永磁轨道上方波动外磁场下高温超导块材悬浮力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
处于永磁轨道上方的高温超导块材具有自稳定悬浮特性,因此高温超导磁悬浮列车性能相比其他两种的主要磁悬浮列车(常导磁悬浮列车和低温超导磁悬浮列车)具有控制简单、成本低廉及环保节能等优点。高温超导磁悬浮车可能成为将来的一种高速、安全、环保、经济的最有效的地面轨道交通方式之一。本研究小组也在这方面作了大量的研究与探讨,并于2000年底研制成功世界首辆载人高温超导磁悬浮实验车。这种车系统的永磁轨道希望在车运行的方向的磁场保持均匀,但在实际应用中,由于安装工艺等因素的影响,使得其磁场在纵向存在一定的波动。本论文就这种磁场波动对块材悬浮力性能的影响展开工作。
     永磁轨道由于安装工艺的因素,在永磁块和永磁块之间存在一定的缝隙,该缝隙使得轨道上方的磁场存在一定波动。本论文通过实验测试和计算机仿真计算相结合的方法研究了缝隙对轨道磁场波动的影响。通过坐标变换,把空间周期变化的磁场等效为时间周期变化的磁场,为实验研究波动外磁场作用下,块材悬浮力特性提供了理论基础,并通过永磁轨道的磁场和电磁铁磁场的叠加模拟高温超导磁悬浮车运行时,块材周围的磁场环境。以此来研究波动磁场对悬浮力性能的影响。
     首先通过实验研究了交流磁场频率对悬浮力性能的影响情况,在实验的基础上,首次将频率对悬浮力的影响划分为三个不同的区域,分别是:低频(悬浮力振荡为主要特征)、高频(悬浮力振荡很小,悬浮力衰减为主要特征)和过渡区域,并实验研究了频率发生变化(包括突变和渐变)时,交流磁场对悬浮力的影响。接着系统地分析了在低频(100 Hz以下)交流磁场下,块材悬浮力振荡和衰减特性,并借助Bean临界态模型阐述了波动外磁场对块材悬浮力影响的作用原理,研究了交流磁场幅值对悬浮力振荡和衰减的影响,研究了不同场冷高度或者测试高度情况下,波动外磁场对悬浮力性能的影响情况。此后研究了高频(170 Hz以上)交流磁场作用下,块材悬浮力的衰减特性,包括交流磁场的幅值和频率对悬浮力衰减的影响,同样也研究了不同场冷高度和不同测试高度情况下,波动外磁场对悬浮力性能的衰减影响情况。考虑到高温超导磁悬浮车的实际运行情况,论文中还研究交流磁场作用时间对悬浮力性能的影响。
     在Bean临界态模型的基础上,针对目前的高温超导磁悬浮车系统,提出了一种通过磁场在块材中的穿透情况来计算块材悬浮力的模拟计算方法。该方法可计算在波动外磁场中块材悬浮力的振荡和衰减情况。通过实验结果与模拟计算结果的对比,验证了该方法的可行性。通过该方法讨论了高温超导块材的性能(临界电流密度、块材尺寸)对波动外磁场中高温超导块材悬浮力的影响情况。
The high temperature superconductor (HTSC) bulk can realize inherently self-stable levitation in external magnetic field without any active control, so the high temperature superconducting magnetic levitation (Maglev) train is more significant potential for the maglev train than the normal electromagnets maglev and the low Tc superconducting maglev. The superconductivity maglev train will be one of the transports with high-speed, safety, reliability, low environmental impact. Our group did a lot of research on high temperature superconductivting (HTS) maglev vehicle system and successfully developed the first man-loading HTS maglev test vehicle on Dec.31,2000. For the HTS maglev vehicle system, it required that the magnetic field is i mmutable along the lengthways direction. However, the permanent magnet guideway (PMG) is composed many permanent magnets, there should be air gap between the adjacent magnets, which would fluctuate magnetic field above the PMg surface. So the present thesis considers the effect of the fluctuant magnetic field on the levitation force of the HTS bulk above the PMG.
     For the permanent magnet guideway of the HTS Maglev vehicle system, there should be some air gaps between two adjacent permanent magnets by connecting, which may generate ripple magnetic field in the forward direction of the vehicle. The surface magnetic field of the PMG is measured and simulated by a computer. From the experimental and the simulation results, the influence of the air gap on the magnetic field above PMG is investigated.
     For the Maglev vehicle engineering application, we investigate the levitation force characteristics of the HTS bulk above the PMG exposed to the AC magnetic field generated by electromagnet, which is used to simulate the possible fluctuation of the PMG.
     Firstly, the influence of the AC field frequencies on the levitation force is investigated, according to characteristic of the levitation of HTS bulk expose the AC field above PMG., it is the first time to divide the frequencies into low-frequency, high-frequency and transition-frequency. Besides, the influence of variation of frequency of the AC field on the levitation force is investigated. Then, the oscillation and attenuation characteristic of the levitation force of the HTS bulk expose to the low-frequency AC field are investigated; based on the Bean critical model, we explained the oscillation and attenuation of the levitation force and discussed the influence of amplitude of AC field on the levitation force. We also compare the levitation fore oscillation and attenuation of the bulk exposed to the fluctuant external magnetic field under the conditions of different field-cooled height or different work height. Similarly, the characteristic of the levitation force of the HTS bulk expose to the high-frequency AC field is also investigated.
     Based on the Bean critical model, a simulation method is adopted to calculate the oscillation and decay of levitation force of the bulk exposed to. fluctuant magnetic field for the current HTS maglev system. Compared the experimental results with the simulation ones, it was found that the simulation method was feasibility and could qualitatively reveal the characteristics of levitation force of HTS bulk in this situation. Furthermore, the influences of. critical current density and the dimension of a superconductor on the levitation force of the bulk exposed to fluctuant magnetic field are investigated by the simulation method.
引文
[1]徐伟,孙广生,李耀华,金能强等.磁悬浮技术在高速轨道交通中的应用.轨道交通,2008,1:33
    [2]Kemper H. Overhead suspension railway with wheel-less vehicles employing magnetic suspension from iron rails. German Patents.643,326 and 644,302 (1934)
    [3]D. Rogg, "General survey of the possible applications and development tendencies of magnetic levitation technology," IEEE Trans. Magn., vol. MAG-20, no.5, pp. 1696-1701, Sep.1984.
    [4]E.H. Brandt. Levitation in physics. Science.1989,243(4889):349
    .[5] J.G. Bednorz, K.A. Muller. (1986). Zs Phys. B.64:189.
    [6]F. Hellman, E. M. G., D.W. Johnson, et al. (1987). "Levitation of a magnet over a flat type II superconductor." J. Appl. Phys.63(2):447.
    [7]Danby and Powell, Levitation with Null Flux Coils, U.S. Patent 3,470,828, October 1969.
    [8]P. Sinha, "Design of a magnetically levitated vehicle," IEEE Trans. Magn., vol. MAG-20, no.5, pp.1672-1674, Sep.1984.
    [9]A. R. Eastham and W. F. Hayes, "Maglev systems development status," IEEE Aerosp. Electron. Syst. Mag., vol.3, no.1, pp.21-30, Jan.1988.
    [10]Hyung-Woo Lee, Ki-Chan Kim, and Ju Lee, "Review of maglev train technologies," IEEE TRANSACTIONS ON MAGNETICS, VOL.42, NO.7, JULY 2006
    [11]T. Koseki, K. Hayafune, and E. Masada, "Lateral motion of a short stator type magnetic wheel," IEEE Trans. Magn., vol.23, no.5, pp.2350-2352, Sep.1987.
    [12]Sawada, Kazuo, "Magnetic Levitation (Maglev) Technologies 1. Supderconducting Maglev Developed by RTRI and JR Central", Japan Railway & Transport Review, No.25,58-61.
    [13]H. Nakashima,'The Superconducting Magnet for the Maglev Transport System", IEEETm. on Magnetics, Vol.30, no.4, pp.1572-1578, July 1994.
    [14]H. Kamerlingh Onnes. Further experiments with liquid helium. On the change of the electrical resistance of pure metal at very low temperatures. Leiden Comm.,1911, 120b:3-5
    [15]M.K. Wu, J.R. Ashburn, et al. (1989). "Superconductivity at 93 K in a new mixed-phase YBCO compound system at ambient pressure." Physical Review Letters. 58(9):908.
    [16]赵忠贤,陈立泉,杨乾声等.Ba-Y-Cu氧化物液氮温区的超导电性.1987,科学通报.32(6):412
    [17]H Maeda, Y Tanaka, M Fukitomi and T Asano. Jpn. J Appl Phys,1988,C,27:L209
    [18]H. Nakao, T. Yamashita, M. Yamaji, M. Arata, M. Kawai, S. Nakagaki, T. Shudo, A. Miura. Developments of a Superconducting Magnet and an On-board GM Refrigeration System for Maglev Vehicles. Proceedings of Fifteenth International Conference on Magnet Technology,1997:732-735
    [19]P. N. Peters, R. C. Sisk, E. W. Urban C. Y. Huang, and M. K. Wu, Appl Phys Lett., 52(1988),2066
    [20]F. Hellman, E. M. G., D.W. Johnson, et al. (1987). "Levitation of a magnet over a flat type Ⅱ superconductor." J. Appl. Phys.63(2):447.
    [21]Brandt, E. H. (1988). "Friction in levitated superonductors" Appl. Phys. Lett.53(16): 1554.
    [22]F.C. Moon, M. M. Y., and R. Ware (1988). "Hysteretic levitation forces in superconducting ceramics" Appl. Phys. Lett.52(18):1534.
    [23]Ma K. B., P. Y. V., and Chu W.K. (2003). "Superconductor and magnet levitation devices." Review of Scientific Instrument 74(12):4989.
    [24]Wang Jiasu, W. S., Zeng Youwen, Huang Haiyu, et al. (2002). "The first man-loading high temperature superconducting maglev test vehicle in the world." Physica C 378-381(Part 1):809-814.
    [25]J.R. Hull,2000 Superconducting Bearings, Supercond. Sci. Technol. Vol.13 pp.R-1.
    [26]F.C. Moon,1994 Superconducting Levitation, Wiley, New York.
    [27]Paul Bakke,DOE, January 19-20,2005. Available from URL: http://www.energetics.com/meetings/wire05/pdfs/session8/session8d.pdf,
    [28]Wang Jiasu, Wang Suyu, Zeng Youwen, Huang Haiyu, et al. Physica C,2002, Vol. 378-381, pp 809-814.
    [29]L. Schultz, O. de Hass, P. Verges, C. Beyer, S. Rohlig, et al.. Superconductivity levitated transport system-the superaTrans project. IEEE Trans. Appl. Supercond., 2005,15(2):2301
    [30]R. M. Stephan, A. C. Ferreira, R. de Andrade Jr., et al. A superconducting levitated small scale vehicle with linear synchronous motor. IEEE international symposium on Industrial electronics,2003,1:206-209
    [31]R. M. Stephan, R. Nicolsky, M. A. Neves. A superconducting levitation vehicle prototype.
    [32]M. Okano, T. Iwamoto, S. Fuchino, N. Tamada. Feasibility of a goods transportation system with a superconducting magnetic levitation guide-load characteristics of a magnetic levitation guide using a bulk high-Tc superconductor. Physica C,2003,386: 500-505
    [33]J. S. Wang, S. Y. Wang, Y. W. Zeng, et al. The present status of the high temperature superconducting maglev vehicle in china. Supercond. Sci. Technol.,2005,18: S215-S218
    [34]Zhang Yong, Xu Shangang. Research of high temperature superconductor Maglev vehicle. Proceedings of the Symposium on Maglev Train Application in China (SMLTA'97), Hangzhou, China,1997. pp.53-58
    [35]Yong Zhang and Shangang Xu, Measurement and Analysis of a HTSC Maglev Model vehicle. In:Proceedings of MT-15th (October,1997), pp.763-766.
    [36]张永,徐善纲,金能强.高温超导磁悬浮列车模型悬浮方案的研究.电工电能新技术.1998,17(4):32-35
    [37]肖玲,任洪涛.单畴YBCO超导块的生长及其磁悬浮特性.低温物理学报.1998,20(2):142-147
    [38]肖玲,任洪涛,焦玉磊.郑明辉.YBCO超导块的悬浮力及其测量.低温物理学报.1999,21(4):317-320
    [39]Wang Jiasu, Wang Suyu, et al. A Scheme of Maglev Vehicle Using High Tc Bulk Superconductors. IEEE Transactions on Applied Superconductivity.1999,9 (2): 904-907
    [40]王家素,王素玉,et a].高温超导磁悬浮测试系统.高技术通讯.2000,10(8):56-58
    [41]任仲友,王素玉,et al.多块YBaCuO高温超导体在永磁轨道上的悬浮力.低温与超导.2000,28(2):17-21
    [42]Wang Xiaorong, Ren Zhongyou. Experimental study on Relationship Between Levitation Force on YBCO Superconductor and Gradient of Applied Magnetic Field. Proceedings of Beijing International Conference on Cryogenics, Beijing,2000. pp. 177-180
    [43]朱敏.高温超导永磁体特性的实验研究,西南交通大学硕士学位论文.2001
    [44]江河.深冷条件下高温超导体磁悬浮特性研究,西南交通大学硕士学位论文2002.
    [45]任仲友.熔融法YBCO块材在NdFeB轨道上的悬浮力和导向力的研究,西南交通大学硕士学位论文,2001
    [46]朱敏,任仲友.YBaCuO超导块的厚度和形状对其悬浮力的影响.低温物理学报.2002,24(3):213-217
    [47]江河,王家素,et al.高温超导磁悬浮深冷测试系统设计.低温与超导.2002,30(1):22-24
    [48]Jiang He, Wang Jiasu, Wang Suyu, Ren Zhongyou, Zhu Min, Wang Xiaorong, Shen Xuming. The magnetic levitation performance of YBaCuO bulk at different temperature. Physica C,2002,378-381:869-872
    [49]Wang Xiaorong, Wang Suyu, et al. Guidance Force and Lateral Stiffness of YBaCuO Superconductors in Array, In:Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev (ISMAGLEV'2002), Chengdu, P. R. China,2002. pp.87-93
    [50]Wang Xingzhi, Wang Jiasu, et al. Guidance Forces of HTS Maglev Device over Tilted Guideway, In:Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev (ISMAGLEV'2002), Chengdu, P. R. China,2002. pp.100-104
    [51]王兴志.横坡角度与高温超导磁悬浮车的导向力关系.西南交通大学学士学位论文.2002
    [52]Ren Zhongyou, Wang Jiasu, et al. A hybrid maglev vehicle using permanent magnets and high temperature superconductor bulks. Physica C.2002,378-381(Partl): 873-876
    [53]Ren Zhongyou, Wang Jiasu, et al. Two kinds of different hybrid maglev schemes using onboard permanent magnets and HTS. In:Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev (ISMAGLEV'2002), Chengdu, P. R. China, 2002. pp.79-86
    [54]Z.Y. Ren, J.S. Wang, et al. Numerical calculation of levitation force of bulk YBCO based on Maxwell stress. The 4th International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials (PASREG 2003), Jena, Germany,2003
    [55]任仲友,王家素,et al.提高YBCO块材在外磁场中悬浮力.低温物理学报.2003,25(3):202-208
    [56]任仲友,Oliver de Haas, et al.永磁导轨上组合与单块YBCO的悬浮力关系研究.低温物理学报.2003,25(增刊):182-186
    [57]任仲友,王家素.基于有限元的永磁导轨磁场数值计算.电工理论与新技术.2003,22(4):36-39
    [58]王晓融.高温超导YBCO块材在永磁导轨上方的导向力研究.西南交通大学硕士学位论文.2003
    [59]X.R. Wang, H.H. Song, et al. Levitation force and guidance force of YBaCuO bulk in applied field. Physica C.2003,386:536-539
    [60]Chunfa Zhao, Wanming Zhai, et al. Dynamic Responses of the High Temperature Superconducting Maglev Test Vehicle. In:Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev (ISMAGLEV'2002), Chengdu, P. R. China, 2002. pp.119-127
    [61]赵春发.磁悬浮车辆系统动力学研究.西南交通大学博士学位论文.2002
    [62]宋宏海,王晓融等.高温超导体在对称和不对称外磁场中的悬浮力计算.低温与超导,2004,32(2):47-50
    [63]H.H. Song, J.S. Wang, et al. Relationship between levitation force and levitation stiffness in both sy mmetrical and unsy mmetrical applied field. The 4th International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials (PASREG 2003), Jena, Germany,2003
    [64]H.H. Song, Z.Y. Ren, X.Z. Wang, J. Zheng, S.Y. Wang, J.S. Wang. Evaluation of Inhomogeneities of Bulk YBCO Superconductors Using Pulsed Field Magnetization. Physica C,2005,420:51-55.
    [65]JIASU WANG, SUYU WANG, CHANGYAN DENG, YOUWEN ZENG, HONGHAI SONG, A SUPERHIGH SPEED HTS MAGLEV VEHICLE, International Journal of Modern Physics B,2005,19(1,2&3):399-401
    [66]Jiasu S. Wang, Suyu Y.Wang, Changyan Y. Deng, Youwen W. Zeng, Design Consideration of a High Temperature Superconductor Maglev Vehicle System, IEEE Trans. Appl. Supercond.,2005,15(2):2273
    [67]J S Wang, S Y Wang,Y W Zeng, C Y Deng, Z Y Ren, X RWang, The present status of the high temperature superconducting Maglev vehicle in China. Supercond. Sci. Technol,2005,18:215-218
    [68]XINGZHI WANG, SUYU WANG AND JIASU WANG, FEM ANALYSIS OF A NEW HYBRID SUPERCONDUCTING MAGNETIC LEVITATION SYSTEM, International Journal of Modern Physics B,2005,19(1,2&3,):403-405
    [69]Suyu Wang, Jun Zheng, Honghai Song, Xingzhi wang, Experiment and Numerical Calculation of High Temperature Superconducting Maglev, IEEE Trans. Appl. Supercond.,2005,15(2):2277
    [70]岑冀娜,王家素,宋宏海,郑珺,脉冲场励磁YBCO块材俘获磁通特性,低温与超导,34(3)2006,pp:198-200
    [71]Jun Zheng, Honghai Song, Jiasu Wang, Suyu Wang, Minxian Liu, Numerical Method to the Excited High-Tc Superconducting Levitation System Above the NdFeB Guideway, IEEE TRANSACTIONS ON MAGNETICS,2006,42(4):
    [72]Honghai Song, Jun Zheng, Minxian Liu, Longcai Zhang, Yiyun Lu, Optimization and Design of the Permanent Magnet Guideway With the High Temperature Superconductor, IEEE Trans. Appl. Supercond.,2006,16(2):1023
    [73]W. M. Yang, X. X. Chao, X. B. Bian, et al.. The effect of magnet size on the levitation force and attractive force of single-domain YBCO bulk superconductors. Supercond. Sci. Technol.,2003,16:789
    [74]张江华,曾佑文,王家素,王素玉,宋宏海,高温超导磁悬浮轴承悬浮力数值分析,低温与超导,2007,35(2):
    [75]Jianghua Zhang, Youwen Zeng, Jun Cheng, and Xian Tang. Optimization of Permanent Magnet Guideway for HTS Maglev Vehicle With Numerical Methods. IEEE Trans Appl Supercond,2008,18(3):1681-1686
    [76]Longcai Zhang, Jiasu Wang, Qingyong He, Jianghua Zhang, Suyu Wang. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system. Physica C,2007,459:33-36.
    [77]J. Zheng, Z. Deng, S. Wang, J. Wang, Y. Zhang. Vibration properties dependence on the trapped flux of bulk high-temperature superconductor. Physica C,2007,463-465: 1356-136
    [78]Zigang Deng, Jun Zheng, Honghai Song, Lu Liu, Lulin Wang, Ya Zhang, Suyu Wang, and Jiasu Wang. Free Vibration of the HTS Maglev Vehicle model. IEEE Trans Appl Supercond,2007,17(2):2071-2074
    [79]郑珺.平移对称式高温超导磁悬浮系统的动态特性.西南交通大学博士学位论文.2007
    [80]H. Jing, J. Wang, S. Wang, L. Wang, L. Liu, J. Zheng, Z. Deng, G. Ma, Y. Zhang, J. Li. A new two-pole halbach permanent magnet guideway for HTS Maglev vehicle. Physica C,2007,463-465:426-430
    [81]W. Liu, S.Y. Wang, H. Jing, J. Zheng, M. Jiang, J.S. Wang. Levitation performance of YBCO bulk in different applied magnetic fields. Physica C,2008,468:974-977
    [82]W. Liu, J.S. Wang, H. Jing, M. Jiang, J. Zheng, S.Y. Wang. Levitation performance of high-Tc superconductor in sinusoidal guideway magnetic field. Physica C,2008
    [83]Z. Deng, J. Wang, J. Zheng, H. Jing, Y. Lu, G. Ma, L. Liu, W. Liu, Y. Zhang, S. Wang. High-efficiency and low-cost permanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application. Superconductor Science and Technology,2008,21(11):115018 (9pp)
    [84]Qingyong He, Jiasu Wang, Longcai Zhang, Suyu Wang and Siting Pan. Influence of the Ramp Angle on Levitation Characteristics of HTS Maglev. Physica C,2008,468: 12-16.
    [85]G T Ma, Q X Lin, J S Wang, S Y Wang, Z G Deng, Y Y Lu, M X Liu, J Zheng. Method to reduce levitation force decay of the bulk HTSC above the NdFeB guideway due to lateral movement. Supercond. Sci. Technol.,2008,21:065020
    [86]M. Qiu, L. Z. Lin, G. M. Zhang, Y. S. Wang, and L. Y. Xiao, Flux Dynamic Behavior Inside HTS Bulks Under Rotating Magnetic Field, IEEE Trans. Appl. Supercond.,2002,12(1):1163-1166
    [87]M. Qiu, H. K. Huo, Z. Xu, D. Xia, and L. Z. Lin, Electromagnetic Phenomena in HTS Bulk Subjected to a Rotating Field, IEEE Trans. Appl. Supercond.,2004, 14(2):1898-1901
    [88]B M Smolyak, G V Ermakov and L I Chubraeva, The effect of ac magnetic fields on the lifting power of levitating superconductors, Supercond. Sci. Technol.2007,20: 406-411
    [89]Longcai Zhang, Jiasu Wang, Suyu Wang, Qingyong He. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway. Physica C,2007,459:43-46.
    [90]Longcai Zhang, Suyu Wang, Jiasu Wang, Jun Zheng. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway. Physica C,2007,467:96-100.
    [91]Longcai Zhang, Jiasu Wang, Suyu Wang, Jun Zheng, Qingyong He. Numerical evaluation of guidance force decay of HTS bulk exposed to AC magnetic field over a NdFeB guideway. Physica C,2007,467:27-30.
    [92]M. Uesaka, A. Suzuki, N. Takeda, Y. Yoshida, K. Miya. A. C. magnetic properties of YBaCuO bulk superconductor in high Tc superconducting levitation. Cryogenics, 1995,35:243
    [93]Z. J. Yang, J. R. Hull, and T. M. Mulcahy. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system, J. Appl. Phys.,1995, 78 (3):2097-2100
    [94]A.N. Terentiev, H.J. Lee, C. J. Kim, G.W. Hong, Identification of magnet and superconductor contributions to the ac loss in a magnet-superconductor levitation system, Physica C,1997,290:291-296
    [95]B.M. Smolyak, G.N. Perelshtein, et al. Stopping of levitation force relaxation in superconductors:the flux-locking effect. Physica C.2000,341-348 (Part 2): 1129-1130
    [96]A. Kamitani, K. Hasegawa, T. Yokono, S. Ohshima, Numerical method for determination of shielding current density in axisy mmetric high Tc superconducting plates under ac magnetic field, physica C,2001(357-360):767-770
    [97]Hidehito Shimizu, Hiroshi Ueda, Makoto Tsuda, and Atsushi Ishiyama, Trapped Field Characteristics of Y-Ba-Cu-O Bulk in Time-Varying External Magnetic Field, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2002,12(1): 820-823
    [98]Hiroshi Ueda, Manabu Itoh, and Atsushi Ishiyama, Trapped Field Characteristic of HTS Bulk in AC External Magnetic Field, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2003,13(2):2283-2286
    [99]J. Ogawa, M. Iwamoto, O. Tsukamoto, M. Murakami, M. Tomita, Interaction between trapped magnetic field and AC loss in HTS bulk, Physica C,2002,372-376: 1754-1757
    [100]J. Ogawa a, M. Iwamoto a, K. Yamagishi a,*, O. Tsukamoto, Influence of AC external magnetic field perturbation on trapped magnetic field in HTS bulk, Physica C,2003,386:26-30
    [101]K. Yamagishi, J. Ogawa, O. Tsukamoto, M. Murakami, M. Tomita, Decay of trapped magnetic field in HTS bulk caused by application of AC magnetic field, Physica C, 2003,392-396:659-663
    [102]Y. Zushi, I. Asaba, J. Ogawa, K. Yamagishi, O. Tsukamoto, Study on suppression of decay of trapped magnetic field in HTS bulk subject to AC magnetic field, Physica C,2004,412-414:708-713
    [103]Y. Zushi, I. Asaba, J. Ogawa, K. Yamagishi, O. Tsukamoto, AC losses in HTS bulk and their influence on trapped magnetic field, Cryogenics,2005,45:17-22
    [104]K. Yamagishi, I. Asaba, S. Sekizawa, O. Tsukamoto et al., AC Losses in HTS Bulk at Various Temperatures, IEEE Trans. Appl. Supercond.,2005,15(2):2879-2882
    [105]O. Tsukamotoa, K. Yatnagishia, J. Ogawaa, M. Murakamib, M. Tomitab, Mechanism of decay of trapped magnetic field in HTS bulk caused by application of AC magnetic field, Journal of Materials Processing Technology,2005,161:52-57
    [106]S. Torii, K. Yuasa, Surface flux density distribution characteristics of bulk high-Tc superconductor in external magnetic field, Physica C,2004,412-414:683-687
    [107]Ph Laurent, J-PMathieu, BMattivi, J-F Fagnard, SMeslin, et al., Study by Hall probe mapping of the trapped flux modification produced by local heating in YBCO HTS bulks for different surface/volume ratios, Supercond. Sci. Technol.,2005,18: 1047-1053
    [108]Ph Laurent, J-F Fagnard, J-P Mathieu, S Meslin, J G Noudem et al. Study of thermal effects in bulk RE-BCO superconductors submitted to a variable magnetic field, Journal of Physics:Conference Series 43 (2006) 505-508
    [109]Ph. Laurent, Ph. Vanderbemden, S. Meslin, J. G. Noudem, J.-P. Mathieu, R. Cloots, and M. Ausloos. Measurements of Thermal Effects in a Bulk YBCO Single Domain Superconductor Submitted to a Variable Magnetic Field, IEEE Trans. Appl. Supercond.,2007,17(2):3036-3039
    [110]A. O ztUrk, S. C, elebi Effect of dc bias field superimposed with ac field amplitudes on the hysteresis loss in a sintered YBCO superconductor, Journal of Alloys and Compounds,2006,421:4-7
    [111]Jiasu Wang, Suyu Wang, Changyan Deng, Youwen Zeng, Longcai Zhang, Zigang Deng, Jun Zheng, Lu Liu, Yiyun Lu, Minxian Liu, Yaohui Lu, Yonggang Huang, and Ya Zhang. A High-Temperature Superconducting Maglev Dynamic Measurement System. IEEE Trans Appl Supercond,2008,18(2):791-794
    [112]王家素,王素玉,et al.高温超导磁悬浮测试系统.高技术通讯.2000,10(8):56-58
    [113]张龙财.时变外磁场下高温超导体块材YBCO的导向力性能研究.西南交通大学博十学位论文.2008
    [114]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.北京电子工业出版社,2005
    [115]Minxian Liu, Suyu Wang, Jiasu Wang and Guangtong Ma. Influence of the Air Gap between Adjacent Permanent Magnets on the Performance of NdFeB Guideway for HTS Maglev System. J Supercond Nov Magn.2008,21:431-435
    [116]Suyu Wang, Jiasu Wang, Changyan Deng, Yiyu Lu, Youwen Zeng, Honghai Song, Haiyu Huang, Hua Jing, Yonggang Huang, Jun Zheng, Xingzhi Wang, and Ya Zhang. An update High-Temperature Superconducting Maglev Measurement System. IEEE Trans Appl Supercond,2007,17(2):2067-2070
    [117]芦逸云.高温超导磁悬浮测试系统SCML-02技术手册,西南交通大学超导技术研究所资料室
    [118]Allen. P b Pickett. E Krakauer H, Phys Rev,1987,B36:3926
    [119]M. Murakami. Melt processed High temperature Superconductors. Singapore:World Scientific Publishing Co.1993:101
    [120]冯段等.金属物理学.科学出版社.2000
    [121]张裕恒.超导物理.中国科学技术大学出版社.1997
    [122]Y.Zushi,I.Asaba,J.Ogawa,K.Yamagishi,O.Tsukamoto,"AC losses in HTS bulk and their influence on trapped magnetic field",Gryogenics 45 (2005)17-22
    [123]Campbell, A.M, "ELECTROMAGNETIC PROPERTIES OF HTS", IRC. in. Superconductivity, University of Cambridge.
    [124]Minxian Liu, Suyu Wang, Jiasu Wang, Guangtong Ma. Effect of AC Magnetic Field on the Levitation Force of YBCO Bulk above NdFeB Guideway. J Low Temp Phys. 2009,155:169-176
    [125]G.A. Shams, J.W. Cochrane, GJ, Russell, "Thermal conductivity of a melt processed (Nd/Y)BCO intergrowth crystal below Tc ", Physica C,2001,356:176-180
    [126]D. Buzon, L. Porcar, P. Tixador et al., "Effects of Thermal Exchanges on the YBCO Transition and the Superconductivity recovery", IEEE Trans. Appl. Supercond.,2003, 13(2):2076-2079
    [127]C. P. Bean, Phys. Rev. Letters 8,250 (1962).
    [128]Bean C P 1964 Magnetization of high-field superconductors Rev. Mod. Phys.36 31-8
    [129]Hashizume H, Sugiura T, Miya K and Toda S 1992 Numerical analysis of electromagnetic phenomena in superconductors IEEE Trans. Magn.28 1332-5
    [130]Sanchez and Navau, Phys. Rev. B 64,214506 (2001)
    [131]王金星.超导磁体.北京原子能出版社,1985
    [132]杨儒贵, 张世昌.高等电磁理论.高等教育出版社,2007
    [133]马西奎.电磁场理论及应用.西安交通大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700