王政平,李庆波,齐异等.光学电流互感器传感头色散特性对系统灵敏度影响研究.光子学报,2005,34(12): 1807~1809
    [29] T. W. Cease, Paul Johnston. A magneto-optic current transducer. IEEE Trans. on Power Delivery, 1990, 5(2): 548~555
    [30] M. Kanai, G. Takahashi. Optical voltage and current measuring system for electric power system. IEEE Trans. on Power Delivery, 1986, PWRD-1(1): 91~97
    [31] T. Fujimoto, M. Shimizu, H. Nakagawa et al. Development of an optical current transformer for adjustable speed pumped storage system. IEEE Trans. on Power Delivery, 1997, 12(1): 45~50
    [32]李红斌,刘延冰,李尔宁等.用于110kV变电站的光学电流互感器.华中理工大学学报, 1995,23(7): 6~10
    [33]李红斌.光学电流传感器传感头的研究.光学学报, 1997, 26(7): 946~949
    [34] T. D. Du, S. H. Yuan, W. L. Luo. The thermal lens coupled magneto-optical effect in ferrofluid. Applied Physics Letter, 1994, 65(10): 1844~1846
    [35]李洪杰,严璋,袁绥华.基于磁流体热透镜耦合光磁效应测量高压电流方法的研究.高压电器, 1999, 1:24~26,58
    [36] Yang Zhi, Li Changsheng, Zhang Weidong et al.. A novel multi-function optical fiber sensing system for simultaneous measurement of current and voltage. Proc. SPIE, 1998, 3555:57~62
    [37] Kersey A D, Davis M A, Heather J et al.. Fiber grating sensor. J. Lightwave Technol., 1997, 15(8):1442~1463
    [38] Cruz J L, Diez A, Andres M V et al.. Fiber Bragg gratings tuned and chirped using magnetic fields. Electron. Lett. , 1997, 33(3): 235~236
    [39] Y. W. Lee, I. Yoon, B. Lee. A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator, Sensor and Actuators, A: Physical, 2004, 112(2): 308~312
    [40] D. Reilly, A. J. Willshire, G. Fusiek et al.. A Fiber-Bragg-Grating-Based sensor for simultaneous AC current and temperature measurement. IEEE Sensors Journal, 2006, 6(6): 1539~1542
    [41] Liao J., Guo X., Luo C. et al. Studies of Rogowski coil current transducer for low amplitude current (100A) measurement. Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on Volum1: 463~466
    [42] Oates C. The design and use of Rogowski coils. IEE Colloquium: Measurement Techniques for Power Electronics. Birmingham, UK, 1992
    [43] Thomas R T. High impulse voltage and current measurement. IEEE Trans on Instrumentation & Measurement, 1970, 19(2): 112~117
    [44] Ward D A, Exon J La T. Using Rogowski coils for transient current measurement. IEEE Engineering Science and Education Journal,1993(6): 105~113
    [45] Chen Qing, Li Hongbin, Zhang Mingming at al.. Design and characteristics of two Rogowski coils based on printed circuit board. IEEE Transactions on Instrument and Measurement, 2006, 55(3): 939~943
    [46]李澎,蔡志斌,罗承沐.光电电流互感器的供能电路的研究.电工电能新技术, 2003, 22(4): 44~48
    [47]张庆,徐雁,胡爱华等.光电电流传感器的低功耗设计.高压电器, 2002, 38(6): 25~27
    [48] http://www.abb.com
    [49] K. Bohnert, H. Brandle, Brunzel M et al.. Highly accurate fiber-optic DC current sensor for the electro-winning industry. Petroleum and Chemical Industry Conference, 12-14 Sept, 2005: 121~128
    [50] J. N. Blake, A. H. Rose. Fiber-optic current transducer optimized for power metering application. Transmission and Distribution Conference and Exposition, 7-12 Sept. 2003, Vol. 1: 405~408
    [51]王廷云,孙圣和,郑绳楦.一种新型光学电流传感器.仪器仪表学报,1997, 18(9): 650~653.
    [52] J B lake, P Tantasw adi et al.. In-line Sagnac inter-ferometer current sensor. IEEE Transact ions on Power Delivery, 1996, 11 (1): 116~121.
    [53] M Sedlar, I Paulicka, M Sayer. Optical fiber magnetic field sensors with ceramic magneto strictive jackets. Applied Optics, 1996, 35 (27): 5340~5344.
    [54] P L Swart, S J Spammer, et al.. Differentiating fiber optic Mach-Zehnder interferometer for alternating current measurements. SPIE Proc, 1996, 2839: 420~425.
    [55] E. A. Ulmer. High accuracy Faraday rotation measurements. OFS’88, New Orleas, USA, 1988: Thcc21-1~Thcc21-4.
    [56] Peter Menke, Thomas Bosselmann. Temperature compensation in magnetooptic AC current sensors using an intelligent AC-DC signal evaluation. J. of Lightwave Technology, 1995,13(7): 1362~1370
    [57] B.Yi, A. Cruden, J. R. McDonald et al.. A novel bulk-glass optical current transducer having an adjustable multi-ring optical path. Instrumentation and Measurement Technology Conference, 19-21 May 1997, vol.2: 879~882
    [58] Zhengping Wang, Xiaoyu Liu, and Zongjun Huang. Problems of linear birefringencein optical glass current transformers with return-back optical paths. Proceedings of SPIE, Vol. 6134: 61340S-1~61340S-5
    [59] Li Yansong, Li Wei, Yang Yihan et al. A hybrid optical current transducer based on adaptive Kalman filter theory. International Conference on Power System Technology, 2002. 13-17 Oct. 2002, Vol.2: 1127~1131
    [60] Gerhard Westenberger, Hans J. Hoffmann, Werner W. Jochs et al.. Verdet constant and its dispersion in optical glasses. Proceedings of SPIE, 1991, Vol. 1535: 113~120
    [61] A. A. Jaecklin, M. Lietz. Elimination of disturbing birefringence effects on Faraday rotation. Applied Optics.1972, 11(3): 617~621
    [62] P. Niewczas, A. Cruden, W. C. Michie et al.. Vibration compensation technique for an optical current transducer. Optical Engineering, 1999, 38(10): 1708~1714
    [63] K. B. Rochford, A. H. Rose, M. N. Deeter. Faraday effect current sensor with improved sensitivity-bandwidth product. Optics Letters, 1994, 19(22): 1903~1905
    [64] M. Imamura, M. Nakahara, T. Yamaguchi et al.. Analysis of magnetic field due to three-phase bus bar currents for the design of an optical current transformer. IEEE transactions on magntics, 1998, 34(4): 2274~2279
    [65]国家标准局. GB903-1987:无色光学玻璃国家标准.北京:中国标准出版社,1985
    [66]刘湘林,刘公强,金绥更编著.磁光材料和磁光器件.北京:北京科学技术出版社,1990
    [67]李红斌,刘延冰,张明明.电子式电流互感器的关键技术.高电压技术,2004,30(10):4~6
    [68]郭志忠.电子式电流互感器研究评述.继电器,2005,33(14):11~14,22
    [69] Bin he, Xia Zhao, Song Qiao. Optical measuring and sensing system for large current in the isolated phase busbar. Proceedings of SPIE, Vol.2895: 513~515
    [70]干福熹著.光学玻璃.北京:科学出版社,1964
    [71]天津硅酸盐材料试验厂.光学玻璃汇编.北京:机械工业出版社, 1977
    [72]王连发,赵墨砚.光学玻璃工艺学.北京:兵器工业出版社,1995
    [73]邹继斌,刘宝延,崔淑梅等编.磁路与磁场.哈尔滨:哈尔滨工业大学出版社. 1998: 33~40
    [74]易本顺.光学电流互感器特性及补偿方法研究.武汉:华中科技大学博士学位论文,1996
    [75]江毅,黄尚廉.光学电流互感器的原理及其方案评述.传感器技术,1995,(1): 5~9
    [76] National Instrument. NI 447X User Manual. National Instrument Corporation, 2003
    [77] Zarlink semiconductor. MF228-High performance LED. Zarlink semiconductor Inc., 2003
    [78]张庆双编著.实用电子电路200例.北京:机械工业出版社,2003
    [79]中国计量出版社组编.新编电子电路大全.第一版.北京:中国计量出版社,2001
    [80] Photodiode Monitoring with Op Amps, BB Application Bulletin, Printed in USA, January, 1995
    [81] Honeywell Inc.Fiber Optic Products,Catalog 27 June 1998:466-469
    [82]杨乐平编著.虚拟仪器技术概论.北京:电子工业出版社,2003
    [83] P. Turley, M. Wright. Developing engine test software in LabVIEW. IEEE Autotestcon Proceedings, 1997: 575~595
    [84] M. L. Higa, D. M. Tawy, S. M. Lord. An introduction to LabVIEW exercise for an electronics class. Frontiers in Education, 2002, Vol.1: T1D-13~T1D-16
    [85]谢玉冰,游大海,黄上游.基于LabVIEW的光电式电流互感器测试系统.电力系统自动化,2004,28(22):95-96,99
    [86] Josifovska Svetlana. The father of LabVIEW. IEE Review, 2003, 49(9): 30-33
    [87] D. Beck, H. Brand, C. Karagiannis et al.. The first approach to object oriented programming for LabVIEW real-time targets. IEEE Transactions on Nuclear Science, 2006, 53(3): 930~935
    [88] M. Santori. An instrument that isn't really [Laboratory Virtual Instrument Engineering Workbench]. IEEE Spectrum, 1990, 27(8): 36~39
    [89]廖延彪著.偏振光学.北京:科学出版社,2003
    [90] B.卡尔肖著,高希才译.光纤传感与信号处理,成都:成都电讯工程学院出版社,1986
    [91] A. J. McDonald, R. S. Fyath, J. J. O'Reilly. Influence of extinction ratio on performance of optical receivers incorporating laser preamplifiers. Electronics Letters, 1989, 25(4): 1235~1237
    [92]李红斌,刘延冰,汪本进.偏振分束器对光学电流互感器稳定性的影响.光子学报, 2003, 32(2):149~161
    [93] P. Niewczas, A. Cruden, W. C. Michie et al.. Error Analysis of an Optical Current Transducer Operating with a Digital Signal Processing System. IEEE Transactions on instrumentation and measurement, 2000, 49(6): 1254~1259
    [94] P. Niewczas, W. I. Madden, W. C. Michie et al.. Magnetic crosstalk compensation for an optical current transducer. IEEE Transactions on Instrumentation and Measurement, 2001, 50(5): 1071~1075
    [95]于文斌,张国庆,郭志忠.电子式电流互感器校验技术的研究.高电压技术,2004,30(7):20~21,39
    [96] Yu Wenbin , Zhang Guoqing , Guo Zhizhong. A hybrid optical current sensor for power system metering and protection. The 29th Annual Conference of the IEEE Industrial Electronic Society. Roanoke , Virginia , USA , 2003: 2517~2521
    [97]梅志刚,罗承沐,崔爱芳.一种虚拟互感器校验仪的设计.变压器,2006,43(10):25~28
    [98]刘庆余.高精度互感器校验仪的研制.电测与仪表, 1995, 32(12): 6~9
    [99] National Instrument. NI 622x Specifications. National Instrument Corporation, 2003
    [100]李红斌.光学电流传感器的研究.武汉:华中科技大学博士学位论文,1994
    [101] International standard. IEC60044-8: Instrument transformer-Part 8: Electronic current transformer. International Electrotechnical Commission, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700