镁锂合金表面涂层及腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金是目前最轻的金属结构材料,具有超轻高强的特点,并且具有韧性好、抗弯强度大、容易变形加工等优点,是宇航、兵器、汽车、电子等领域中优选的一类结构材料。但是,镁锂合金的耐蚀性较差,使它的应用受至很大的限制。
     本文研究了NaCl溶液的浓度和pH值对镁锂合金腐蚀行为的影响,通过腐蚀速率、腐蚀形貌、腐蚀产物以及电化学分析对合金在不同体系中的腐蚀行为进行了研究。在NaCl溶液中,由于Cl~-的特殊作用,镁锂合金所发生的是有选择的点蚀,并向基体内部及四周逐渐扩大,形成较深的蚀坑,在碱性溶液中所生成的腐蚀产物最多,在酸性溶液中形成的蚀坑最大。镁锂合金在碱性NaCl溶液中的腐蚀产物为Mg(OH)_2、Al_2O_3和Li_2O_2,呈现晶态结构特征,而在中性和酸性溶液中腐蚀产物的主要成分为Mg(OH)_2和Al_2O_3。随着Cl~-浓度的升高,合金的平均腐蚀速率增大,腐蚀电流增大,腐蚀越严重;碱性增强时,合金的点蚀电位正移,表面膜钝化作用增强,减缓了腐蚀的进行;酸性增强时,合金的腐蚀电流增大,线性极化电阻减小,加快了腐蚀的进行。
     本文通过正交试验法对镁锂合金稀土铈盐和植酸两种化学转化工艺的实验参数进行了优化,铈盐转化膜最佳工艺为:Ce(NO_3)_3浓度为0.05mol/L;转化温度为35℃;转化时间为10min。植酸转化膜最佳工艺为:转化液pH为6;植酸浓度20g/L;成膜时间10min;成膜温度35℃。电化学测试和析氢实验结果表明铈盐转化膜和植酸转化膜能明显提高镁锂合金的耐腐蚀能力,处理后合金硬度也有较大幅度的提高。利用SEM观察了转化膜的表面形貌,铈盐转化膜为灰白色均匀薄膜,由针状物堆积而成,膜层厚度约12μm。植酸转化膜呈现深灰色,表面有白色花絮状物质沉积,膜层中存在微小裂纹。采用EDS、XRD、XPS及FT-IR分析了膜层的主要成分,铈盐转化膜主要为Ce(Ⅲ)和Ce(Ⅳ)的氧化物和氢氧化物的混合物,其中CeO_2呈晶态结构。植酸转化膜主要含Mg、O、P、Al和C,深灰色区域主要为镁的螯合物,白色区域主要为铝的螯合物。结合OCP曲线和膜层的组成,分别探讨了铈盐和植酸转化膜的成膜过程。
     采用溶胶-凝胶法合成纳米SiO_2前驱体,用γ-环氧丙氧基三甲氧基硅烷进行原位改性,XRD和FT-IR分析证实改性成功。利用纳米SiO_2前驱体制备环氧/纳米SiO_2杂化涂层,SEM分析表明杂化涂层呈明显的两相结构,无机相以纳米尺度均匀地分散于有机相中。杂化涂层的硬度和耐腐蚀性明显优于环氧涂层。电化学极化曲线和交流阻抗的分析表明当SiO_2质量分数为3%时,镁锂合金腐蚀速率最低,防腐效果最佳。
     在镁锂合金铈盐和植酸转化膜上分别涂覆环氧/纳米SiO_2杂化涂层,进行复合防护处理。析氢实验和盐雾腐蚀实验表明复合涂层相对于单层涂层有明显的防腐优势,其腐蚀速率明显降低,其中植酸-环氧/纳米SiO_2复合涂层的防腐效果更好。并通过交流阻抗图,用扩散理论分析了植酸-环氧/纳米SiO_2复合涂层的防腐蚀过程及防腐蚀优势。复合涂层的硬度和附着力明显优于环氧涂层和单纯的杂化涂层,有利于提高对镁锂合金的防护效果。
Mg-Li alloy is one of the lightest metal structural materials,which should bewidely used in automotive,electronic,weapon and aeronautical industries owingto its excellent properties,such as high strength/weight ratio,high impacttoughness,bending strength and deforming machining easily.However,it is thepoor corrosion resistance that limits its extensive applications.
     In this thesis,the effects of concentration and pH value of corrosive solutionson corrosion behavior of Mg-Li alloy were studied.The corrosion behavior wasdescribed through corrosion rate,morphology of the corroded surface,corrosionproducts and electrochemical analysis.In NaCl solution,the main corrosionmechanism was the selective pitting due to the special characteristics of chlorideion.The large corrosion pits were formed because the corrosion pits expandedtowards the matrix inner and enlarged all around.The corrosion products of thealloy in alkaline NaCl solution were the most,and the size of the corrosion pits inacidic NaCl solution was the largest.The main components of the corrosionproducts in alkaline solution were Mg(OH)_2,Al_2O_3 and Li_2O_2,which were allcrystals.But in acidic and neuter solution the products were Mg(OH)2 and Al_2O_3.The corrosion of Mg-Li alloy developed more seriously with the increase in Cl~-concentration,because the corrosion rate and corrosion current increased.Thecorrosion potential gradually increased with the increase of alkalescence,whichindicated that the passivation of the surface film was improved and the corrosionvelocity was restrained provisionally.When the acidity increased,the corrosioncurrent gradually increased and the linear resistance decreased,this means that thecorrosion reaction accelerated.
     The technical parameters of conversion coatings on the Mg-Li alloy wereoptimized by orthogonal experiments.The optimum processing parameters of Ce-based conversion coating were confirmed as follows:solution concentration is0.05 mol/L,treating temperature is 35℃and treating time is 10 rain.Theoptimum process parameters ofphytic acid conversion coating were confirmed asfollows:pH value of the solution is 6,solution concentration is 20 g/L,treatingtime and treating temperature is 10 min and 35℃,respectively.The corrosionresistance ability was evaluated by hydrogen evolution experiment andelectrochemical analysis.The results showed that the conversion coatingsimproved the corrosion resistance of the alloy.Analysis by SEM indicated that theCe-based conversion coating was a grey uniform coating with a fiber-likemorphology,its thickness was 12μm.The phytic acid conversion coating was adark grey coating with white flower-like deposit and some micro cracks.Thecomponents of coatings were investigated by EDS,XRD,XPS and FT-IR.Themajor component of the Ce-based conversion coating was a mixture of oxide andhydroxide of Ce(Ⅲ) and Ce (Ⅳ).The phytic acid conversion coating mainlyconsisted of Mg,Al,O,P and C,the dark grey area was mainly magnesic chelatecompounds and white area was mainly aluminous chelate compounds.Theforming processes of the conversion coatings were discussed through the OCPevolution and components of coatings.
     Nano-SiO_2 precursor was synthesized through sol-gel technique,then it wasmodifed in situ byγ-epoxypropoxytrimethoxysilane.The modified nano-SiO_2precursor was characterized by XRD and FT-IR.The epoxy/nano-SiO_2 hybridcoating was prepared by using the modified nano-SiO2 precursor.The analysis bySEM showed that coating was two-phase structure,and nano-scale SiO_2 particleswere dispersed in epoxy matrix homogeneously.The corrosion resistance andhardness of hybrid coating were better than epoxy coating.The analyses ofelectrochemical potentiodynamic polarization and impedance spectroscopyindicated that the protection was best when mass fraction of nano-SiO_2 was 3%.
     The epoxy/nano-SiO_2 hybrid coating was prepared on the conversioncoatings of Mg-Li alloy,this is called composite coatings or composite protectiontechnique.The results of hydrogen evolution and salt spray corrosion experimentsindicated that the composite coatings had better corrosion resistance than themono-coatings.The corrosion resistance of phytic acid-epoxy/nano-SiO_2composite coating was the best.The protection process and predominance ofphytic acid- epoxy/nano-SiO_2 composite coating was analyzed by diffusion theorythrough electrochemical impedance spectroscopy.The hardness and adhesion ofcomposite coatings were better than epoxy coating and hybrid coating,which canprovide more effective protection for Mg-Li alloy.
引文
[1]房灿峰,张兴国,于延浩等.镁合金的性能、成形技术及其应用研究[J].金属热处理,2006,31(3):12-16页
    [2]D.Eliezer,E.Aghion,F.H.Froes.Magnesium science,technology and applications[J].Advanced Performance Materials,1998,5:201-212P
    [3]F.D.Raymond.The renaissance in magnesium[J].Advanced material and progress,1998,9:31-33P
    [4]王祝堂.世界镁产量与镁的用途[J].轻金属,1999,6:43-45页
    [5]B.B.Clow.Magnesium industry overview[J].Advanced Performance Materials,1996,10:33-37P
    [6]L.J.Polmer.Magnesium alloys and applications[J].Materials Science and Technology,1994,10:1-5P
    [7]张宇辉,高德民,华勤等.铸造镁合金的应用与研究进展[J].铸造技术,2005,26(5):423-425页
    [8]Ya.B.Unigovski,E.M.Gutman.Surface morphology of a die-cast Mg alloy[J].Applied Surface Science,1999,153:47-52P
    [9]G.Song,L.B.Amanda,H.S.David.Corrosion resistance of aged die cast magnesium alloy AZ91D[J].Materials Science and Engineering,2004,336(1):74-86P
    [10]S.W.Chung,K.Higashi,W.J.Kim.Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet[J].Materials Science and Engineering,2004,372:15-20P
    [11]黄瑞芬.镁合金的研究应用及其发展[J].科技与经济,2006,11:58-59页
    [12]Gerard Barbezat.Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry[J].Surface and Coatings Technology,2005,200:1990-1993P
    [13]曹亚强,张志民,王强等.AZ31镁合金多次变形工艺及其在汽车轮毂上的应用[J].铸造,2006,35(9):57-60页
    [14]卢晨,卫中山.镁合金的研究与应用进展[J].汽车工艺与材料,2005,9:1-3页
    [15]R.Udhayan,N.Muniyandi,P.B.Mathur.Studies on magnesium and its alloys in battery electrolytes[J].British Corrosion Journal,1992,27(1):68-71P
    [16]N.Muniyandi,S.Vasudevan,S.Pitchumani.Performance characteristics of chloro-substituted dinitrobenzene for magnesium reserve batteries[J].Power Sources,1993,45(2):119-130P
    [17]宋光铃.镁合金腐蚀与防护[M].化学工业出版社,2006,12-13页
    [18]B.L.Mordike,T.Ebert.Magnesium-properties-application-potential[J].Materia Science and Engineering,2001,A302:37-45P
    [19]钟皓,刘培英,周铁淘.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2000,4:41-42页
    [20]潘洪平.镁合金加工技术的研究现状与应用[J].轻合金加工技术,2002,(30):7-10页
    [21]黄少东,唐泉波,赵祖德等.用镁合金促进兵器装备轻量化[J].金属成型工艺,2002,20(5):8-10页
    [22]张丁非,彭建.关于我国镁合金产业发展战略的思考[J].世界有色金属,2004,7:4-7页
    [23]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属,2004,7:12-20页
    [24]杨程,杜红星,刘晓平.镁合金在3C产品中应用现状及前景展望[J].铸造设备研究,2005,6:46-49页
    [25]王建军,王智民,白杉.日本镁合金的应用与研究现状[J].中国铸造装备与技术,2006,4:7-10页
    [26]刘静安.镁合金加工技术发展趋势与开发应用前景[J].稀有金属快报, 2003,2:6-8页
    [27]P.Muthukumar,M.Prakash Maiya,S.Srinivasa Murthy,et al.Tests on mechanically alloyed Mg_2Ni for hydrogen storage[J].Journal of Alloys and Compounds,2008,452:456-461P
    [28]Liquan Li,Tomohiro Akiyama,Jun-ichiro Yagi.Reaction mechanism of hydriding combustion synthesis of Mg_2NiH_4[J].Intermetallics,1999,7(4):671-677P
    [29]巢国辉,黎文献.镁基牺牲阳极腐蚀行为研究[J].腐蚀科学与防护技术,2006,18(2):98-100页
    [30]David Hawke,Thomas Ruden.Magnesium in vehicle design[M].Warrendale Pa.Society of Automotive Engineers,1995:63-69P
    [31]S.Mathieu,C.Rapin,J.Steinmetz,et al.A corrosion study of the main constituent phases of AZ91 magnesium alloys[J].Corrosion Science,2003,45:2741-2755P
    [32]霍宏伟.镁合金的腐蚀与防护[J].材料导报,2001,15(7):25-27页
    [33]Y.Liu,G.E.Thompson.Anodic growth on an Al-21Mg Alloy[J].Corrosion Science,2002,44:1133-1142P
    [34]Guangling Song,Andrej Atrens,Matthew Dargusch.Influence of microstructure on the corrosion of diecast AZ80D[J].Corrosion Science,1999,41:249-273P
    [35]R.Tunold,H.Holtan,M.B.Hagg Berfe,et al.The corrosion of magnesium in aqueous solution containing chloride ions[J].Corrosion Science.1977,17:353-365P
    [36]G.L.Makar,J.Kruger,A.Joshi.The effect of alloying elements on the corrosion resistance of rapidly solidified magnesium alloys[C].Advances in Magnesium Alloys and Composites,Intemational Magnesium Association and the Non-Ferrous Metals Committee.TMS,Phoenix,Arizona,1998,26: 105-121P
    [37]Wenyue Zheng,C.Derushie,R.Zhang,et al.Protection of Mg alloys for structural applications in automobiles[C].2004 SAE World Congress,Detroit,Michigan,USA,2004:1-20P
    [38]S.K.S.Parasher,D.K.Basu,M.K.Banerjee.Localised/galvanic corrosion of Mg-Zn-Al alloy[J].Journal of Metakkurgy and Materials Science,2003,45(3):137-141P
    [39]J.I.Skar.Corrosion and corrosion prevention of magnesium alloys[J].Materials and Corrosion,1999,50:2-6P
    [40]Guangling Song,Birgir Johannesson,Sarath Hapugoda,et al.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy,steel and zinc[J].Corrosion Science,2004,46:955-977P
    [41]A.Tahara,T.Kodama.Potential distribution measurement in galvanic corrosion of Zn/Fe couple by means of Kelvin probe[J].Corrosion Science,2000,42:655-673P
    [42]E.Boese,J.Gollner,A.Heyn,et al.Galvanic corrosion behaviour of magnesium alloy in contact with coated components[J].Materials and Corrosion,2001,52:247-256P
    [43]Dong Chaofang,Xiao Kui,Li Jiuqing,et al.Atmospheric corrosion evaluation of AM50 magnesium alloy coupled with different metales.16~(th) International Corrosion Congress[C].September Beijing,China,2005,19-24P
    [44]A.M.Lafront,W.Zhang,S.Jin.Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques[J].Electrochimica Acta,2005,51(3):489-501P
    [45]O.Lunder,J.E.Lein,S.M.Hesjevik.Corrosion morphologies on magnesium alloy AZ91[J].Materials and Corrosion,1994,45:331-340P
    [46]Guangling Song,Andrej Atrens.Corrosion mechanisms of magnesium alloys[J].Advanced Engineering Materials,1999,l,No.1:11-33P.
    [47]R.G.Song,C.Blawert,W.Dietzel,et al.A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy[J].Materials Science and Engineering A,2005,399:308-317P
    [48]Nicholas Winzer,Andrej Atrens,Guangling Song.A critical review of the stress corrosion cracking(SCC)of magnesium alloys[J].Advanced Engineering Materials,2005,8:659-693P
    [49]Guangling Song,David St John.The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J].Journal of Light Metals,2002,1.2:1-16P
    [50]A.Luo,M.O.Pekguleryuz.Cast magnesium alloys for elevated temperature applications[J].Journal of Materials Science,1994,29:5259-5271P
    [51]Md.Shahnewaz Bhuiyan,Yoshiharu Mutoh,Tsutomu Murai.Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments[J].International Journal of Fatigue,2008,30:1756-1765P
    [52]Z.Y.Nan,S.Ishihara,T.Goshima.Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J].International Journal of Fatigue,2008,30(7):1181-1188P
    [53]R.I.Stephens,C.D.Schrader,K B.Lease.Corrosion fatigue of AZ91E-T6 cast magnesium alloy in a 3.5 percent NaCl aqueous environment[J].Journal of Engineering Materials and Technology,1995,117(3):293-298P
    [54]M.O.Speidel,M.J.Blackburn,T.R.Beck.Corrosion fatigue and stress corrosion crack growth in high strength aluminum alloys,magnesium alloys,and titanium alloys exposed to aqueous solutions[C].In Corrosion Fatigue:Chemisty,Mechanics,and Microstructure,NACE,Houston,1986:324-331P
    [55]H.R.Mayer,Hj.Lipowsky,M.Papakyriacou.Application of ultrasound for fatigue testing of lightweight alloys[J].Fract Engng Mater Struct,1999,22:591-599P
    [56]Zainuddin Bin Sajuri,Takashi Umehara,Yukio Miyashita.Fatigue-Life prediction of magnesium alloys for structural applications[J].Advanced Engineering Materials,2003,5,(12):910-916P
    [57]S.Mathieu,C.Rapin,J.Steinmetz.A corrosion study of the main constituent phases of AZ91 magnesium alloys[J].Corrosion Science,2003,45:2741-2755P
    [58]郝献超,周婉秋.AZ31镁合金在NaCl溶液中的电化学腐蚀行为研究[J].沈阳师范大学学报(自然科学版),2004,4::117-122页
    [59]蔡启舟,王立世.NaCl水溶液中AZ91和A3钢的接触腐蚀[J].特种铸造及有色合金,2004,10:31-33页
    [60]Guangling Song,Andrej Atrens.Corrosion Behavior of AZ21、 AZ501 and AZ91 in Sodium Chloride[J].Corrosion Science,1998,40:1769-1791P
    [61]李瑛,张涛.AZ91D镁合金手汗腐蚀机理研究1.手汗模拟液中AZ91D镁合金腐蚀的动力学规律[J].中国腐蚀与防护学报,2004,5:276-279页
    [62]P.L.Bonora,M.Andrej.Corrosion behavior of stressed magnesium[J].Corrosion Science,2004,44:729-749P
    [63]林翠国,李晓刚.AZ91D镁合金在含SO_2大气环境中的初期腐蚀行为[J].中国有色金属学报,2004,10:1658-1665页
    [64]郑弃非,曹莉亚.镁合金的大气腐蚀试验研究[J].稀有金属,2004,1:101-103页
    [65]何积铨,王湛.模拟大气环境中加速镁合金电偶腐蚀的研究[J].腐蚀科学与防护技术,2004,3:142-143页
    [66]N.S.Mcintyre,C.Chen.Role of impurities on Mg surfaces under ambient exposure conditions[J].Corrosion Science,1998,40(10):1697-1709P
    [67]Harald Schreckenberger,Gunther Laudien.Processing and corrosion control of a magnesium body structure element[C].Materials for Transportation Technology,2000:30-34P
    [68]Yizao Wan,Guangyao Xiong,Honglin Luo.Preparation and characterization of a new biomedical magnesium-calcium alloy[J].Materials and Design,2008,29:2034-2037P
    [69]A.Luo,T.Shinoda.A new magnesium alloy for automotive powertrain applications[J].Transactions,1998,107(5):86-94P
    [70]S.Ono,K.Asami,T.Osaka.Characterization of chemical conversion coating films grown on magnesium[C].Australia,Clayton,International Corosion Congress Proceedings 13~(th),1996:80-82P
    [71]Eppensteiner,W.Fred,Jenkins.Chromate conversion coatings[J].Metal finishing,2002,100(1):479-491P
    [72]L.Kouisni,M.Azzi,M.Zertoubi.Phosphate coatings on magnesium alloy AM60 part 1:study of the formation and the growth of zinc phosphate films[J].Surface and Coatings Technology,2004,185:58-67P
    [73]H.Umehara,M.Takaya,S.Terauchi.Chrome-free surface treatments for magnesium alloy[J].Surface and Coatings Technology,2003,169-170:666-669P
    [74]D.B.弗虽曼.磷化与金属预处理[M].北京,国防工业出版社,1989:10-45页
    [75]David Hawke,D.L.Albright.A phosphate-permanganate conversion coating for magnesium[J].Metal Fishing,1995,98(10):34-38P
    [76]C.S.Lin,H.C.Lin,M.K.Lin.Form ation and properties of stannate conversion coatings on AZ6 1 magnesium alloys[J].Corosion Science,2006,48:93-109P
    [77]M.Gonzalez Nunez,P.Lkeldon,G.E.Thompson.Kinetics of the evelopment of a nonchromate conversion coating for magnesium alloys and magnesium-based metal matrix composites[J].Corrosion,1999,55(12):1136-1143P
    [78]M.A.Gonzalez-nunez,C.A.Nunez-lopez,P.Skeldon.A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites[J].Corosion Science,1995,37(11):1763-1772P
    [79]Manuele Dabala,Lidia Armelao,Alberto Buchberger.Cerium-based conversion layers on aluminum alloys[J].Applied Surface Science,2001,172:312-322P
    [80]F.Berny,Y.Benedict,J.Johnson.Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6[J].Surface and Coating Technology,2004,176:349-356P
    [81]R.W.Hinton,L.Wllson.The corrosion inhibition of zinc with cerous chloride[J].Corrosion Science,1989,29(8):967-985P
    [82]王济奎,方景礼.镀锌层表面混合稀土转化膜的研究[J].中国稀土学报,1997,15(1):31-34页
    [83]方景礼,王济奎,刘琴.碳钢表面稀土转化膜的XPS和AES研究[J].中国稀土学报,1994,12(1):38-41页
    [84]H.S.Isaacs,A.J.Davenport,A.Shipley.The electrochemical response of steel to the presence of dissolved cerium[J].Journal of the Electrochemical Society,1991,138(2):390-393P
    [85]S.Virtanen,M.B.Ives,G.Sproul.A surface analytical and electrochemical study on the role of cerium in the chemical surface treatment of stainless steels[J].Corrosion Science,1997,39(10-11):1897-1913P
    [86]C.Wang,F.Jiang,F.Wang.The characterization and corrosion resistance of cerium chemical conversion coatings for 304 stainless steel[J].Corrosion Science,2004,46(1):75-89P
    [87]Manuele Dabala,Katya Brunelli,Enrico Napolitani.Cerium-based chemical conversion coating on AZ63 magnesium alloy[J].Surface and Coatings Technology,2003,172:227-232P
    [88]M.F.Montemor,A.M.Simoes,M.J.Carmezim.Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection[J].Applied Surface Science,2007,253:6922-6931P
    [89]M.Geary,C.Breslin.The influence of dichromate and cerium passivation treatments on the dissolution of Sn/Zn coatings[J].Corrosion Science,1997,39(8):1341-1350P
    [90]F.Mansfeld,C.Chen,C.Breslin.Sealing of anodized aluminum alloys with rare earth metal salt solutions[J].Journal of the Electrochemical Society,1998,145(8):2792-2798P
    [91]A.L.Rudd,C.B.Breslin,F.Mansfeld.The corrosion protection afforded by rare earth conversion coatings applied to magnesium[J].Corrosion Science,2000,42(2):275-288P
    [92]Yang Lingzhu,Liu Hongyun,Hu Naifei.Assembly of electroactive layer-by-layer films of myoglobin and small-molecular phytic acid[J].Electrochemistry Communications,2007,9:1057-1061P
    [93]Liu Jianrui,Guo Yina,Huang Weidong.Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys[J].Surface and Coatings Technology,2006,201:1536-1541P
    [94]C.E.Tomlinson.Conversion coatings for metals using group IV-Z metals in the presence of little or no fluoride and little or no chromium[P].US Pat:5952049,1999-09-14
    [95]李光玉,连建设,牛丽媛.AZ91D镁合金上钼改性锌系磷化膜的制备、结构及性能[J].高等学校化学学报,2006,27(5):817-820页
    [96]钱建刚,李荻,郭宝兰.镁合金的化学转化膜[J].材料保护,2002,35(3):5-6页
    [97]M.P.Schriever.Non-chromated cobalt conversion coating[P].CA Pat:2056159,1990-04-18
    [98]P.Ross,J.Macculloch.New development in anodizing and coloring magnesium[C].Cincinnati Ohio,AESF Proceedings,1999:231-237P
    [99]C.Mobley,J.Brevick.The effect of coatings on selected mechanical properties of magnesium alloy die casting[J].Die Casting Eengineer,2000,7:36-39P
    [100]T.F.Barton,C.B.Johnson.The effect of electrolyte on the anodized finish of a magnesium alloy[J].Plating Surface Finishing,1995,5:138-141P
    [101]Zhang Yongjun,Yan Chuanwei,Wang Fuhui.Study on the environmentally friendly anodizing of AZ91D magnesium alloy[J].Surface and Coatings Technology,2002,161:36-43P
    [102]A.J.Zozulin,E.B.Duane.Anodized coatings for magnesium alloys[J].Metal Finishing,1994,92(3):30-43P
    [103]薛文彬,来永春.镁合金微等离子体氧化膜的特征[J].材料科学与工艺,1997,5(2):89-92页
    [104]刘亚萍,段良辉.镁合金微弧氧化陶瓷膜的微观结构、相成分和耐蚀性[J].材料保护,2006,39(2):49-51页
    [105]郭洪飞,安茂忠.镁及镁合金电镀与化学镀[J].电镀与环保,2004,24(2):1-5页
    [106]李瑛,余刚.镁合金上硫酸镍体系化学镀镍工艺[J].材料保护,2003,36(10):32-34页
    [107]李立清,肖友军.镁合金上化学镀镍工艺的研究[J].南方冶金学院学报,2004,25(5):54-58页
    [108]朱立群,刘慧丛.溶胶成分对镁合金阳极氧化膜层的影响研究[J].功能材料,2005,6(36):923-925页
    [109]H.Schmidt.Multifunctional inorganic-organic composite sol-gel coatings for glass surfaces[J].Journal of Non-Crystalline Solids,1994,178:302-312P
    [110]R.Zandi-zand,A.Ershad-langroudi,A.Rahimi.Organic-inorganic hybrid coatings for corrosion protection of 1050 aluminum alloy[J].Journal of Non-Crystalline Solids,2005,351:1307-1311P
    [111]M.L.Zheludkevich,R.Serra,M.F.Montemor.Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3[J].Surface and Coatings Technology;2006,200:3084-3094P
    [112]R.Calun,A.Wdisheit.Proceesings of the third international magnesium conference[C].Londonjnstitrute of Mater,1997:699-710P
    [113]Aizawa Tatsuhiko.Surface modification of magnesium base alloys by casplasma niridation[J].Materials Science Forum,2000,86:247-252P
    [114]A.Yamamoto.AFM observations of microstructures of deposited magnesium on magnesium alloys[J].Materials Science Forum,2000,86:241-246P
    [115]H.Tsubakion.Formation of magnesium fims of magnesium alloys by vapor deposition technique[J].Materials Science Forum,2000,86:235-240P
    [116]H.Hoche,C.Blawert,E.Broszeit.Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91[J].Surface and Coatings Technology,2005,193(l-3):223-229P
    [117]F.Fracassif,R.D.Agostino,B.F.Palum.Application of plasma deposited organosilicon thin films for the corrosion protection of metals[J].Surface and Coatings Technology,2003,174-175:107-11 IP
    [118]N.Yamauchi,K.Demizu,N.Ueda.Friction and wear of DLC films on magnesium alloy[J].Surface and Coatings Technology,2005,193(1-3):277-282P
    [119]F.Stippitch,E.Vera,C.Friedrich.Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by lon beam-assisted evaporation[J].Surface and Coatings Technology,1998,103-104:29-35P
    [120]J.Brackner,R.Gunzel.Metal plasma immersion lon lmplatation on magnesium[J].Surface and Coatings Technology,1998,103-104:227~230P
    [121]T.Yue,M.Q.Hu.Laser cladding of stainless steal on magnesium ZK60/SiC composite[J].Materials Letters,2001,47:165-170P
    [122]Chen Fei,Zhou Hain,Cai Suo.Corrosion resistance properties of AZ31 magnesium alloy after Ti ion implantation[J].Rare Metals,2007,26(2):142-146P
    [123]W.Hume Rothery.Equilibrium relations and some properties of Magnesium-Lithium and Magnesium-Silver-Lithium alloys[J].Inst Metals,1945,71:589-594P
    [124]W.E.Freeth,G.V.Raynor.The systems magnesium-lithium and magnesium-lithium-silver[J].Inst Metals,1953-1954,82:575-582P
    [125]H.Friedrich,S.Schumann.Research for a “new age of magnesium” in the automotive industry[J].Journal of Materials Processing Technology,2001,117:276-281P
    [126]M.PrudHomme,B.Pieraggi,J.Poujardieu.Thin foil preparation of Mg-Li alloys using a non-aqueous electrolyte[J].Metallography,1972,5:459-461P
    [127]K.Higashi,J.Wolfenstine.Microstructural evolution during superplastic flow of a binary Mg-8.5 wt.% Li alloy[J].Materials Letters,1991,10:329-332P
    [128]P.Metenier,G.Gonz?lez-Doncel,O.A.Ruano,et al.Superplastic behavior of a fine-grained two-phase Mg-9wt.%Li alloy[J].Materials Science and Engineering A,1990,125(2):195-202P
    [129]X.Huang,N.Tsuji,N.Hansen,et al.Microstructural evolution during accumulative roll-bonding of commercial purity aluminum[J].Materials Science and Engineering A,2003,340:265-271P
    [130]乐启炽,崔建忠.Mg-Li合金的过去、现在与将来[J].宇航材料工艺, 1997,(2):1-6页
    [131]马春江,张荻.超轻型Mg-Li合金[J].宇航材料工艺,1998,2:27-32页
    [132]于化顺,闵光辉.合金元素在Mg-Li基合金中的作用[J].稀有金属材料与工程,1996,25(2):1-5页
    [133]杨光昱,郝启堂.镁锂系合金的研究现状[J].铸造技术,2004, 25(1):19-21页
    [134]Chang Tienchan,Wang Jianyih,Chu Chunlen.Mechanical properties and microstructures of various Mg-Li alloys[J].Materials Letters,2006,60(27):3272-3276P
    [135]S.J.Wang,G.Q.Wu,R.H.Li.Microstructures and mechanical properties of 5 wt.% Al_2Y_p/Mg-Li composite[J].Materials Letters,2006,60(15):1863-1865P
    [136]A.Sanschagrin,R.Tremblay,R.Angers.Mechanical properties and microstructure of new magnesium-lithium base alloys[J].Materials Science Engineering A,1996,220:69-77P
    [137]Z.Trojanova,Z.Drozd,P.Lukac,et al.Deformation behaviour of Mg-Li alloys at elevated temperatures[J].Materials Science Engineering A,2005,410-411:148-151P
    [138]W.Hiroyuki,D.M.Toshiji,J.Kenji.Deformation mechanism of fine grained superplasticity in metallic materials expected from the phenomenological constitutive equation[J].Materials Transactions,2004,45(8):2497-2503P
    [139]A.K.Sharma,R.U.Rani,A.Malek.Black anodizing of a magnesium-lithium alloy[J].Metal Finishing,1996,94:16,18,20-22,24,27P
    [140]Hua Zhang,Guangchun Yao,Shulan Wang.A chrome-free conversion coating for magnesium-lithium alloy by a phosphate-permanganate solution[J].Surface and Coatings Technology,2008,202(9):1825-1830P
    [141]N.Yamauchi,N.Ueda,A.Okamoto.DLC coating on Mg-Li alloy[J].Surface and Coatings Technology,2007,201:4913-4918P
    [142]高福麒,高斌,高翔.镁锂合金表面镍磷合金化处理的研究[J].表面技术,2007,36(6):59-60页
    [143]曹富荣,崔建忠.超轻Mg-Li合金熔炼工艺与轧制温度的研究[J].轻合金加工技术,1999,27(9):35-37页
    [144]乐启炽,崔建忠.Mg-Li合金的均化制度研究[J].宇航材料工艺,1997,5:19-23页
    [145]王辅忠,李荣华,费英.Mg-Li基复合材料研究进展[J].材料科学与工程学报,2003,81(2):134-137页
    [146]于化顺,闽光辉,田学雷.Mg-Li基合金及复合材料的制备与工艺[J].特种铸造及有色合金,1997,4:29-30页
    [147]黄伯杰,聂邦盛,贾延杰等.Mg-Nd-Zn-Zr耐热高强铸造镁合金[J].特种铸造及有色合金,1998,6:40-42页
    [148]刘文辉,刘海峰,侯骏等.高强度耐高温压铸镁合金的开发[J].汽车工艺与材料,2003,4:12-15页
    [149]S.Mathieu,C.Rapin,J.Hazan,et al.Corrosion behavior of high pressure die-cast and semisolid cast AZ91D alloys[J].Corrosion Science,2002,44:2737-2756P
    [150]P.L.Bonora,M.Andrei,A.Eliezer,et al.Corrosion behavior of stressed magnesium alloys[J].Corrosion Science,2002,44:729P
    [151]Genevieve Baril,Nadine Pebere.The corrosion of pure magnesium in aerated anddeaerated sodium sulphate solutions[J].Corrosion Science,2001,43:471-484P
    [152]梁成浩.金属腐蚀学导论[M].北京,机械工业出版社,1999:33-46页
    [153]张津,章宗和.镁合金及应用[M].北京,化学工业出版社,2004:86-95 页
    [154]赵文珍.材料表面工程导论[M].西安,西安交通大学出版社,1998:226-242页
    [155]D.R.Arnott,N.E.Ryan,B.R.W,et al.Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy[J].Applications of Surface Science,1985,22-23:236-251P.
    [156]Yu.A.Teterin,A.Yu.Teterin,A.M.Lebedev,et al.The XPS spectra of cerium compounds containing oxygen[J].Journal of Electron Spectroscopy and Related Phenomena,1998,88-91:275-279P
    [157]G.Praline,B.E.Koel,R.L.Hance,et al.X-Ray photoelectron study of the reaction of oxygen with cerium[J].Journal of Electron Spectroscopy and Related Phenomena,1980,21(1):17-30P
    [158]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,2002:26-27页
    [159]Y.Xu,X.Chen,Z.Lv.Preparation and corrosion resistance of rare earth conversion coatings on AZ91 magnesium alloy[J].Journal of Rare Earths,2005,23:555-558P
    [160]吴谨光.近代傅里叶变换红外光谱技术及应用[M].科学技术文献出版社,北京,1994:292-298页
    [161]Duane F.Berry,Chao Shang,Catherine A.Waltham,et al.Measurement of phytase activity using tethered phytic acid as an artificial substrate:Methods development[J].Soil Biology and Biochemistry,2007,39:361-367P
    [162]郑润芬,梁成浩,邵林.AZ91D镁合金植酸转化膜组成与耐蚀性能研究[J].大连理工大学学报,2006,46(1):16-19页
    [163]钱家盛,何平笙.功能性聚合物基纳米复合材料[[J].功能材料,2003,34(4):371-374页
    [164]D.A.Loy,K.Bridged.Polysilsesquioxanes highly porous hybrid organic inorganic materials[J].Chemical Reviews,1995,95(5):1431-1442P
    [165]K.Moller,T.Bein.Inclusion chemistry in periodic mesoporous hosts[J].Chemistry of Materials,1998,10(10):2950-2963P
    [166]D.Levy,R.Reisfeld,D.Avnir.Fluorescence of europium(Ⅲ)trapped in silica gel-glass as a probe for cation binding and for changes in cage symmetry during gel dehydration[J].Chemical Physics Letters,1984,109(6):593-597P
    [167]G.L.Maria,Petrucci,David Fenwick,et al.A new catalytic hybrid material from simple acid-base hydrolytic chemistry[J].Journal of Molecular Catalysis A:Chemical,1999,146(1):309-315P
    [168]H.S.Kim,B.J.Lee,D.H.Prak.Fabrication of an organic-inorganic hybrid LB film of a magnetic polyoxometalate[J].Synthetic Metals,2005,153(1-3):469-472P
    [169]S.R.Davis,A.R.Brough,A.Atkinson.Formation of silica/epoxy hybrid network polymers[J].Journal of non-crystalline solids,2003,315:197-205P
    [170]A.Conde,A.Duran,J.J.Damborenea.Polymer sol-gel coatings as protective layers of aluminum alloys[J].Progress in organic coatings,2003,46:288-296P
    [171]S.Ananda Kumar,T.S.N.Sankara Narayanan.Thermal properties of siliconized epoxy interpenetrating coatings[J].Progress in organic coatings,2002,45:323-330P
    [172]S.Kang,S.Hong,C.R.Choe,et al.Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process[J].Polymer,2001,42:879-887P
    [173]S.Yano,T.Ito,K.Shinoda,et al.Properties and microstructures of epoxy resin/TiO_2 and SiO_2 hybrids[J].Polymer international,2005,54:354-361P
    [174]Y.J.Du,M.Damron,G.Tang,et al.Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates[J].Progress in organic coatings,2001,41: 226-232P
    [175]C.L.Chiang,C.C.M.Ma.Synthesis,characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method[J].European polymer journal,2002,38:2219-2224P
    [176]W.H.Weng,HChen,S.P.Tsai,et al.Thermal property of epoxy/SiO_2 hybrid material synthesized by the sol-gel process[J].Journal of applied polymer science,2004,91:532-537P
    [177]Charles R.Hegedus,Ihab L.Kamel.Subrnicron pyrogenic silica and its use in polymer and coating systems[J].Progress in Organic Coatings,1991,19(1):1-20P
    [178]F.Mansfeld,C.H.Tsai.Determination of coating dete-rioration with EIS,Part Ⅰ.Basic Relationship[J].Corrosion,1991,47(12):958-963 P
    [179]D.Pereira,J.D.Scantlebury.M Ferreira.The applica-tion of electrochemical measurements to the study and behavior of zinc-rich coatings[J].Corrosion Science,1990,33(11),1135-1147P
    [180]Y.Chen,T.Hong,M.Gopal.EIS Studies of a corrosion inhibitor behavior under multiphase flow condi-tions[J].Corrosion Science,2000,42:979-990P
    [181]Zhang Jintao,Hu Jiming,Zhang Jianqing.Studies of water transport behavior and importance models of epoxy-coated metals in NaCl solution by EIS[J].Progress in Organic Coatings,2004,51:145-151P
    [182]曹楚南.腐蚀电化学原理[M].北京化学工业出版社,2004:217-22页
    [183]L.Christopher,Soles.Albert Fee.A discussion of the molecular mechanisms of moisture transport in organic coating[J].Journal of Polymer Science Part b-Polymer Physics,2000,38:797-806P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700