交联-CMS的制备及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了水相反应-滚筒反应、干燥结合法制备交联-羧甲基木薯淀粉(交联-CMS)的工艺,并研究了其基本性质、结构及在粘土悬浮剂和内墙腻子中的应用。
    通过实验确定滚筒干燥机工作条件。通过单因素实验研究了中和度、酸碱比、碱化温度、碱化时间、醚化温度、醚化时间等对羧甲基反应取代度、反应效率、粘度、吸水性和保水性的影响。在此基础上,通过正交实验确定了制备羧甲基木薯淀粉的最佳工艺条件:淀粉乳质量分数25%(d.b),M_(淀粉):M_(一氯乙酸):M_(氢氧化钠)=1:0.2:0.4,碱化温度35℃,醚化温度60℃,醚化时间2.0h,在此最佳工艺条件下制备的产品取代度可达0.138。另外还分别以环氧氯丙烷和三氯氧磷作为交联剂,制备的交联-CMS的取代度亦可达0.138,通过实验最后确定制备交联-CMS的简化工艺。
    对样品的流变学性质进行研究表明:交联-CMS具有剪切变稀现象,属假塑性流体;CMS片状产品的淀粉糊粘度随着片厚度的增加而上升,但当达到一定厚度后粘度呈下降趋势。随着样品细度增加粘度降低,且样品越细越易结团。交联剂的加入使两个或两个以上的淀粉分子之间“架桥”,呈多维空间网络结构,增加糊液及干燥状态下样品的粘度稳定,同时有助于提高CMS的吸水性等性能。
    此外,对样品的结构进行了分析。红外光谱说明一氯乙酸以醚键的形式与木薯淀粉分子相连,交联后的CMS在3000~3700cm~(-1)的羟基伸缩振动的特征峰强度变小。电子显微镜证实滚筒干燥作用使淀粉颗粒结构破坏,形成带有孔洞的片状产品,交联-CMS糊液稳定性提高,片状结构更致密。分子量分布的测定进一步证实了加入交联剂有助于弥补碱和高温的降解作用,使分子量下降较少。差示扫描量热分析表明交联-羧甲基木薯淀粉中的交联键提高了玻璃化转变温度。
    最后,论文对CMS作为粘土悬浮剂以及交联-CMS在内墙腻子中的应用进行了探讨。CMS作为粘土悬浮剂的最佳使用量为0.15%(W/W,DS为0.138)。交联-CMS用于内墙腻子的最佳条件为:交联-CMS(环氧氯丙烷用量占淀粉干基的0.02%;DS=0.136)的质量分数1%,水泥质量分数21%,m_(双飞粉):m_(石英砂)=1:1。制得的腻子达到相关标准,性价比优于同类产品。
It is studied in this thesis how to prepare corss-linked carboxymethyl starch.Carboxymethylstarch's properties and applications in clay suspension and inner wall dope are also researched inthis paper.
    The single drum dryer's operation condition were studied. By single factor experiments, theeffects of the varieties of factors on the degree of substituent(DS), reaction efficiency(RE),viscidity, water-holding ability , and water keeping of CMS are studied, including the degree ofneutralisation , proportion of acid and alkali, basification temperature , basification time ,etherify temperature, etherify time and so on. Based on those, the perpendicular experiments areused to optimize the technology. The optimum condition is as follows, starch slurry 25%(d.b),M_(AGU):M_(chloroactic acid):M_(NaOH)=1:0.2:0.4, basification temperature 35℃ , etherify temperature 60℃ ,etherify time 2h. The DS of ether in the product is about 0.138. CMS paste is relatively instable,while corss-linking bond will make it more stable in the heating and shearing. POCl_3 andepichlorohydrin as corss-link reagent. The DS of Cross-linked CMS prepared is about 0.138.
    The Cross-linked CMS paste is shear-thinning which belong to Pseudoplastic Liquid. It'spaste viscidity increase with the increase in the thickness of pieces of CMS, but decrease whenthe thickness arrive a certain value. The viscidity decrease the increase in the dimension of theCMS pieces. The smaller is the easier agglomeration of it is . Cross-link reagent make two ormore starch molecule “bridge” together and form a 3D net structure. This will increase theviscosity stability of the paste and dry pieces of the carboxymethyl tapioca starch. Moreover itcan improve the water sorption of the product. The fluid liquid characters of samples were studied.
    The structure of sampels is researched. Infra-red spectrometris shows chloroactic acidlinked to Tapioca starch by aether bond . The intensity of the flexing-oscillation peak in3000~3700cm~(-1) become weak due to hydroxyl bond stretching. The result of micrograph revealthat reaction and drying demolished the starch granule and form the pieces with hole.Cross-linked CMS will be with better stability of paste and tighter structure of pieces than CMS.Molecular weight analysis shows that corss-link reagent make up the destruction of alkali andhigh tempreture. DSC analysis shows that the cross-linking of CMS results the increase in glasstransition temperature, which is good for storage stability.
    The applications of samples in clay suspension and inner wall dope are investigated at last.When CMS is used as suspension reagent, the optimum content is 0.15%(w/w,DS=0.138).Whencross-linked CMS is used as felt reagent inner wall dope, the optimum formula is : 1% ofcross-linked CMS (epichlorohydrin 0.02% (v/w), DS=0.136) , 21% of cement , ms_(cale calciumcarbonate):m_(quartz grit)=1:1. The dope up to par and had better character than the contrast.
引文
[1]谢力娟,宋少芳.木薯淀粉酸水解制可溶性淀粉[J].广西化工, 1995,24(3):38~41
    [2]徐兆瑜.羧甲基淀粉开发前景广阔[J].甘肃化工,2002,16(1):8~11
    [3]葛英琦,柯明丽,陈溥.羧甲基淀粉钠的合成及应用[J].辽宁化工,2001,30(1):9~11
    [4]周鸿顺,张近.淀粉资源研究与开发进展[J].现代化工,l995,15(14):19
    [5]李敏谊,杨小双.半干法合成羧甲基淀粉及性能研究[J].精细化工,1997,14(4):14~17
    [6]崔小明.羧甲基淀粉开发利用前景广阔[J].上海化工,l999,24(12):12
    [7]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001:94
    [8]张友松.变性淀粉生产与应用手册[M].北京:中国轻工业出版社,1999,9:137
    [9]顾正彪,周世英,吴加根等.用挤压膨化机作反应器制备羧甲基淀粉初探[J].淀粉与淀粉糖,1994(3):15~18
    [10]邹丽霞,邹建国,冯荣华.微波法合成羧甲基淀粉[J].化工进展,2002,22(12):1319~1312
    [11]C .J .Tijsen , R. M. Voncken ,A. A. C. M. Beenackers . Design of a continuous process for the production of highly substituted granular carboxymethyl starch[J]. Chemical Engineering Science,2001, 56(2):411~418
    [12]李雪晶,马嘶鸣,赵景峰等.高粘度羧甲基淀粉钠的应用和市场前景[J].化工进展,2002,21(7):511~513
    [13]武宗文,崔国士,汪青.高取代度羧甲基淀粉性能及应用研究[J].郑州粮食学院学报,1997,18(3):81~85
    [14]周凤娟.单一变性淀粉和复合变性淀粉生产工艺、产品特性及应用的研究.沈阳农业大学,硕士论文,2000
    [15]A. A. Ragheb ,H. S. El-Sayiad, and A. Hebeish, et al. Preparation of carboxymethyl starch (CMS) products and their utilization in textile printing [J].Starch,1997,49(6 ) :238~245
    [16]B .S. Kim, S. -T . Lim. Removal of heavy metal ions from water by cross-linked carboxymethyl corn starch[J]. Carbohydrate Polymers, 1999,39 (3):217~223
    [17]Zeljko Stojanovic, Katarina Jeremic, Slobodan Jovanovic. Synthesis of carboxymethyl starch[J] .Starch, 2000 , 52 (3): 413~419
    [18]Debasis Bhattacharyya, Rekha S.Singhal & Pushpa R.Kulkarni. A comparative account of conditions for synthesis of sodium carboxymethyl starch from corn and amaranth starch[J]. Carbohydrate Polymers,1995, 27 (4):247~253
    [19]Debasis Bhattacharyya, Rekha S.Singhal & Pushpa R.Kulkarni. Physicochemical properties of carboxymethyl starch prepared from corn and waxy amaranth starch[J]. Carbohydrate Polymers ,1995, 27 (3):167~169
    [20]Debasis Bhattacharyya, Rekha S.Singhal & Pushpa R.Kulkarni[J]. Carboxymethyl starch: an extrusion aid. Carbohydrate Polymers,1996, 31 (1-2):79~82
    [21]John S. Claudius, Steven H. Neau. The solution stability of vancomycin in the presence and absence of sodium carboxymethyl starch[J]. International Journal of Pharmaceuties, 1998, 168 (1) : 41~48
    [22]C.J.Tijsen , H. J. Kolk , E. J. Stamhuis, A. A. C. M. Beenackers . An experimental study on the carboxymethylation of granular potato starch in non-aqueous media[J]. Carbohydrate Polymers ,2001, 45 (3):219~226
    [23]张淑芬,朱维芬,朱维群等.高取代度羧甲基淀粉的合成及应用研究Ⅰ.高取代度羧甲基淀粉的合成[J].精细化工,1999,16(1):53~56
    [24]张淑芬,朱维芬,朱维群等.高取代度羧甲基淀粉的合成及应用研究Ⅱ.高取代度羧甲基淀粉的应用[J].精细化工,1999,16(4):57~60
    [25]诸爱士.CMS 的制备及应用性能研究[J].科技通报,2002,18(5):414~417
    [26]陈广德.崩解剂羧甲基淀粉的固相合成及性能[J].西北师范大学学报(自然科学版),2001,37(3):48~52
    [27]胡湘渝,刘代俊.羧甲基玉米淀粉合成工艺的改进[J].四川大学学报(工程科学版),2003,35(1):115~118
    [28]乌云,耐登,贾长宽.羧甲基淀粉的快速制备工艺研究[J].内蒙古石油化工,2001,27(4):46~47
    [29]仲述春,胡胜俊,陈为颖等.羧甲基淀粉在表面施胶中的应用[J].造纸化学品,2001(3):33~34
    [30]E.P. Kalogianni. Effect of Feed Concentration on the Production of Pregelatinized Starch in a Double Drum Dryer.Lebensm[J].-Wiss.u.-Technol, 2002,35(8):703~714
    [31]何贤用.复合变性淀粉的生产工艺与应用开发[J].食品科技,2003,24(10):112~113
    [32]何贤用.蒸汽辊筒干燥机在α淀粉等领域的应用[J].造纸化学品,1995,7(2):44~46
    [33]吴玉凯.接枝淀粉超强吸水剂的研制[J].商业科技开发,1997(2):25~27
    [34]刘大胜.高性能交联羧甲基淀粉的研究[J].食品科技,2003(9):22~24
    [35]杨玉玲,周凤娟,李新华.交联-羧甲基复合变性淀粉的制备及性能研究[J].中国粮油学报,2001,12(6):47~50
    [36]张弢,张德峰.轻度交联羧甲基化复合变性淀粉的研究[J].高分子材料科学与工程,2000,16(6):154~156
    [37]秦榕年.各类变性淀粉的制法和应用[J].广西化工,1994,23(2):25~29
    [38][美]R.J 惠斯特勒,J.N 贝密勒,E.F 斯卡帕尔著.淀粉的化学与工艺学[M].北京:中国食品工业出版社,1987
    [39]淀粉水分测定方法,中华人民共和国国家标准,GB12087-89
    [40]颜力楷,兰亚乾,苏忠民等.淀粉接枝共聚高吸水性树脂的合成及其性质研究[J].东北师大学报自然科学版,2002,34(3):53~59
    [41]吴有炜.实验设计与数据处理[M].江苏:苏州大学出版社,2002,3:93
    [42]黄立新.三氯氧磷变性木薯淀粉反应机理和产品性质的研究.华南理工大学,博士学位论文,1995:10~35
    [43]Kim, Meera;Lee, Sun-Ja. Characteristics of corssoinked potato starch and starch-filled linear low-density polyethylene films[J]. Carbohydrate Polymers, 2002, 50(4):331~337
    [44]Le Bail, Patricia;Morin, Frederick G.;Marchessault, Robert H. Characterization of a crosslinked high amylose starch excipient[J]. International Journal of Biological Macromolecules, 1999, 26(2~3): 193~200
    [45]张本山.高交联非糊化淀粉物态性质与机理的研究.华南理工大学,博士学位论文,1999:9~10
    [46]陈煦.十二烯基琥珀酸淀粉酯的制备、性质及应用.无锡轻工大学,硕士论文,2000
    [47]刘馨,李文英,张晓东.羧甲基淀粉醚的合成工艺与性能研究[J].青岛大学学报,2002,15(2):26~30
    [48]Kisung Kwon, Pusan , Joong Hyuck Auh ,et al .Physicochemical Properties and Functionality of Highly Carboxymethylated Starch[J] . Starch, 1997, 12 (3):499~505
    [49]Kjzeleznak, PCHoseney. The glass transition in starch[J]. Cereal Chemistry ,1997,64(2):121~124
    [50]Brent Jr. J. L., Mulvaney S. J., Cohen C.,et al. Thermomechanical Glass Transition of Extruded Cereal Melts[J] . Journal of Cereal Science Volume,1997, 26(3):301~312
    [51]Patricia Le Bail , Frederick G Morin, Robert H, Marchessault . Characterization of a crosslynked high amylose starch excipient [J]. Biological Macromolecules , 1999 (26) :193~200
    [52]高群玉,周俊侠,张力田.绿豆淀粉颗粒性质的研究[J].食品工业科技,1997(5):36~37
    [53]商菊清,黄可龙,刘素琴.改性淀粉的交联度和红外光谱性质研究[J].浙江化工,2003(3):32~34
    [54]E. P. Kalogianni, T. Savopoulos, T. D. Karapantsios, et al. A dynamic wicking technique radius of pregelatinized starch sheets[J]. Colloids and Surfaces, 2004,35(3~4) : 159~167
    [55]O.B.沃兹堡主编,沈言行等译.变性淀粉的性能与应用[M].北京:纺织工业出版社,1989
    [56] K.N. Matsui, F.D.S. Larotonda, S.S. Paes, et al .Cassava bagasse-Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties[J]. Carbohydrate Polymers,2004,55 (3):237~243
    [57]黄立新,高群玉,周俊侠等.酯化交联淀粉反应及性质的研究(Ⅲ)糊性质和应用[J].食品与发酵工业,2001,27(6):1~5
    [58]陈克复,编译.食品流变学及其测量[M].北京:轻工业出版社.1989
    [59]赵思明,熊善柏,张声华.稻米淀粉糊老化过程的流变学与质构特性[J].西北农业大学学报,2002,21(4):161~163
    [60]Kisung Kwon, Pusan , Joong Hyuck Auh ,et al .Physicochemical Properties and Functionality of Highly Carboxymethylated Starch[J] . Starch, 1997(12):499~505
    [61]陈均志,郭睿,银鹏.微波有机相法制备辛烯基琥珀酸淀粉的表征和流变学研究[J].食品科技,2004(6):62~65
    [62]无锡轻工学院,天津轻工业学院.食品工程原理[M].北京:轻工业出版社,1985(12):376~379
    [63]雷鸣,卢晓黎,何自新.淀粉种类对甘薯膨化食品品质的影响[J].食品科学,2002,23(2):55~58
    [64]吾国强,吴雪妹,吕亮.高粘度羧甲基淀粉钠的合成研究[J].浙江化工,2000,31(1):37~38
    [65]Mazurs E G, Schech T J, Kite F E. Application of the starches on foods[J]. Cereal Chem, 1957(34):141
    [66]沈明功,张学才.氧化玉米淀粉粘合剂贮存期的研究[J].淮南工业学院学报,1999,19(2):40~44
    [67]杨连利,李仲谨.马铃薯淀粉粘合剂稳定性的探讨[J].包装工程,2004,25(2):15~17
    [68]王国超,戴小平,邓国红等.降落伞充气式耐高温快速密闭的研究[J].矿业安全与环保,2000,27(6):5~6
    [69]杨胜强,张人伟,邸志前.煤炭自燃及常用防灭火措施的阻燃机理分析[J].煤炭学报,1998, 23(6):621~625
    [70]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111~114
    [71]严荣林,钱国胤.煤的分子结构与煤氧化自燃的气体产物[J].煤炭学报,1995,20(增刊):58~63
    [72]刘英学,邬培菊.黄泥灌浆防止采空区遗煤自燃的机理分析[J].中国安全科学学报,1997(1):36~39
    [73]汪维.我国建筑涂料现状及发展对策[J].化学建材,2000(1):20~22
    [74]曲颖.面向 21 世纪的涂料工业[J].中国涂料,1999(4):39~43
    [75]连围.高耐侯外墙建筑涂料配套用品-腻子与底漆的研制.硕士论文,2000
    [76]孟兆瑞.弹性乳液-弹性腻子-弹性涂料[J].新型建筑材料,2001(9):6~9
    [77]石玉梅.建筑涂料与墙体腻子[J].中国涂料,1998(5):21~22
    [78]吴勇.环保型特种淀粉胶粘剂的开发与应用[J].木薯精细化工,2001(3):14~17
    [79]张建生,沈玉龙.环保型内墙腻子粉的研制[J].河北化工,2002(5):13~14
    [80]建筑室内用腻子,JG/T3049-1998
    [81]R H Friedman . Method for Selective Plugging of Wells[P]. UP3749174
    [82]T P Southwell . Applications and Results of Acrylamide-Polymer/Chromium (Ⅲ) Carboxylate Gels[P]. SPE/DOE 27779
    [83]包宗宏,云志,史美仁等.凹凸棒粘土用作高水速凝注浆悬浮剂[J].化工矿山技术,1997,26(5):8,15~17
    [84]中华人民共和国煤炭行业标准.MT/T420~95
    [85]胡志伟,王奋伟,刘岳琳.建筑腻子的功能、性能及几种典型问题的处理方法[J].现代涂料与涂装,2002(6):10~12
    [86]周昌盛.新型水泥基防水粉在建筑涂料装饰上的应用[J].涂料工业,2000(2):40~41
    [87]徐良骥.建筑外墙饰面防裂腻子的研制及应用[J].涂料工业,2000(7):13~15
    [88]李淑敏.水泥在汽车腻子中的应用[J].胶体与聚合物,2000,18(2):39~40
    [89]夏正斌,张燕红,涂伟萍.单组分水泥基聚合物胶粉改性耐水腻子的研制[J].装饰装修材料,2003(9):3~5
    [90]刘振作.涂膜干燥时间测定技术及其应用[J].化工科技市场,2001(6):68~69
    [91]中华人民共和国国家标准.合成树脂乳液砂壁状建筑涂料.GB9153-88
    [92]陈克复,卢晓江,金醇哲等.食品流变学及其测量[M].北京:轻工业出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700