热镀锌液中锌渣的电磁分离理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热镀锌钢板大量应用于汽车内外板,高表面质量是其必需具备的基本条件。镀锌液中的锌渣是影响镀锌板表面质量的最重要因素,由锌渣引起的各种缺陷造成了巨大的经济损失。目前防止锌渣缺陷产生的措施主要是通过镀锌工艺控制和设备改造,抑制锌渣的形成。随着材料电磁加工技术的发展,电磁净化已经成为具有应用前景的新型金属熔体净化工艺。尝试将电磁净化技术应用于热镀锌液中锌渣的去除,揭示外加电磁场作用下锌渣相的电磁分离机理和分布变化,不仅具有重要的理论价值,而且对于高质量热镀锌产品的生产也具有显著的应用价值。
     针对热镀锌液中锌渣去除的研究现状,本文通过电磁分离热镀锌液中锌渣这一新工艺开展了如下研究:(1)揭示了交变磁场作用下锌渣的电磁分离机理;(2)通过数值分析研究了锌渣去除效率的影响因素;(3)建立了热镀锌液电磁分离的实验装置,并进行了热镀锌液静态分离实验和连续分离实验;(4)设计了大流量的热镀锌液电磁净化中试试验装备,并开展了热镀纯锌(GI)和合金化(GA)钢板镀锌液体系的中试试验研究;(5)通过数值模拟研究了中试锌锅及工业锌锅中的流场、温度场和锌渣浓度场在锌液体外循环净化下的变化规律。通过上述研究提出了热镀锌液电磁净化的技术原型,为热镀锌液电磁净化技术的工业应用奠定了实验和理论基础。
     通过建立锌渣电磁分离的计算模型,研究了锌渣电磁分离过程中的运动规律、锌渣分布变化以及去除效率与主要工艺参量的变化关系。由于锌渣相的导电率与锌液存在数量级的差异,锌渣颗粒的受力为一个与锌液所受电磁力方向相反的挤压力作用,其大小在数值上等于等体积锌液所受电磁力的0.75倍。因此,通过在锌液熔体内施加定向电磁力作用即可实现热镀锌液中锌渣的定向分离。锌渣的去除效率与电磁力施加时间、磁感应强度、磁场频率和分离器尺寸有关。锌渣的去除效率随平均停留时间和磁感应强度的增大而增大;当磁场频率一定时,分离器尺寸与集肤深度的比值a/δ在2附近时锌渣去除效率最佳,随着分离器尺寸的进一步增大锌渣去除效率将减小;在分离器尺寸一定时,锌渣去除效率随磁场频率的增大而增大。
     根据分离器单个通道的尺寸,合适的磁场频率应使得集肤深度δ=2.5 mm,因此,实际磁场频率f可选择为15 kHz-20 kHz。在分离器尺寸、磁场频率和锌液在电磁感应线圈中平均停留时间一定的条件下,磁感应强度值不小于0.06T,净化电源的额定功率为50kW。以电磁参数计算结果为理论依据建立了热镀锌液静态电磁净化装置并开展了相关实验研究。实验结果表明:在磁场频率为17.5kHz、磁感应强度均方根值为0.05T时,电磁作用15 s可有效去除不同铝含量的热镀锌液中粒度大于10μm的锌渣。
     设计了热镀锌液连续净化实验装置,并进行了锌液连续流动条件下的电磁净化实验,对锌渣去除效率随工艺参数的变化规律进行分析,实验结果表明:当磁场频率为17.5kHz,有效磁感应强度为0.05-0.1T,电磁力施加时间为0.6-2.5s,陶瓷管横截面的锌液通道尺寸为10×10mm,10μm粒度的锌渣分离效率变化范围从43.76%到98.63%,实验结果与数值计算结果吻合较好。为了提高分离效率,充分利用方形孔陶瓷管内锌液的二次扰动,研制了多级分离器,利用数值模拟对锌渣去除效率进行了计算,由于第一级分离器每个通道的中心位置现在被壁面占据,而原本处于分离“弱区”的锌渣在第二级分离器内恰恰处在靠近壁面的“强区”,锌渣的电磁分离效率可提高10%左右,并通过实验加以验证。
     在现有电磁净化实验装置的基础上,设计了一套具有自主知识产权的热镀锌液电磁净化中试装备。本装置在国内首次使用了热镀锌液体外循环净化技术,成功实现了锌液体外连续电磁净化,成为该技术工业应用的装备雏形。在中试平台上进行的GA镀锌液优化试验结果表明,通过延长电磁净化时间、优化工艺参数和改变陶瓷管分离器结构可明显改善净化效果,锌锅内所有取样点的平均锌渣去除效率可达89.52%,电磁净化流槽中陶瓷分离器前后的锌渣去除效率约为75%左右,粒度大于20μm的锌渣经过电磁净化可完全去除;中试平台上进行的GI镀锌液电磁净化试验表明,锌渣去除效率可达70%,电磁净化流槽中粒度小于15μm的锌渣去除效率仅为42.1%,而大于15μm的锌渣去除效率为91.67%,直径大于20μm的锌渣可全部去除。
     中试锌锅的数值模拟结果表明,在热镀锌液体外循环电磁净化的前提下,综合考虑实验平台内锌液的流动和除渣率两方面因素,当回锌管液流速度较低时,宜取较短的回锌管长度;而当回锌管液流速度较高时,宜取较长的回锌管长度。回锌管液流速度或净化效率较高时,实验平台内锌渣浓度总体上均处于较低水平,除渣效果较好。锌渣粒径对锌渣浓度场和除渣率影响不大。
     工业在役锌锅的数值模拟结果表明,回锌管或抽锌管的放置与否主要影响锌锅沉没辊上方的V形区及其附近区域,而对锌锅内锌液的总体流动影响甚小。循环净化条件下锌锅中锌渣的浓度随处理时间的增加而逐渐降低。相比于普通锌锅,循环净化方式的引入有利于热镀锌板质量的提高。
The hot-dip galvanizing steel sheet has been widely used in automotive exposed and unexposed body panel application, which requires premium surface quality. The most important factor that impairs the surface quality of the hot dip galvanizing steel sheet is the dross defect, causing a dramatic economical loss. So far, the method to eliminate the dross defect is to restrict the dross formation by processing control and equipment upgrade. Recently, with the rapid progress of electromagnetic processing of materials (EPM), electromagnetic separation technology has been developed and become a novel melt purification method with much prospect in application. It is of a great value to make electromagnetic separation technology applied in removing zinc dross from hot dip galvanizing zinc melts, clarifying the separation mechanism and distribution evolution of dross phases under electromagnetic field.
     Based on the state of the art of zinc dross removing from zinc melts, the following research works have been carried out on the new technology of removing zinc dross by using electromagnetic separation: (1) The zinc dross separation mechanism has been investigated by using alternating magnetic field; (2) Study on influence factors of zinc dross removal efficiency through numerical analysis; (3) The laboratory-scale experimental apparatus of electromagnetic separation have been set up, and experiments to static and continuous separation deleterious zinc dross from zinc bath were conducted on a laboratory-scale apparatus; (4) The establishment of a series of pilot-plant-scale equipment, GA and GI zinc melts purification were carried out on this equipment; (5) By numerical simulation of the pilot-plant-scale and industrial zinc pot, the change laws of velocity field, temperature field and concentration field of zinc dross were studied when the zinc melts pumped out the zinc pot. All of these investigations provided experimental and theoretical basis for hot-dip galvanizing electromagnetic purification technology applied in industry.
     Through the establishment of the electromagnetic separation calculation model, their kinematic behaviors of zinc dross in the electromagnetic separation process, zinc dross distribution and the relation between the removal efficiency and the main operation parameters have been investigated. The conductivity of zinc dross is far less than the zinc melts, so the zinc dross experienced the repulsive force opposite to the electromagnetic force on the melt under electromagnetic field, and the repulsive force is 3/4 times that of the electromagnetic force for same volume of zinc melts. Accordingly, those particles can be successful separated from the metal melt under electromagnetic force. Removal efficiency of zinc dross is related to the electromagnetic force and the imposing time, magnetic flux density, magnetic field frequency and size of the separator. The zinc dross removal efficiency increased with an average residence time in the ceramic pipe and magnetic flux intensity increases when square separator used for zinc melts purification. It can achieve the highest removal efficiency when the frequency of magnetic field fixed and the ratio of the separator size and skin depth is about 2 times, the removal efficiency of zinc dross will be decreased with the separator size further increase; The removal efficiency increases with the frequency of magnetic filed increased when the separator size is fixed.
     The electromagnetic parameters and operation parameters of the electromagnetic separation apparatus are calculated, the skin depthδshould be 2.5mm when we selected suitable magnetic frequency in accordance with the size of single-channel separator, therefore, the actual frequency of the magnetic field is set to 15-20 kHz. When the separator size, frequency of the magnetic field, and the average residue time inside the separator are set as fixed value, the magnetic flux density is no less than 0.06T, the calculated rated power of the electromagnetic apparatus is 50kW. According to all above calculated results, we established electromagnetic purification equipment. Experiments to static separate deleterious zinc dross causing surface defects of galvanizing steel sheets from zinc bath were conducted on this apparatus by using alternating magnetic field. Experimental results show that for the zinc dross particles with diameter larger than 10μm can be removed when the magnetic frequency is 17.5 kHz, the effective magnetic flux density is 0.05-0.1 T, imposed time is 15 s, and the cross section of the ceramic square pipe is 5×5 mm.
     Experiments to continuously separate Fe-Al-Zn dross phase from hot dip galvanizing zinc melt were conducted on a laboratory-scale apparatus by using high-frequency alternating magnetic field too. When the magnetic frequency is 17.5 kHz, effective magnetic flux intensity is 0.1T, the cross section of the ceramic square pipe is 10×10 mm, and the processing time is 0.6-2.5 s, the separation efficiency of zinc dross varies from 43.76% to 98.63%, and the experimental results are almost in good agreement with theoretical results. In order to improve the removal efficiency and make full use of the secondary disturbance inside the ceramic pipe, a new multi-stage separator is developed and the removal efficiency of multi-stage separator is calculated. As the center of each channel of the first stage separator is now occupied by the wall, and zinc dross was originally located in a "weak areas" of the first stage separator successfully changed to the "strong areas" when these dross entered the second stage separator, the zinc dross electromagnetic separation efficiency can be increased by 10% or so, and these numerical calculation results has been verified through experiments.
     A series of pilot-plant-scale equipment which owns independent intellectual property rights for zinc melt electromagnetic purification was developed. A new cardiopulmonary bypass zinc melts purification technology was first introduced in this patent equipment, the successful implementation of a continuous electromagnetic purification outside the zinc pot, this equipment can be seen as the prototype of the equipment for industrial applications. The GA zinc bath purification experiment results show that through extending the process time, optimize the process parameters and change the structure of ceramic separator can significantly improve the purification effect, the average zinc dross removal efficiency is up to 89.52% for all samples, the removal efficiency after separation in the launder was about 75%, zinc dross can be removed completely which particle size larger than 20μm; GI zinc bath purification experiment results show that zinc dross removal efficiency up to 70%, the removal efficiency of zinc dross less than 15μm was only 42.1% in the launder, and the removal efficiency of dross particle size larger than 15μm was 91.67%, but zinc dross can be removed completely which particle size larger than 20μm as same as in GA purification.
     Numerical simulation results of pilot-plant-scale zinc pot show that the return pipe should be shorted when the return flow rate of zinc is low, and vice versa. The removal efficiency increases with the increased of the flow rate of zinc bath. The particle size and concentration fields of zinc dross have little effect on the separation results.
     Numerical simulation results of zinc pot applied in industry show that the location of return pipe and pump pipe has effect on the“V”shaped area, but has little effect on the bulk flow. The dross concentration in the bath decreases with the processing time in the case of circulating purification. Compared to zinc pot in general, the introduction of circulating purification can significantly improve the surface quality of galvanizing steel sheet.
引文
[1]孙跃,胡津。金属腐蚀与控制。哈尔滨:哈尔滨工业大学出版社,2003,4
    [2]袁训华,热浸镀锌渣蒸发-凝聚法制备锌粉的工艺理论及设备原理,昆明理工大学硕士学位论文,2007
    [3] H. Asgari, M. R. Toroghinejad, M. A. Golozar, Effect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings. Current Applied Physics, 2009, 9: 59-66
    [4] M. Safaeirad, M. R. Toroghinejad, F. Ashrafizadeh, Effect of microstructure and texture on formability and mechanical properties of hot-dip galvanized steel sheets. Journal of materials processing technology, 2008, 196: 205-212
    [5] Hiroki Tamura, The role of rusts in corrosion and corrosion protection of iron and steel. Corrosion Science, 2008, 50: 1872–1883
    [6] Y. Y. Chen, H. J. Tzeng, L. I. Wei, et al., Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions. Corrosion Science, 2005, 47: 1001-1021
    [7] N. Pistofidis, G. Vourlias, S. Konidaris, et al., Microstructure of zinc hot-dip galvanized coatings used for corrosion protection. Materials Letters, 2006, 60: 786–789
    [8]张洪斌. 55 %铝-锌-1.6%硅合金镀层的耐蚀性能[J].上海交通大学学报1998,32(9):121-125
    [9] A. Matsuzaki, T. Yamaji, M. Yamashita, Development of a new organic composite coating for enhancing corrosion resistance of 55% Al-Zn alloy coated steel sheet. Surface and Coatings Technology, 2003, 169-170: 655-657
    [10] A. Sémoroz, Y. Durandet and M. Rappaz, Ebsd characterization of dendrite growthdirections, texture and misoritentations in hotdipped Al–Zn–Si coatings. Acta mater, 2001, 49: 529–541
    [11] S. M. A, Shibli, R. Manu, Process and performance improvement of hot dip zinc coating by dispersed nickel in the under layer. Surface and Coatings Technology, 2005, 197: 103– 108
    [12] Motoaki Hara, Ryoichi Ichino, Masazumi Okido, et al. Corrosion protection property of colloidal silicate film on galvanized steel. Surface and Coatings Technology, 2003, 169–170: 679–681
    [13] R. Fratesi, N. Ruffini, M. Malavolta, et al. Contemporary use of Ni and Bi in hot-dip galvanizing. Surface and Coatings Technology, 2002, 157: 34–39
    [14] N. Pistofidis, G. Vourlias, S. Konidaris, et al., The combined effect of nickel and bismuth on the structure of hot-dip zinc coatings. Materials Letters, 2007, 61: 2007-2010
    [15] N. Katiforis, G. Papadimitriou, Surf. Coat. Technol. 78 (1996) 185
    [16] G. Vourlias, N. Pistofidis, G. Stergioudis, D. Tsipas, Cryst. Res. Technol. 39 (2004) 23
    [17] G. Vourlias, N. Pistofidis, G. Stergioudis, E. Pavlidou, D. Tsipas, Phys,Status Solidi, AAppl. Res. 201 (2004) 1518
    [18] E. Pavlidou, N. Pistofidis, G. Vourlias, G. Stergioudis, Mater. Lett. 59. (2005) 1619
    [19] N. Pistofidis, G. Vourlias, S. Konidaris, El. Pavlidou, A. Stergiou, G. Stergioudis, The effect of bismuth on the structure of zinc hot-dip galvanized coatings,Materials Letters 61 (2007) 994–997
    [20] A Amadeh, B Pahlevani, S Heshmati-Manesh. Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings. Corrosion Science, 2002, 44:2321–2331
    [21] N. C. Hosking, M. A. Stro¨m, P. H. Shipway, et al., Corrosion resistance of zinc–magnesium coated steel, Corrosion Science, 2007, 49: 3669–3695
    [22]康永林.国内外汽车板的现状、需求和发展趋势[J].中国冶金,2003,(6):18-23
    [23]王利,张丕军,陆匠心.宝钢汽车板的开发及应用[J].特殊钢,2003,24(1):55-56
    [24]张理扬,左良,李俊,等.冷轧和镀锌汽车板的发展[J].特殊钢,2004,25(6):1-6
    [25]江萍,宋晓冬.宝钢带钢连续热镀锌机组及汽车用镀锌板生产[J].轧钢,2000,17(6):25-29
    [26]陈冬,金向雷.中国热镀锌技术及发展动向[J].河北冶金,2004,(1):3-8
    [27] Gregory C Becherer, Utilizing pumps to continuously remove dross from inside the inlet snout. Presented at Galvanizers Association Annual Meeting 2001 Portland, Oregon September 19, 2001
    [28] H Koumura, C Kato, K Mochizuki, et al. Thermodynamic and morphological investigations of dross in molten Zn bath[J], Tetsu-to-Hagane, 1995, 81(8):815-820
    [29]潘勋平.热镀锌带钢镀层锌渣缺陷形成分析及改进技术,宝钢技术[J]. 2004(3):24-27
    [30] A R Marder. The metallurgy of zinc-coated steel, Progress in Mater. Sci., 2000, 45:191-271
    [31] Y. Morimoto, E. Mcdevitt, M. Meshii, ISIJ Int. 37 (1997) 906
    [32] T. Kato, K. Nunome, K. Kaneko, H. Saka, Acta Mater. 48 (2000) 2257
    [33] E. Mcdevitt, Y. Morimoto, M. Meshii, ISIJ Int. 37 (1997) (1997) 776
    [34]朱立.热镀锌钢板生产概述第七讲镀锌设备及相关技术[J].鞍钢技术,1999,(10):58-62
    [35]张红,姚凤元,纪红玲,等.宝钢1550CGL锌锅运行状态的测试与分析[J].宝钢技术,2004,(4):7-11
    [36] C.S. Lin, M. Meshii, Metall. Mater. Trans. B 25 (1994) 721
    [37] J. Inagaki, Y. Sakurai, A. Nishimoto, Tetsu to Hagane 79 (1993) 1273
    [38] M. Guttmann, Y. Lepretre, A. Aubry, M.J. Roch, T. Moreau, P. Dillet, J.M. Mataigne, H. Baudin, Proc. Galvatech 1995, Chicago, 1995, p. 295
    [39] H. Bablik, F. Gotzl, R. Kukaczka, Werkst. U. Korro. 2 (1951) 1961
    [40] P. Perrot, J.C. Tissier, J.Y. Dauphin, Z. Metall. 83 (1992) 786
    [41] M.A. Haughton, Proc. 2nd Int.. Conf. on Hot Dip Galvanizing, Oxford, 1953, p. 59
    [42] D. Horstmann, Arch. Eisenhuttenwes 27 (1956) 297
    [43] Y. Adachi, K. Kamei, T. Nakamori, J. Jpn. Inst. Met. 56 (1992)1235
    [44] Toussaint P, Segers L, Winand R, et al. Intermetallic particles in continuous hot dip galvanizing baths at aluminum concentrations between 0.1 and 4.5 wt-%[J]. Ironmaking and Steelmaking, 1995, 22(6): 498-501
    [45] Kato C, Koumura H, Mochizuki K, et al. Dross formation and flow phenomena in molten zinc bath[A]. GALVATECH’95[C]. Chicago: Iron and Steel Society, 1995.801-806
    [46] N. BandyopadhyayT, G. Jha, A.K. Singh, et al., Corrosion behaviour of galvannealed steel sheet. Surface & Coatings Technology, 2006, 200: 4312– 4319
    [47] D. Santos, H. Raminhos, M.R. Costa, et al., Performance of finish coated galvanized steel sheets for automotive bodies. Progress in Organic Coatings, 2008, 62: 265–273
    [48] Harutoshi K,Katsuhiro T, Takashi F. The effect of adding trace amounts of aluminumon the glossiness of hot2dip galvanized surfaces[A] . The 2ndAPGGC[C] . Kobe :Japan Galvanizes Association ,1994
    [49] Teruaki Arioka, Masahiko Hori, Tamotsu Toki, Atsuhisa Yakawa, Masahiro Morikawa. Growth mechanism of dross particles in molten Zn baths [A]. GALVATECH’01[C]. Düsseldorf: Lamberights, marcel. 2001. 393-400
    [50] Dr.-Ing. P. Biele. Determination of the active Al and Fe contents in the zinc bath and their influence on alloy-layer formation in the hot-dip galvanizing process[A]. GALVATECH’95[C]. Chicago: Iron and Steel Society, 1995. 769-775
    [51] Shawki S, Hamid Z A. Effect of aluminium content on the coating structure and dross formation in the hot-dip galvanizing process [J]. Surface and Interface Analysis, 2003, 35:943-947
    [52] Mallens, R. M., Treadgold C.J., Vlot, M. J., Meijers, S.M.Prevention. Prevention of dross contamination in the CORUS IJMUIDEN hot dip galvanizing line [A]. 2001:255-261
    [53]孔纲,卢锦堂,陈锦虹,许乔瑜,睦润舟.锌浴中元素对钢结构件热镀锌的影响[J].表面技术,2003,32(4): 7-11
    [54]苗立贤,冯玲,史宪海,刘颖.钢铁制件热镀锌表面缺陷分析及控制[J].材料保护,2003, 36(12): 54-56
    [55] O’Dell S, Charles J, M. Vlot. Modeling of iron dissolution during hot dip galvanizing of strip steel[J]. Materials Science and Technology, 2004, 20: 251-256
    [56] H. Koga, Y. Uchiyama, T. Aki, J. Jpn. Inst. Met. 20 (1979) 290
    [57] J. Fadrel, M. Pimminger, L. Schonberger, Influence of Steel Grade and Surface Topography on the Galvannealing Reaction, Galvatech 92, Amsterdam, 1992, p. 19
    [58] M. Isobe, Initial alloying behaviour in galvannealing process, Camp ISIJ (1992) 1629
    [59] N.-Y. Tang, G.R. Adams, P.S. Kolisnyk, On Determining Effective Aluminum in Continuous Galvanizing Bath, Galvatech 95, Chicago 1995, p. 777
    [60] N.-Y. Tang, Modelling of enrichment on galvanized coatings, Met. Mater. Trans. 26A (1995) 1669
    [61] T.H. Cook, Metal Finish. (2000) 19
    [62] R. Fratesi, N. Ruffini, M. Malavolta, T. Bellezze, Surf. Coat. Technol. 157 (2002) 34
    [63]张启富,刘邦津,仲海峰.热镀锌技术的最新进展,钢铁研究学报, 2002, 14(4): 65-72
    [64]班春燕,电磁作用下铝合金凝固理论基础研究,东北大学博士学位论文,2002年
    [65] Andres U., Magnetohydrodynamic and Magnetohydrostatic Separation-A New Prospect for Mineral Separation in the Magnetic Field, Minerals Sci. Engng., 1975, 7(2) :99-109
    [66] N. El-Kaddah, A. D. Patel, T. T. Natarajan,“The Electromagnetic Filtration of Molten Aluminum Using an Induced-Current Separator,”JOM, May 1995, 47(5): 46-49
    [67] D. Leenov, A. Kolin,“Theory of Electromagnetophoresis. I. Magnetohydrodynamic Forces Experienced by Spherical and Symmetrically Oriented Cylindrical Particles,”J. Chemical Physics, 1954, vol. 22(4):683-688
    [68] Kolin A., An Electromagnetokinetic Phenomenon Involving Migration of Neutral Particles, Science, 1953, Vol.117(2):134-137
    [69] Kinareevskii V.A., Flow of a Conducting Fluid near a Nonconducting Sphere in the Presence of Crossed Electric and Magnetic Fields, Magnitnaya Gidrodinamika, 1968, vol. 4(4): 137-142
    [70] Miroshnikov V.A., Magnetohydrodynamic Flow around a Stationary Sphere, Magnetohydro-dynamics, 1980, vol. 16(3): 262-268
    [71] Korovin V.M., Forces Acting on Particles Suspended in a Current-Carrying Liquid,Magnetohydrodynamics, 1988, vol. 24(2): 160-165
    [72] Korovin V.M., Separation of Particles, Suspended in a Conducting Liquid, with the Help of an Alternating Electromagnetic Field, Magnetohydrodynamics, 1985, vol. 21(3): 321-326
    [73] Korovin V.M., Calculation of the Forces Acting on Suspended Particles during the Flow of a Conducting Fluid in an Alternating Electromagnetic Field, Magnetohydrodynamics, 1991, vol. 27(1): 85-91
    [74]谷口尚司, Brimacombe J. Jeith,ピンチ力による为矩形管内溶钢流から介在物除去の数值解析,铁と钢,1994, vol. 80(4):58-63
    [75]谷口尚司, Brimacombe J. Jeith,ピンチ力による円管内溶钢流からの介在物除去に关する理论研究,铁と钢,1994, vol. 80(4):24-29
    [76] S. Taniguchi and J. Keith Brimacombe,“Application of Pinch Force to the Separation of Inclusion Particles from Liquid Steel,”ISIJ Int., vol. 34, 1994(9): 722-731
    [77]朴焌杓、森平淳志、佐佐健介和浅井滋生,电磁気力を利用した溶融金属中の非金属介在物の除去,铁と钢,1994, vol. 80(5):31-36
    [78]田中佳子,佐マ健介,岩井一彦,浅井滋生.移動磁場を用?咳苋诮鹗糁蟹墙鹗艚?在物の除去.铁と钢,1995; 81(12): 12-17
    [79]山尾文孝,佐マ健介,岩井一彦,浅井滋生.固定交流磁场を利用した溶融金属中の非金属介在物除去.铁と钢,1997; 83: 30-35
    [80] Taniguchi S., Brimacombe J.K., Application of Pinch Force to the Separation of Inclusion Particles from Liquid Steel, ISIJ Int., 1994, 34 (9) :722-731
    [81] E1-Kaddah N., Apparatus and a Mathod for Improved Filtration of Inclusions from Molten Metal, U.S., Patent, US4909836, 1990
    [82] A.D.Patel, N.El-Kaddah, Kinetics of Inclusion Removal from Molten Aluminum under an Applied Alternating Magnetic Field, Light Metals 1997, In: Reidar Huglen, The Minerals, Metals & Materials Society, 1997:1013-1018
    [83]钟云波,电磁力作用下液态金属中非金属颗粒迁移规律及其应用研究,上海大学博士学位论文,1999
    [84] SHU Da, SUN Bao-de, LI Ke, et al. Continuous separation of non-metallic inclusions from aluminum melt using alternating magnetic field[J]. Materials Letters. 2002, 55:322-326
    [85] LI Ke, WANG Jun , SHU Da, et al. Separation of inclusions from aluminum melt usingalternating electromagnetic field[J ]. Trans Nonferrous Met Soc China , 2002 ,12 (6): 1107-1111
    [86]疏达,电磁分离铝熔体中非金属夹杂的理论研究,上海交通大学博士论文,2001
    [87] D.Shu, B.D.Sun, J.Wang, etc, Study of Electromagnetic Separation of Nonmetallic Inclusions from Aluminum Melt, Metallurgical and Materials Transactions A, Vol.30A: 2979-2988
    [88]疏达、孙宝德、李克、周尧和,利用高频磁场连续分离铝熔体中夹杂物的理论分析,2000年中国材料研讨会环境材料分会论文集(中国材料研究协会),冶金工业出版社,2001
    [89]吴加雄,任忠鸣,张邦文,等.交流电净化铝合金熔体[J].中国有色金属学报, 2004,14(3):354-358
    [90]翟秀静,符岩,李鸿斌,等.旋转磁场用于原铝净化的研究[J].东北大学学报(自然科学版), 2002,23(11):1083-1085
    [91]钟云波,任忠鸣,邓康,等.行波磁场净化液态金属时矩形管及三角形管内夹杂去除效率的理论分析[J].金属学报, 1999,35(5):503-508
    [92]钟云波,任忠鸣,邓康,杨森龙,蒋国昌,徐匡迪,行波磁场净化液态金属时金属液流动控制的初步讨论,上海大学学报,1999,5(1): 42-45
    [93]钟云波,任忠鸣,邓康,俞迅捷,蒋国昌,徐匡迪,行波磁场净化液态金属的电磁力参数,中国有色金属学报,1998,9(3):482-487
    [94]钟云波,任忠鸣,邓康,杨森龙,蒋国昌,金属电磁净化技术中金属液流动的成因分析,上海有色金属,1999,20(1): 5-9
    [95]钟云波,任忠鸣,邓康,蒋国昌,徐匡迪,行波磁场连续净化铝合金液实验,中国有色金属学报,2001,11(4):167-171
    [96]张国志.关于液态金属电磁净化的探讨[J].材料与冶金学报, 2002, 1(1): 31-35
    [97] Korovin V.M., Forces Acting on Particles Suspended in a Current-Carrying Liquid, Magnetohydrodynamics, 1988, vol. 24(2): 160-165
    [98] Korovin V.M., Separation of Particles, Suspended in a Conducting Liquid, with the Help of an Alternating Electromagnetic Field, Magnetohydrodynamics, 1985, vol. 21(3): 321-326
    [99] Korovin V.M., Calculation of the Forces Acting on Suspended Particles during the Flow of a Conducting Fluid in an Alternating Electromagnetic Field, Magnetohydrodynamics, 1991, vol. 27(1): 85-91
    [100] N. El-Kaddah,“A Comprehensive Mathematical Model of Electromagnetic Separation of Inclusion in Molten Metals,”IEEE on Industrial Applications, 1988, pp. 1162-1167
    [101] N. El-Kaddah, A. D. Patel, T. T. Natarajan,“The Electromagnetic Filtration of Molten Aluminum Using an Induced-Current Separator,”JOM, May 1995, pp. 46-49
    [102]任忠鸣,周月明,张春源,蒋国昌。水平电磁连铸中金属磁悬浮行为,金属学报,1996, vol.32,No.6:642-646
    [103] N.El-Kaddah, V.K.Suri, J.T.Berry, Control of macrostructure in aluminum castings. Part II. A Magnetic suspension melting process for quality castings, Trans. the American Foundrymen's Society Proceedings of the 95th Annual Meeting of the Transactions of the American Foundrymen's Society, May 5-9, 1991
    [104] H. Mizukami, M. Komatsu, T. Kitagawa, K. Kawakami,“Effect of Electromagnetic Stirring at the Final Stage of Solidification of Continuously Cast Strand,”Trans. ISIJ, 1984, 24: 923-930
    [105] T.Sawai, N.El-Kaddah,“Kinetics of inclusion removal in electromagnetically driven recirculating flows, Magnitnaya Gidrodinamika , 1996, 32( 2): 232-238
    [106] K. Sassa, H. Yamao, S. Asai, Separation of Inclusions in Liquid Metal Using Alternating Magnetic Field, International Symposium on Electromagnetic Processing of Materials, Paris, 1997: 157-161
    [107] Pare A, Binet C, Ajersch F. Numerical simulation of 3-D Flow in a Continuous Strip Galvanizing Bath[A]. GALVATECH’95[C].Chicago:Iron and Steel Society,1995: 695-706
    [108] Ilinca F, Hétu J F, Ajersch F. Three-dimensional numerical simulation of turbulent flow and heat transfer in a continuous galvanizing bath.[J].Numerical Heat Transfer ,2003,44: 463-482
    [109] Ilinca F, Hétu J F, Pelletier D. A Unified Finite Element Algorithm for Two-Equation Models of Turbulence[J]. Computer Fluid, 1998, 27(3): 291-310
    [110] Ajersch F, Ilinca F, Hétu J F. Simulation of flow in a continuous galvanizing bath Part: I Thermal effects of ingot addition[J]. Metallurgical and Materials Transaction, 2004, 35B(1): 161-170
    [111] Ajersch F, Ilinca F, Hétu J F, Goodwin F. Numerical simulation of flow, temperature and composition variations in a galvanizing bath[J].Canadian metallurgical quarterly,2005,44(3): 369-378
    [112] Hung K S,C heng C H. Pressure effects on natural convection for non-Boussinesqfluid in a rectangular enclosure[J].Numerical Heat Transfer,2002,41(3): 515-528
    [113] Shim J H, Chung S H, Cho Y W. Prediction of aluminium concentration in molten zinc pot of continuous hot dip galvanising line[J]. Iron Making and Steel Making, 2002, 29(6): 454-458
    [114] Lee S J,Kim S,Koh M S. Flow field analysis inside a molten Zn pot of the continuous hot-dip galvanizing process[J]. ISIJ International, 2002, 42(4): 407-413
    [115] Tang N Y. Refined 450℃Isotherm of Zn-Fe-Al Phase Diagram[J].Material Science and Techlonogy,1995,11: 870-873
    [116] Sukanta K, Monojit D, Rajesh N. Use of flow barriers to eliminate vortex in the flow field generated in a continuous galvanizing bath[J]. ISIJ International, 2005, 45(7): 1059-1065
    [117] Ajersch F, Ilinca F, Hétu J F. Simulation of flow in a continuous galvanizing bath:Part II.Transient aluminum distribution[J]. Metallurgical and Materials Transaction, 2004, 35B(1): 171-178
    [118] Ilinca F, Hetu J F, Ajersch F. Numerical Simulation of Al and Fe Distribution During Continuous Galvanizing Operations[J]. Iron and Steel Technology,2004: 1067-1078
    [119] Ilinca F, Ajersch F, Baril C, Goodwin F E. Numerical simulation of the galvanizing process during GA to GI transition[J]. International Journal for Numerical Methods in Fluids, 2006, 53(10): 1629-1646
    [120] Ajersch F, Hétu J F, Goodwin F. Numerical simulation of the rate of dross formation in continuous galvanizing baths[J]. Iron and Steel Technology,2006,3(8): 93-101
    1 Handa, T., Nakajima, T., Arikata, K., U.S. Patent no. 5,783,143,“Alloy Steel Resistant to Molten Zinc”, July 21, 1998.
    2 Antony, C.M., Srivastava, S.K.,“Haynes 556: An Fe-Ni-Cr-Co Alloy for Hot-Dip Galvanizing Hardware”, Haynes International Technical Bulletin, 1993.
    [1] A R Marder. The metallurgy of zinc-coated steel, Progress in Mater. Sci., 2000, 45:191-271.
    [2] Urednicek M , Kirkaldy J S. An investigation of the phase constitution of Iron-Zinc-Alumilum at 450℃[ J]. Z Metalkkd, 1973,64:419.
    [3] Chen Z W, Sharp R M, Gregory J T. Fe- Al–Zn ternary phase diagram at 450℃[J]. Mater Sci Technol, 1990, 6:1173.
    [4] Dr.-Ing. P. Biele. Determination of the active Al and Fe contents in the zinc bath and their influence on alloy-layer formation in the hot-dip galvanizing process[A]. GALVATECH’95[C]. Chicago: Iron and Steel Society, 1995. 769-775.
    [5] Tang N Y. Determination of Liquid-Phase Boundaries in Zn-Fe-Mx Systems[J]. J Phase Equilibria, 2000, 21(1): 70.
    [6] Shawki S, Hamid Z A. Effect of aluminium content on the coating structure and dross formation in the hot-dip galvanizing process [J]. Surface and Interface Analysis, 2003, 35:943-947.
    [7]疏达,孙宝德,李天晓等,铝熔体中夹杂物形状与取向对其电磁分离的影响[J].金属学报,2000,36(9):956-960.
    [8]疏达,电磁分离铝熔体中非金属夹杂的理论研究,上海交通大学博士论文,2001
    [9]疏达,王俊,陈海岩,孙宝德.金属液多级电磁净化方法,中国专利,专利号:200510028221.0.
    [1] Jonathon Elvins a, John A. Spittle b, David A. Worsley, Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion. Corrosion Science, 2005, 47: 2740–275.
    [2] N.S. Berke, J.J. Friel, in: G.S. Haynes, R. Baboian (Eds.), ASTM STP 866, American Society for Testing and Materials, Philadelphia, 1985, pp. 143–158.
    [3] K.-L. Lin, C.-F. Yang, J.-T. Lee, Corrosion 47 (1991) 9–17.
    [4] K.L. Lin, J.K. Ho, C.S. Jong, J.T. Lee, Corrosion 49 (1993) 759–762.
    [5] D. Laverde, J.C. Zubillaga, J. Gil-Sevillano, E. Villanueva, Corrosion Science 37 (1995) 79–95.
    [6] K.G. Watkins, R.D. Jones, P.G. Beahan, Electrochemical investigation of the corrosion rate of 55 aluminium-zinc alloy coated steel. Materials Letters, 1989, 8(4): 26-30.
    [7] J. C. Zoccola, H. E. Townsend, A. R. Borzillo, et al., in ASTM STP 646, ED. S.K. Coburn. American Society for Testing and Materials, Philadelphia, PA, 1978: 165
    [8] H. E. Townsend, A. R. Borzillo, Mater. Performance 1987, 26(7).
    [9] L. Allegra, N. Berke and H. E. Townsend, in Atmospheric Corrosion, ed. W.H. Ailor. John Wiley and Sons, New York, 1982: 595.
    [10] D.J. Blickwede, Tetsu To Hagane 66 (1980) 821–834.
    [11] H.E. Townsend, J.C. Zoccola, Materials Performance (1979) 13–20.
    [12] K.G. Watkins, R.D. Jones, P.G. Beahan, Materials Letters 8 (1989) 21–25.
    [13] K.-L. Lin, C.-F. Yang, J.-T. Lee, Corrosion 47 (1991) 17–23
    [14] Toussaint P, Segers L, Winand R, et al. Intermetallic particles in continuous hot dipgalvanizing baths at aluminum concentrations between 0.1 and 4.5 wt-%[J]. Ironmaking and Steelmaking, 1995, 22(6): 498-501.
    [1]疏达,铝熔体电磁净化的参数选择与计算,上海交通大学博士后出站报告,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700