魔芋葡甘聚糖交联羧甲基改性及其对金属离子的吸附和解吸性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
魔芋葡甘聚糖(Konjac Glucomannan,简称KGM)是继淀粉和纤维素之后,一种较为丰富的可再生天然高分子资源,已成为具有应用前景的环境友好生物材料。本文以魔芋葡甘聚糖为主要研究对象,在了解魔芋葡甘聚糖在不同pH值的溶液行为的基础上,研究了魔芋葡甘聚糖进行交联羧甲基改性的最佳条件,探讨了交联羧甲基魔芋葡甘聚糖对金属离子的吸附及解吸性能,表征了魔芋葡甘聚糖、交联羧甲基魔芋葡甘聚糖(Crosslinked Carboxymethyl Konjac Glucomannan,简称CCMKGM)及其吸附金属离子后产物(Metal Crosslinked Carboxymethyl Konjac Glucomannan,简称MCCMKGM)的结构特点。本实验的主要结论如下:
     1.魔芋葡甘聚糖在不同pH值的溶液构象初探
     采用粘度法研究不同pH值下魔芋葡甘聚糖(KGM)溶液的特性粘度,采用刚果红染色法分析了不同pH值和尿素浓度对KGM溶液构象的影响。特性粘度实验表明:在pH值为4、6、7、8、10时,0.6g/L的KGM的特性粘度分别为1520.2 mL/g、1472 mL/g、1616.6 mL/g、1590.5 mL/g、1414.1 mL/g,代入已建立的Mark-Houwink方程[η]=5.96×10~(-2) M_W~(0.73),求得对应pH值下KGM的重均摩尔质量M_W分别为1.07×10~6、1.04×10~6、1.18×10~6、1.16×10~6、0.99×10~6;刚果红(CR)实验表明:KGM可能具有某种螺旋结构,而高pH值条件可能致使这种螺旋结构发生解体。
     2.交联羧甲基魔芋葡甘聚糖改性条件的研究
     以异丙醇为分散剂,环氧氯丙烷为交联剂,在碱性介质中由一氯乙酸和魔芋葡甘聚糖(KGM)反应,制备交联羧甲基魔芋葡甘聚糖(CCMKGM),通过二次回归正交旋转组合设计对其进行了优化,根据SAS分析得出最佳制备条件:NaOH为12mL、MCA为12mL、ECH为1mL,在最佳条件下测得取代度为0.6068。改性KGM对金属离子Cu~(2+)、Cr~(3+)、Cd~(2+)、Pb~(2+)的吸附率及其吸附容量:对Cu~(2+)的吸附率为78.62%,Cr~(3+)的吸附率为85.47%,Cd~(2+)的吸附率为74.20%、Pb~(2+)的吸附率为99.15%;对Cu~(2+)的吸附容量为24.94mg/g,Cr~(3+)的的吸附容量为24.27mg/g,Cd~(2+)的吸附容量为23.92mg/g,Pb~(2+)的吸附容量为26.04mg/g。
     3.交联羧甲基魔芋葡甘聚糖对金属离子的吸附及解吸性能研究
     考察了金属离子初始浓度、吸附时间、吸附剂用量、pH、温度对交联羧甲基魔芋葡甘聚糖吸附水中Cu~(2+)、Cd~(2+)、Cr~(3+)以及Pb~(2+)的影响,对吸附动力学进行了探讨。结果表明,金属离子初始浓度、吸附时间、吸附剂用量、pH是影响吸附效果的重要因素,在金属离子初始浓度为200mg/L、吸附剂用量0.75%、pH值为5、温度为25℃时对金属离子的吸附率最好。经过20min,四种金属离子在交联羧甲基魔芋葡甘聚糖上的吸附可达平衡,吸附率分别为Cu~(2+)93.51%、Cd~(2+)91.02%、Cr~(3+)89.68%、Pb~(2+)97.64%。对交联羧甲基魔芋葡甘聚糖吸附金属离子后的解吸试验可知:采用0.3mol/L的HCl、在20min的条件下对Cd(99.6%)、Cu(86.3%)的解吸效果较好,而对Cr(21.8%)、Pb(5.8%)的解吸效果较差。
     4.魔芋葡甘聚糖、交联羧甲基魔芋葡甘聚糖及其吸附金属离子后产物的结构表征
     通过傅立叶红外光谱、拉曼光谱、X-射线衍射光谱以及扫描电镜等现代仪器分析手段,对魔芋葡甘聚糖、交联羧甲基魔芋葡甘聚糖及其吸附金属离子后产物进行了结构表征。
     由红外光谱图谱和拉曼光谱图谱分析:KGM存在乙酰基,通过交联羧甲基改性后,在CCMKGM中乙酰基被脱除。另外,在指纹区,三者的结构也发生了很大的变化。
     X-衍射图谱分析:KGM的X-衍射图谱,KGM主要呈现无定型结构,仅有少数结晶。CCMKGM晶型结构也没有发生大的变化,但有新的衍射峰出现。而MCCMKGM峰的强度明显降低,面间距变小。
     电镜扫描分析:魔芋葡甘聚糖表层的细胞壁层排列相当紧密,表面光滑。羧甲基交联魔芋葡甘聚糖颗粒表面凸凹不平,呈褶皱状。交联魔芋葡甘聚糖吸附金属后,在表面形成一层层厚厚的吸附层。
Konjac glucomannan(KGM),an abundant natural polysaccharide coming out after starch and celluloses,gradually became promising environment friendly material.This article make KGM as main object of research,basing on the solution behavior of KGM in different pH values,intends to study the optimization synthesis conditions and the capacity of adsorption and desorption for metal ions of Crosslinked Carboxymethyl Konjac Glucomannan,analyse the structural characteristic of KGM,CCMKGM and MCCMKGM via Fourier Transform Infrared Spectrum,Laser Raman Spectrum,X-Ray Diffraction and Scanning Electron Microscopy etal.The main results of this paper are as follows:
     1.Primary study on solution conformation of Konjac Glucomannan in different pH values
     The instrinsic viscosity in different pH values of Konjac Glucomannan(KGM) solution was studied finely by viscosimetry.The effects of pH value and urea concentration on KGM conformation are discussed by KGM-Congo red complex.The instrinsic viscosity experiment showed that the instrinsic viscosity of 0.6g/L KGM solution is 1520.2mL/g,1472mL/g,1616.6mL/g,1590.5mL/g,1414.1mL/g in pH value 4,6,7,8 and 10,so the correlative Molecular Weight(Mw)is 1.07×10~6,1.04×10~6, 1.18×10~6,1.16×10~6,0.99×10~6.The KGM-Congo red complex experiment suggested that KGM might have certain helical conformation,which is destroyed at high pH value.
     2.Study on preparation of Crosslinked Carboxymethyl Konjac Glucomannan
     Under alkaline conditions,isopropyl alcohol as dispersing agent,epichlorohydrin (ECH) as crosslinking,Crosslinked Carboxymethyl Konjac Glucomannan(CCMKGM) was prepared through reaction of monochloroacetic acid(MCA) and konjac glucomannan.Conditions of preparation of modified KGM were studied and optimized by quadratic regress revolving cross-experiment.The optimization synthesis conditions analyzed by SAS soft were NaOH 12mL,MCA 12mL,ECH 1mL.Under this condition, the degree of substitution of CCMKGM is 0.6068.
     3.Study on the capacity of adsorption and desorption for metal ions of Crosslinked Carboxymethyl Konjac Glucomannan
     The effect of metal ions concentration,contact time,pH,adsorbent amount and temperature on the adsorption of Cu~(2+),Cd~(2+),Cr~(3+) and Pb~(2+) in water onto CCMKGM are investigated in this paper.The Adsorption Kinetics of CCMKGM for metal ions are discussed.The results show that metal ions concentration,contact time,pH,adsorbent amount are the affecting factors on adsorption capacity.The optimization adsorption conditions are metal ions concentration 200mg/L,adsorbent amount 0.75%,pH value 5, temperature 25℃.The adsorption equilibrium of the four metal ions onto CCMKGM can carried out after 20 mins,then,the adsorption rates are Cu~(2+) 93.51%,Cd~(2+) 91.02%,Cr~(3+) 89.68%and Pb~(2+) 97.64%.The desorption for metal ions results show that the desorption capacity is Cd~(2+)99.6%,Cu~(2+)86.3%,Cr~(3+)21.8%and pb~(2+)5.8%.
     4.Study on the structural characteristic of KGM,CCMKGM and MCCMKGM
     Study on the structural characteristic of KGM,CCMKGM and MCCMKGM via Fourier Transform Infrared Spectrum,Laser Raman Spectrum,X-Ray Diffraction and Scanning Electron Microscopy etal.
     Fourier Transform Infrared Spectrum and Laser Raman Spectrum suggested that An acetyl group exists in KGM structure,deacetylation occurs on CCMKGM after the reaction of Crosslinked Carboxymethyl.In addition,many structures have changed in fingerprint district.
     The X-ray diffraction pattern analysis revealed that the X-ray diffraction patterns of KGM mainly show amorphous structure and only a few crystal.CCMKGM crystal structure has no big change,but find some new diffraction peaks,the peak intensity of MCCMKGM decreased significantly and surface spacing became smaller.
     Scanning electron microscope suggested that KGM surface of the cell wall are very close and smooth.The surface of CCMKGM granule is bumpiness and grievances.It formed a thick absorption layer on the surface of MCCMKGM.
引文
1.庞杰,孙远明等.六偏磷酸钠对KGM干法改性研究.西南农业大学报,2000,22:59-63
    2.吴万兴,李科友等.魔芋甘露聚糖化学结构的研究.林产化学与工业,1997,17:69-72.
    3.李波,谢笔钧.国外魔芋葡甘露聚糖的开发研究现状.农牧产品开发,1999,8:6-7.
    4.冲增哲.魔芋科学.四川大学出版社,1990,142
    5.何照范.保健食品化学及其检测技术.中国轻工业出版社,1998,78
    6.尉芹.魔芋开发利用与研究综述.西北林学院学报,1998,13(3):62
    7.刘勤晋.魔芋及其保健成分KGM的功能与应用.观点与角度,1998,5(7):52
    8.许时婴.KGM的化学结构与流变性质.无锡轻工业学院学报,1991,10(1):1
    9.中岛敏彦,松山东雪学院研究论集,1969,(3):1 17
    10.李斌,谢笔钧.脱乙酰基对天然魔芋葡甘聚糖分子形貌的影响.功能高分子学报,2002,15:447-449
    11.加藤义和.食品工业杂志,1967,(14):345
    12.赖建.条状魔芋食品成条稳定性的研究.农业工程学报,2000,16:116-118
    13.孙远明,黄晓钰.魔芋葡甘聚糖的结构、食品学性质及保健功能.食品与发酵工业,1999,25:47-51
    14.岸田曲子等.广岛女子大学家政学部纪要,1976,11:37
    15.林晓艳,陈彦等.魔芋葡甘聚糖去乙酰基改性制膜特性研究.食品科学,2001,23(2):21-24
    16.李斌,谢笔钧.魔芋葡甘聚糖中乙酰基对其链结构及膜性能的影响.粮食与饲料工业,2005,10:21-22
    17.张升晖.魔芋精粉的交联化学改性研究.食品工业科技,1999,20:19-23
    18.庞杰.六偏磷酸钠对魔芋葡甘聚糖干法改性研究.西南农业大学学报,2000,20:59-61
    19.吴绍艳.焦磷酸钠和三偏磷酸钠对魔芋葡甘聚糖进行酯化交联改性.食品科技,2,61-63
    20.杨晓鸿.魔芋胶的交联化学改性研究.应用化工,2000,33:9-11
    21.肖丽霞,王丽霞等.魔芋葡甘聚糖的酯化及其产物特性.无锡轻工大学学报,2005,24:34-37
    22.光善仪,宫晓梅等.乙酸酐对魔芋葡甘聚糖的改性.精细化工,2004,21:529-543
    23.胡敏.魔芋葡甘聚糖磷酸酯化反应研究Ⅰ.天然产物研究与开发,1990,2:8-11
    24.胡敏,胡慰望等.魔芋葡甘聚糖磷酸盐酯化反应的研究Ⅱ.武汉大学学报,1994,3:101-108
    25.王常高.改性魔芋葡甘聚糖及其特性研究.湖北工业学院报,2001,16:7-9
    26.王文晟.用没食子酸(TNC)试剂对魔芋葡甘聚糖进行干法改性.食品科学,1994,7:3-4
    27.张昌军,杨志孝等.新型絮凝剂魔芋葡甘聚糖磷酸酯的研制与应用.泰山医学院报,1994,15:47-49
    28.张迎庆.魔芋葡甘低聚糖硫酸酯化衍生物的制备及结构分析.药物生物技术,2001,8(4):200-203
    29.肖云.硫酸酯化葡甘聚糖凝胶颗粒的血液相容性研究.湖北工业大学学报,2005,20:4-7
    30.汤荣生等.魔芋精粉及其改性产物特性研究.食品科学,1996,17:62-65
    31.奉平,陈旭东等.魔芋葡甘聚糖磷酸酯对高岭土悬浊液的絮凝研究.化学研究与应用,1995,7:326-326
    32.尉芹.苯甲酸对魔芋精粉化学改性的初步研究.云南林业科技,1998,2:54-57
    33.庞杰.魔芋精粉改性研究.江西农业大学学报,2002,22:591-593
    34.李斌.魔芋葡甘聚糖的H_2O_2氧化改性及其流变性能研究.湖北化工,2002,1:9-11
    35.刘爱红.魔芋粉接枝丙烯酸(钠)超强吸水剂的制备.材料科学与工程学报,2004,22:588-591
    36.刘惠君.魔芋葡甘聚糖-丙烯酸丁酯接枝共聚反应研究.华中农业大学学报,1992,3:284.
    37.张焱.丙烯酰胺与魔芋粉接枝共聚反应规律的.研究华中师范大学学报,1996,30:309-313
    38.田大听.KMnO_4引发魔芋粉-丙烯腈的接枝共聚反应.合成化学,2003,11:327-330
    39.田大听,胡卫兵.用过硫酸钾/硫脲引发魔芋粉-丙烯酰胺接枝共聚制备增稠剂.精细与专用化学品,2003,17:16-18
    40.田大听,米远祝.用焦磷酸络锰引发丙烯酰胺接枝魔芋粉合成增稠剂.高分子材料科学与工程,2002,18:168-170
    41.余若海.魔芋葡甘聚糖丙烯腈接枝共聚反应的研究.天然产物研究与开发,1990(2):46.
    42.邓霄.辐照法魔芋葡甘聚糖丙烯酸接枝共聚反应条件研究.食品科学,2005,6:225-228
    43.李娜.魔芋葡甘聚糖/丙烯酸甲酯薄膜的研究.塑料工业,2005,33:63-67
    44.田志高.魔芋葡甘聚糖改性胶的研究.研究报告及专论,2003,24(6):33-35
    45.王丽霞,庞杰等.魔芋葡甘聚糖醚化研究.江西农业大学学2003,25:632-634
    46.杨兴钰,张香才等..魔芋葡甘露聚糖的化学修饰及应用研究.湖北化工,2001,4:20-21
    47.汪超,李斌.魔芋葡甘聚糖羧甲基化方法改进研究.农业工程学报,2005,21:140-144
    48.魏香奕,姚开等.魔芋葡甘露聚糖羧甲基化改性条件的优化.食品与发酵工业,2005,31:52-54
    49.李斌,谢笔钧等.魔芋葡甘聚糖的羧甲基化改性及其应用研究.西部粮油科技,2002,3:29-31
    50.陈林,王志贤等.魔芋葡甘露聚糖的纯化及羧甲基化改性研究.云南民族大学学报,2005,14:133-135
    51.吴绍艳,张升晖等.魔芋葡甘聚糖的改性研究进展,安徽化工,2004,131:10-12
    52.庞杰,林琼等.魔芋葡甘聚糖功能材料研究与应用进展.结构化学,2003,22:633-642.
    53.罗学刚.高强度可食性魔芋葡甘聚糖薄膜研究.中国包装,2000,20:89-91
    54.杜惠蓉.魔芋葡甘聚糖在生物材料领域的应用研究进展.化学世界,2005,9:571-573
    55.刘廷国,王洋.纯化方法对魔芋葡甘聚糖结构及性能的影响.林产化学与工业,2005,25(3):71-75
    56.杨海洋,朱平平.粘度法研究高分子溶液行为的实验改进.化学通报,1999,5:47-49
    57.王虎.魔芋有效成分分析及KGM稀溶液性质的研究.安徽大学硕士学位论文,2003,34-50
    58.周林,郭祀远.裂褶菌胞外多糖的粘度性质及其构象研究.食品与发酵工业,2005,31(11):1-4
    59.李斌,谢笔钧.魔芋葡甘聚糖分子链形态研究.中国农业科学,2004,37(2):280-284
    60.梁忠岩,张冀伸.树舌多糖CF2a溶液中构象行为的研究.生物化学与生物物理学报,1994,26(4):411-416
    61.周义发,张丽萍,扬庆巴,张翼伸.裂褶菌多糖的构象研究.生物化学与生物物理学报,1995,22(1):53-57
    62.蒋先明,石清东.茯苓多糖与羧甲基茯苓多糖的结构表征.广西师范大学学报(自然科学版)1996,14(3):40-47
    63.陈石良,马青,谷文英,陶文沂.灰树花胞外多糖的性质与结构.无锡轻工大学学报,2002,21(3):244-248
    64.尹玉英,刘春蕴.有机化合物分子旋光性螺旋理论.北京:化学工业出版社,2000:3-7
    65.吴万兴,丁东宁,靳菊情,李映丽.魔芋甘露聚糖化学结构的研究.西北植物学报,1998,18(2):300-304
    66.牛春梅,吴文辉等.羧甲基魔芋葡甘聚糖的制备及应用.精细化工,2006,23(8):806-808
    65.姚献平,郑丽萍等.淀粉衍生物及其在造纸中的应用技术.北京:中国轻工出版社,1999.
    67.丁萍,黄可龙等.壳聚糖衍生物对Zn(Ⅱ)的吸附动力学及机理研究。化学通报,2006,7,503-507
    68.柯以侃,董慧茹.分析化学手册(第三分册)(第二版).化学工业出版社,1998
    69.胡家璁.高分子X射线学.北京:科学出版社,2003
    70.Nishinari K.Konjac glucomannan.Developments in Food Science,2000,41(25):309-330.
    71.Dave V,McCarthy S P.Review of konjac glucomannan.Journal of Environmental Polymer Degradation,1997,5(4):237-241.
    72.Dave V,Sheth M,McCarthy S P,Ratto J A,Kaplan D L.Liquidcrystalline,rheological and thermal properties of konjacglucomannan.Polymer,1998,39(5):1139-1148.
    73.Smith,F.Srivastava,H.C.Constitutional studies on the Glucomannan of konjac flour.J.Amer.Chem.Soc.1959,(81):1715
    74.Walsh D E,Mile M J.Review of konjac glucomannan[J].Observation of Nature Product,1984,8(4):289-295.
    75.Venter C S,Mossis V J.Blend membranes rom cellulose/konjac glucomannan cuprammonium solution observe[J].Nutrition,1974,104(1):69-74.
    76.S.J.Gao,L.N.Zhang,Semi-interpenetrating polymer networks castor oil-based polyurethane and nitro-konjac gleconmannan.J.Appl.Polym.Sci,2001,81:2076-2079
    77.Erlander S R,Purvinas R M and Griffin H L.The Transition from Helix to Coil at pH12 for Amylose,Amylopectin and Glycogen.Staerke,45:141-153
    78.Naohito O,Toshiro Y.Two different conformations of the antitumour β-D-glucan produced by Sclerotinia Sclerotiorum IFO 9395.Carbohydrate Research,1987,159:293-302
    79.Noriko K,Relationship between the quality of konjac flour and the molecular matter nature of konjac mannan. Journal of Agricultural Biological Chemistry. 1979, 43(11): 2391-2392
    80. Jeffery G S, Alexander M J, John B. Conformation of Xanthan dissolved in aqueous urea and solution chloride solutions. Carbohydrate Research, 1982, 99: 117-127
    81. Chihiro H, Tadashi K, Yushiro T, Shigeo U. Anti-inflammatory activity and conformation behavior of glucan from an alkaline extract of Fisch. Carbohydrate Research, 1982, 110:77-87
    82. Ivan Slmkovic, Carbohydrate Polymer [J], 1997, 34(1): 21
    83. Ogawa Kozo, Molecular and crystal structure of konjac glucomannan in the mannan II polymorphic form. Agric. Biol. Chem, 1991, 55(8): 2105-2112
    84. Yui T, Ogawa K, Sarko A. Molecular and crystal structure of konjac glucomannan in the mannan II polymorphic form. Carbohydrate Research, 1992,229:41-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700