基于芴基超支化聚合物的设计、制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于聚合物在有机电子学方面应用的飞速发展,本论文综述了基于芴的可交联、超支化聚合物在OLED中的应用以及聚合物的非线性性能,并提出在这些领域中需要解决的问题。
     1.在以芴为主体的发光材料中,稳定性是一个非常重要的问题;
     2.如何实现超支化聚合物合成上的方便实现,以达到在引入第三基团的同时不会改变超支化聚合物稳定性的特点;
     3.在可交联聚合物中,如何在不影响发光稳定性的情况下实现交联在工艺上的易于实现;
     4.有机共轭超支化聚合物在非线性材料中的应用还非常少,将所合成的聚合物进行非线性性能的测试不仅可以加深对非线性现象的认识,而且可以为后来者指出如何在现有材料的基础上进行超支化聚合物的设计指明方向。
     基于此,本论文设计并制备了以苯、嗯二唑、噻吩、Truxene为核的可交联超支化聚合物,并进行了电致发光器件、非线性材料等方面的性能研究。具体的各部分内容摘要如下。
     一、制备了以苯、噁二唑、噻吩和Truxene为核的四种可交联超支化聚合物。对可交联单体得到了与文献报导的不一样的状态,并通过DSC方法对可交联单体6的熔点和熔融焓进行了表征。对所合成聚合物通过一系列的测试手段进行了表征,发现含有较高核含量的超支化聚合物P2、P4、P6和P8具有优良的热稳定性,光谱特性较佳。而当核的含量较低时,其光谱特性接近于线形聚芴,并且具有明显的g带。电化学分析表明,随着核含量的提高,聚合物的带隙变大,而噁二唑的引入可以降低聚合物的LUMO值。对聚合物的结构分析表明得到了正确的产物,并且性能可以满足应用的要求。
     二、对所合成的超支化聚合物进行了绝对量子效率、荧光显微镜、AFM和电致发光器件表征。结果表明,大幅度提高核的含量虽然有利于光谱稳定性,但是由于共轭打断使得共轭长度变小,造成绝对量子效率的降低;荧光显微镜的结果表明,聚合物具有良好的成膜性;经过200℃空气中退火3h后,支化程度较高的P2、P4、P6和P8表现出了较好的成膜稳定性。AFM结果表明,在聚合物中加入交联引发剂时,THF和甲苯具有不同的溶解效果,THF更加有利于聚合物的成膜;交联后膜的表面粗糙度变大。器件分析表明,交联有利于提高器件稳定性,聚合物的电致发光光谱与光致发光光谱相一致。器件效率不高归结为器件没有进行优化以及产物纯度不高所致。
     三、对所得到的聚合物进行了非线性光学性能测试。由于聚合物自身没有带发色团,仅仅靠自身的共轭结构产生非线性效应,因此整体上二阶非线性效应较弱;而通过对P2和P6的二次电光系数的测试发现,由于噻吩五元环相比苯的六元环而言对称性较差,因此在外场作用下表现出一定的三阶非线性效应,其值为K=5.68122×10~(-15)(m/V)~2。
     四、对含铱配合物的超支化聚合物的制备及光电性能进行了初步的探索。核磁研究表明,铱配合物在聚合物中的含量与投料比近似。热分析表明,聚合物具有优良的热稳定性。荧光发射光谱显示,溶液中完全表现为芴的发射,形成固体膜后,发生能量转移,表现为铱配合物的发射。电化学表明聚合物的LUMO更接近于一般阴极材料的功函。制成结构为ITO/PEDOT∶PSS/P9/Ba/Al的器件后,最大亮度达到169cd/m~2,电致发光的光谱与固体薄膜光致发光的光谱类似,都表现为铱配合物的发光,表明实现了聚合物三线态能量的完全利用。
In this paper,the recent progress in crosslinkable polymer and hyperbranched polymer and their application in NLO material based on fluorene have been reviewed. Some problems in this field have been found,
     1.The problem of stability is very important in electroluminescent polymer based on fluorene.
     2.How to make the crosslink procedure convenient in making the device without worse the quality of the spectrum.
     3.How to easily synthesis the hyperbranched polymer in order to introduce the other functional group without worsen the device quality.
     4.There only are a few papers about the application of hyperbranched polymer in NLO material,it's interesting to apply the synthesis hyperbranched polymer in NLO in order to reveal the relationship between function and structure.
     Based on these problems,the crosslinkable and hyperbranched polymers with the benzene,oxazdiazole,thiophene and Truxene as the core have been designed and synthesized.And the resulted polymers have also been applied in the electroluminescent device and NLO material.The detailed abstract of each part of this paper is listed below.
     1.The hyperbranched crosslinkable polymers with the benzene,oxazdiazole, thiophene and Truxene as the core have been synthesized respectively.The synthesized crosslinkable monomer has different state in room temperature with what has been reported in literature.The melting point and enthalpy was measured by DSC.The synthesized polymers were characterized and found P2,P4,P6 and P8 are well in thermostability.The resulted spectrum is well.For the polymer with lower content of the core,the spectrum is similar with what of the linear crosslinkable polyfluorene.The CV characterization showed that the energy gap increased with the increase of the content of the core.The introduction of oxadiazole is good for lowering the LUMO of the poymer.
     2.The intergraded sphere,luminescent microscope,AFM and device were used to characterize the synthesized hyperbranched polymer.Although the stability can be increased with the increase of the content of the core,the quantum efficiency is on the contrary.The luminescent microscope shows that:these polymers are well before annealing.After annealing in the air,the film of the linear crosslinkable polyfluorene is totally damaged,while the films of P2,P6 and P8 are still well. The AFM results show that the solubility of the initiator is different in THF and toluene.After crosslink,the RMS of these crosslinkable polymers increased.The device results show that crosslink procedure is favor to the stability of the spectrum.The electroluminescent spectrum is familiar with the one of photoluminescence.The relative lower efficiency is because of the impurity of the polymer and the simple device structure.
     3.The NLO effects of these polymers were tested by Mark-fringes method.The experiments results show that it is mainly from the conjugated structure.For the second EO effect,P2 and P6 show different behavior because of the different structure between benzene and thiophene.The second EO coefficient of P6 is K = 5.68122×10~(-15)(m / V)~2.
     4.The device and functionality of P9 with Ir complex have been explored.The content of the complex in polymer is analyzed through NMR.The thermo stability of polymer is very well.Analyzed by photoluminescence,the spectrum is very similar with polyfluorene in toluene while it is totally the emission of Ir complex in solid state.The LUMO of the polymer is very close to the work function of anode metal.With structure of ITO/PEDOT:PSS/P9/Ba/Al,the maximum brightness of the device is 169cd/m~2.The electroluminescence of P9 is similar with the photoluminescence one which shows the same triplet energy.
引文
1.黄春辉,李富友,黄维。有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005:1.
    2.a.黄春辉,李富友,等.光电功能超薄膜[M].北京:北京大学出版社,2001:第一章.b.Cao Y,Yu G,Zhang C,Menon R,Heeger A J.Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. [J]. Synth Met, 1997, 87(2): 171-174. c. Kido J, Nagai K, Okamoto Y. Gallium nitride based high power heterojunction field effect transistors:process development and present status at UCSB. [J] IEEE Trans Electron Devices, 1993, 40: 1000. d. Mabon J K, Zhou T X. Light-Emtting Diodes: Research, Manufacturing and Application II. SPIE, 1998, 3279: 87. e. Dubois J C, LeBarny P, Bouche C M, Berdague P, Facoetti H, and Robin P. Organic Electroluminescence and Applications in Photoactive Organic Materials. Kluwer Academic Publisher, 1996,313. f. Colaneri N F, Bradley D D C, Friend R H, Burn P L, Holmes A B, Spangler C W. [J]. Phys Rev B, 1990,42(18):11670-11681.
    
    3. a. Setayesh S, Grimsdate A C, Weil T. Polyfluorenes with Polyphenylene Dendron Side Chains: Toward Non-Aggregating, Light-Emitting Polymers. [J]. J Am Chem Soc, 2001, 123(5): 946-953. b. Klarer G, Miller R D. Polyfluorene Derivatives: Effective Conjugation Lengths from Weil-Defined Oligomers. [J]. Macromolecules, 1998, 31(6): 2007-2009. c. Woo E P, Karan M L, Shiang W R. US Patent 6169163. 2001. d. Xia C, Advincula R. Ladder-Type Oligo(p-phenylene)s Tethered to a Poly(alkylene) Main Chain: The Orthogonal Approach to Functional Light-Emitting Polymers. [J]. Macromolecules, 2001, 34(20): 6922-6928. e. Lee J L, Klaerner G, Miller R D. Oxidative Stability and Its Effect on the Photoluminescence of Poly(Fluorene) Derivatives: End Group Effects. [J]. Chem Mater, 1999, 11(4): 1083-1088. f. Loy D E, Koene B E, Thompson M E. Thermally Stable Hole-Transporting Materials Based upon a Fluorene Core. [J]. Adv Funct Mater. 2002, 12(4): 245-249.
    
    4. a. Miteva T, Meisel A, Knoll HG, Nothofer U, Scherf DC, Muller K, Meerholz A, Yasuda D, Neher. Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping. [J]. Adv Mater 2001, 13(8): 565-570. b. Nakazawa YK, Carter SA, Nothofer HG, Scherf U, Lee VY, Miller RD, Scott JC. Effects of polymer sidebranching in double- and single-layer polyfluorene light-emitting diodes. [J]. Appl Phys Lett 2002, 80(20): 3832-3834.
    
    5. a. Bliznyuk VN, Carter SA, Scott JC, Klarner G, Miller RD, Miller DC. Electrical and Photoinduced Degradation of Polyfluorene Based Films and Light-Emitting Devices. [J]. Macromolecules 1999, 32(2): 361-369. b. List EJW, Guentner R, Freitas PSD, Scherf U. The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials. [J]. Adv Mater 2002,14(5): 374-378. c. Lee JI, Klaerner G, Miller RD. Oxidative Stability and Its Effect on the Photoluminescence of Poly(Fluorene) Derivatives: End Group Effects. [J]. Chem Mater 1999, 11(4): 1083-1088. d. Gaal M, List EJW, Scherf U. Excimers or Emissive On-Chain Defects? [J]. Macromolecules 2003, 36(11): 4236-4237. e. Gamerith S, Gaal M, Romaner L, Nothofer HG, Guntner R, Freitas PSD, Scherf U, List EJW. Comparison of thermal and electrical degradation effects in polyfluorenes. [J]. Synth Met 2003, 139(3): 855-858.
    
    6. a. Adachi C, Tokito S, Tsutsui T, Saito S. [J]. Jpn J Appl Phys, Part 2, 1998, 27:L269. b. Adachi C, Tokito S, Tsutsui T, Saito S. [J]. Jpn J Appl Phys, Part 2, 1998, 27:L713. c. Nisha Ananthakrishnan, G Padmanaban, S Ramakrishnan, John R Reynolds. Tuning Polymer Light-Emitting Device Emission Colors in Ternary Blends Composed of Conjugated and Nonconjugated Polymers. [J]. Macromolecules 2005, 38(18): 7660-7669.
    
    7. a. Adachi C, Baldo M A, Forrest SR, Thompson ME. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials [J]. Appl. Phys. Lett., 2000, 77(6): 904-906. b. Wang XY, Rupesh NP, Russell H, Marcus W. Polymer-Based Tris(2-phenylpyridine)iridium Complexes [J]. Macromolecules, 2006, 39(9): 3140-3146. c. Zhen HY, Jiang CY, Yang W, Jiang JX, Huang F, Cao Y. Synthesis and Properties of Electrophosphorescent Chelating Polymers with Iridium Complexes in the Conjugated Backbone [J]. Chem. Eur. J., 2005, 11(17): 5007. d. Lo SC, Male NAH, Markham JPJ, Magennis SW, Burn PL, Salata OV, Samuel IDW. Green Phosphorescent Dendrimer for Light-Emitting Diodes [J]. Adv. Mater., 2002, 14(13-14): 975-979. e. Plummer EA, Dijken A, Hofstraat HW, Cola LD, Brunner K. Electrophosphorescent Devices Based on Cationic Complexes: Control of Switch-on Voltage and Efficiency Through Modification of Charge Injection and Charge Transport [J]. Adv. Funct. Mater., 2005,15(2): 281-289.
    
    8. Xu-Tang Tao, Ya-Dong Zhang, Tatuso Wada, Hiroyuki Sasabe, Hironori Suzuki, Toshiyuki Watanabe, Seizo Miyata. Hyperbranched Polymers for Electroluminescence Applications. [J]. Adv. Mater. 1998,10(3): 226-230.
    
    9. Jing Li and Zhishan Bo. "AB2 + AB" Approach to Hyperbranched Polymers Used as Polymer Blue Light Emitting Materials. [J]. Macromolecules 2004, 37(6): 2013-2015.
    
    10. Liming Ding, Zhishan Bo, Qinghui Chu, Jing Li, Liming Dai, Yi Pang, Frank E. Karasz,Michael F.Durstock.Photophysical and Electroluminescent Properties of Hyperbranched Polyfluorenes.[J].Macromol.Chem.Phys.2006,207(10):870-878.
    11.Geeta Kheter Paul,Jeremiah Mwaura,Avni A.Argun,Prasad Taranekar,and John R.Reynolds.Cross-Linked Hyperbranched Arylamine Polymers as Hole-Transporting Materials for Polymer LEDs.[J].Macromolecules 2006,39(23):7789-7792.
    12.Lian Duan,Yong Qiu,Qingguo He,Fenglian Bai,Liduo Wang,Xiaoyin Hong.A novel hyperbranched conjugated polymer for electroluminescence application.[J],Synthetic Metals.2001,124(2-3):373-377.
    13.Qingjiang Sun,Qingguo He,Chunhe Yang,Fenglian Bai,Yongfang Li.Photoand electroluminescence from hyperbranched phenylene vinylenes.[J].Synthetic Metals 2003,139(2):417-423.
    14.W.Yang,H.Y.Zhen,C.Y.Jiang,L.J.Su,J.X.Jiang,H.H.Shi,Y.Cao.Synthesis of electrophosphorescent polymers based on para-phenylenes with iridium complexes.[J].Synthetic Metals 2005,153(1-3):189-192.
    15.Qingguo He,Fenglian Bai,Junlin Yang,Hongzhen Lin,Hongrnin Huang,Gui Yu,Yongfang Li.Synthesis and properties of high efficiency light emitting hyperbranched conjugated polymers.[J].Thin Solid Films 2002,417(1-2):183-187.
    16.Qingguo He,Tong Lin,Junlin Yang,Hongzhen Lin,Fenglian Bai.Synthesis and characterization of a series of novel hyperbranched conjugated polymers.[J].Polym.Adv.Technol.2002,13(3-4):196-200.
    17.Qingguo He,Hongrnin Huang,Qingjiang Sun,Hongzhen Lin,Junlin Yang,Fenglian Bai.A novel hyperbranched conjugated polymer for light emitting devices.[J].Polym.Adv.Technol.2004,15(1-2):43-47.
    18.Qingguo He,Hongrnin Huang,Junlin Yang,Hongzhen Lin and Fenglian Bai.Synthesis and spectroscopic properties of a series of hyperbranched conjugated molecules with 1,3,5-triphenylbenzene as cores.[J].J.Mater.Chem.,2003,13(5):1085-1089.
    19.Zhong'an Li,Chong'an Di,Zhichao Zhu,Gui Yu,Zhen Li,Qi Zeng,Qianqian Li,Yunqi Liu,Jingui Qin.New light-emitting hyperbranched polymers prepared from tribromoaryls and 9,9-dihexylfluorene- 2,7-bis(trimethyleneborate).[J].Polymer 2006,47(23):7889-7899.
    20.Xue-Ming Liu,Chaobin He,Xiao-Tao Hao,Li-Wei Tan,Yanqing Li,K.S.Ong.Hyperbranched Blue-Light-Emitting Alternating Copolymers of Tetrabromoarylmethane/Silane and 9,9-Dihexylfluorene-2,7-diboronie Acid.[J]. Macromolecules 2004,37(16):5965-5970.
    21.Xue-Ming Liu,Tingting Lin,Junchao Huang,Xiao-Tao Hao,Kian Soo Ong,Chaobin He.Hyperbranched Blue to Red Light-Emitting Polymers with Tetraarylsilyl Cores:Synthesis,Optical and Electroluminescence Properties,and ab Initio Modeling Studies.[J].Macromolecules 2005,38(10):4157-4168.
    22.Xue-Ming Liu,Jianwei Xu,Xuehong Lu,Chaobin He.Hyperbranched Blue to Red Light-Emitting Polymers with Tetraarylsilyl Cores:Synthesis,Optical and Electroluminescence Properties,and ab Initio Modeling Studies.[J].Macromolecules 2006,39(4):1397-1402.
    23.Qingguo He,Hongrnin Huang,Fenglian Bai,Yong Cao.A Facile Method for Controlling the Molecular Weight of Hyperbranched Light-Emitting Polymers.[J].Macromol.Rapid Commun.2006,27(4):302-305.
    24.Hongli Wang,Zhen Li,Zuoquan Jiang,Yanke Liang,Hui Wang,Jingui Qin,Gui Yu,Yunqi Liu.Synthesis and properties of new orange red light-emitting hyperbranched and linear polymers derived from 3,5-dicyano-2,4,6-tristyrylpyridine.[J].Journal of Polymer Science:Part A:Polymer Chemistry,2005,43(3):493-504.
    25.Yu Xin,Gui-An Wen,Wen-Jing Zeng,Lei Zhao,Xing-Rong Zhu,Qu-Li Fan,Jia-Chun Feng,Lian-Hui Wang,Wei Wei,Bo Peng,Yong Cao,Wei Huang.Hyperbranched Oxadiazole-Containing Polyfluorenes:Toward Stable Blue Light PLEDs.[J].Macromolecules 2005,38(16):6755-6758.
    26.Chung-Wen Wu and Hong-Cheu Lin.Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers.[J].Macromolecules 2006,39(21):7232-7240.
    27.Gui-An Wen,Yu Xin,Xing-Rong Zhu,Wen-Jing Zeng,Rui Zhu,Jia-Chun Feng,Yong Cao,Lei Zhao,Lian-Hui Wang,Wei Wei,Bo Peng,Wei Huang.Hyperbranched triazine-containing polyfluorenes:Efficient blue emitters for polymer light-emitting diodes(PLEDs).[J].Polymer 2007,48(7):1824-1829.
    28.Lin-Ren Tsai,Yun Chen.Novel Hyperbranched Polyfluorenes Containing Electron-Transporting Aromatic Triazole as Branch Unit.[J].Macromolecules 2007,40(9):2984-2992.
    29.Jacky Wing Yip Lam,Jing-dong Lao,Han Peng,Zhi-liang Xie,Kai-tian Xue,Yu-ping Dong,Lin Cheng,Cheng-feng Qiu,Hoi Sing Kwok,Ben Zhong Tang.Linear and hyperbranched polymers with high thermal stability and luminescence efficiency.[J].Chinese Journal of Polymer Science 2001,19(6):585-590.
    30.Ronghua Zheng,Matthias Halussler,Hongchen Dong,Jacky W.Y.Lam,Ben Zhong Tang.Synthesis,Structural Characterization,and Thermal and Optical Properties of Hyperbranched Poly(aminoarylene)s.[J].Macromolecules 2006,39(23):7973-7984.
    31.a.David Muller,Markus Gross,Klaus Meerholz,Thomas Braig,Michael S Bayerl,Florian Bielefeldt,Oskar Nuyken.Novel cross-linkable hole-transport monomer for use in organic light emitting diodes.[J].Synth.Met.2000,111-112:31.
    b.David Muller,Thomas Braig,HeinzGeorg Nothofer,Markus Amoldi,Markus Gross,Ulrich Scherf,Oskar Nuyken,Klaus Meerholz.Efficient Blue Organic Light-Emitting Diodes with Graded Hole-Transport Layers.[J].Chemphyschem.2000,1(4):207-211.
    32.Thomas Braig,David C Muller,Markus Groβ,Klaus Meerholz,Oskar Nuyken.Crosslinkable hole-transporting polymers by palladium-catalyzed C-N-coupling reaction.[J].Macromol.Rapid Commun.2000,21(9):583-589.
    33.Muller CD,Falcou A,Reckefuss N,Rojahn M,Wiederhirn V,Rudati P,Frohne H,Nuyken O,Becker H,Meerholz K.Multi-colour organic light-emitting displays by solution processing.[J].Nature 2003,421(6925):829-833.
    33.Erwin Bacher,Steffen Jungermann,Markus Rojahn,Valerie Wiederhim,Oskar Nuyken.Photopatteming of Crosslinkable Hole-Conducting Materials for Application in Organic Light-Emitting Devices.[J].Macromol.Rapid Commun.2004,25(12):1191-1196.
    34.Erwin Bacher,Steffen Jungermann,Markus Rojahn,Valerie Wiederhim,Oskar Nuyken.Photopatteming of Crosslinkable Hole-Conducting Materials for Application in Organic Light-Emitting Devices.[J].Macromol.Rapid Commun.2004,25(12):1191-1196.
    35.Erwin Bather,Michael Bayerl,Paula Rudati,Nina Reckefuss,C David Muller,Klaus Mcerholz,Oskar Nuyken.Synthesis and Characterization of Photo-Cross-Linkable Hole-Conducting Polymers.[J].Macromolecules 2005,38(5):1640-1647.
    36.Steffen Jungermann,Nina Riegel,David Muller,Klaus Meerholz,Oskar Nuyken.Novel Photo-Cross-Linkable Hole-Transporting Polymers:Synthesis,Characterization,and Application in Organic Light Emitting Diodes.[J].Macromolecules 2006,39(26):8911-8919.
    37.Malte C Gather,Anne Kohnen,Aurelie Falcou,Heinrich Becker,Klaus Meerholz. Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography.[J].Adv.Funct.Mater.2007,17(2):191-200.
    38.Philipp Zacharias,Malte C Gather,Markus Rojahn,Oskar Nuyken,Klaus Meerholz.New Crosslinkable Hole Conductors for Blue-Phosphorescent Organic Light-Emitting Diodes.[J].Angew.Chem.Int.Ed.2007,46(23):4388-4392.
    39.A.Charas,H.Alves,L.Alcacer,J.Morgado.Use of cross-linkable polyfluorene in the fabrication of multilayer polyfluorene-based light-emitting diodes with improved efficiency.[J].Appl.Phys.Lett.2006,89(14):143519-1-143519-3.
    40.G Bernardo,A.Charas,L.Alcácer,J.Morgado.Improving polymer light-emitting diodes efficiency using interlayers based on cross-linkable polymers.[J].Appl.Phys.Lett.2007,91(6):063509-1-063509-3.
    41.Duo-Feng Tang,Gui-An Wen,Xiao-Ying Qi,Hong-Yu Wang,Bo Peng,Wei Wei,Wei Huang.Spectrum-stable hyperbranched polyfluorene with photocrosslinkable group.[J].Polymer,2007,48(15):4412-4418.
    42.G Klarner,J.I.Lee,V.Y.Lee,E.Chan,J.P.Chen,A.Nelson,D.Markiewicz,R.Siemens,J.C.Scott,R.D.Miller.Cross-linkable Polymers Based on Dialkylfluorenes.[J].Chem.Mater.1999,11(7):1800-1805.
    43.Luisa D.Bozano,Kenneth R.Carter,Victor Y.Lee,Robert D.Miller,Richard DiPietro,J.Campbell Scott.Electroluminescent devices based on cross-linked polymer blends.[J].J.Appl.Phys.,2003,94(5):3061-3068.
    44.Honghao Sun,Ze Liu,Yufeng Hu,Lixiang Wang,Dongge Ma,Xiabing Jing,Fosong Wang.Crosslinkable poly(p-phenylenevinylene) derivative.[J].J Polym Sci Part A:Polym Chem 2004,42(9):2124-2129.
    45.Chunhe Yang,Jianhui Hou,Bin Zhang,Shaoqing Zhang,Chang He,Huan Fang,Yuqin Ding,Jianping Ye,Yongfang Li.Electroluminescent and Photovoltaic Properties of the Crosslinkable Poly(phenylene vinylene) Derivative with Side Chains Containing Vinyl Groups.[J].Maeromol.Chem.Phys.2005,206(13):1311-1318.
    46.Yu-Hua Niu,Michelle S.Liu,Jae-Won Ka,Julie Bardeker,Melvin T.Zin,Richard Schofield,Yun Chi,Alex K.-Y.Jen.Crosslinkable Hole-Transport Layer on Conducting Polymer for High-Efficiency White Polymer Light-Emitting Diodes.[J].Adv.Mater.2007,19(2):300-304.
    47.Ya-Dong Zhang,Richard D.Hreha,Ghassan E.Jabbour,Bernard Kippelen,N.Peyghambarian,Seth R.Marder.Photo-crosslinkable polymers as hole-transport materials for organic light-emitting diodes.[J].J.Mater.Chem.2002,12(6): 1703-1708.
    
    48. Benoit Domercq, Richard D. Hreha, Ya-Dong Zhang, Nathalie Larribeau, Joshua N. Haddock, Christopher Schultz, Seth R. Marder, Bernard Kippelen. Photo-Patternable Hole-Transport Polymers for Organic Light-Emitting Diodes. [J]. Chem. Mater. 2003,15(7): 1491-1496.
    
    49. Liangliang Qiang, Zhun Ma, Zhe Zheng, Rong Yin, Wei Huang. Novel Photo-Crosslinkable Light-Emitting Rod/Coil Copolymers: Underlying Facile Material for Fabricating Pixelated Displays. [J]. Macromol. Rapid Commun. 2006, 27(20): 1779-1786.
    
    50. Guanglong Wu, Chunhe Yang, Benhu Fan, Bin Zhang, Xiaomin Chen, Yongfang Li. Synthesis and characterization of photo-crosslinkable polyfluorene with acrylate side-chains. [J]. Journal of Applied Polymer Science, 2006,100(3): 2336-2342.
    
    51. Yuning Li, Jianfu Ding, Michael Day, Ye Tao, Jianping Lu, Marie Diorio. Novel Stable Blue-Light-Emitting Oligofluorene Networks Immobilized by Boronic Acid Anhydride Linkages. [J]. Chem. Mater. 2003,15(26): 4936-4943.
    
    52. Jianping Lu, Yinan Jin, Jianfu Ding, Ye Tao Michael Day. High-efficiency multilayer polymeric blue light-emitting diodes using boronate esters as cross-linking linkages. [J]. J. Mater. Chem, 2006,16(6): 593-601.
    
    53. He Yan, Paul Lee, Neal R. Armstrong, Amy Graham, Guennadi A. Evmenenko, Pulak Dutta, Tobin J. Marks. High-Performance Hole-Transport Layers for Polymer Light-Emitting Diodes. Implementation of Organosiloxane Cross-Linking Chemistry in Polymeric Electroluminescent Devices. [J]. J. AM. CHEM. SOC. 2005, 127(9): 3172-3183.
    
    54. Seongyul Lee, Yi-Yeol Lyu, Soo-Hyoung Lee. The use of cross-linkable interlayers to improve device performances in blue polymer light-emitting diodes. [J]. Synthetic Metals. 2006,156(16-17): 1004-1009.
    
    [55] Eaton DF., Nonlinear optical materials [J]. Science, 1991,253 (5017): 281-287.
    
    [56] L. Dalton, "Nonlinear optical polymeric materials: From chromophore design to commercial applications," [J]. Optics Express Vol.158, p1, 2002.
    
    [57] Burland DM, Miller RD, Walsh CA, 2nd-order nonlinearity in poled-polymer systems [J]. Chemical Reviews, 1994,94 (1): 31-75.
    
    [58] Sauteret C, Hemann JP, Frey R, et al. Optical nonlinearities in one dimensional conjugated polymer crystals [J], Phys Rev Lett, 1976, 36 (16): 956-959.
    
    [59] Broussoux D, Micheron F. Electro optical and elasto-optic effects in polyvinylidene fluoride [J]. Journal of Applied Physics, 1980, 51(4): 2020-2023.
    [60] a. Marder, S. R.; Torruellas, W. E.; Blanchard-Desce, M.; Ricci, V.; Stegmen, G. I.; Gilmour, S.; Bredas, J. L.; Li, J.; Bublitz, G U.; Boxer, S. G Large Molecular Third-Order Optical Nonlinearities in Polarized Carotenoids. [J]. Science 1997, 276(5316): 1233-1236. b. Marder, S. R.; Gorman, C. B.; Meyers, F.; Perry, J. W.; Bourhill, G; Bredas, J. L.; Pierce, B. M. A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes. [J]. Science 1994, 265(5172): 632-635. c. Meyers, F.; Marder, S. R.; Pierce, B. M.; Bredas, J. L. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation. [J]. J. Am. Chem. Soc. 1994, 116(23): 10703-10714. d. Craig, G S. W.; Cohen, R. E.; Schrock, R. R.; Silbey, R. J.; Puccetti, G; Ledoux, I.; Zyss, J. Nonlinear optical analysis of a series of triblock copolymers containing model polyenes: the dependence of hyperpolarizability on conjugation length. [J]. J. Am. Chem. Soc. 1993, 115(3): 860-867. e. Samuel, I. D. W.; Ledoux, I.; Dhenaut, C; Zyss, J.; Fox, H. H.; Schrock, R. R.; Sibley, R. J. Saturation of Cubic Optical Nonlinearity in Long-Chain Polyene Oligomers. [J]. Science 1994, 265(5175): 1070-1072.
    
    [61] Samoc M, Samoc A, Luther-Davies B, et al., Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers [J]. J Opt. Soc. Am. B, 1998, 15(2): 817-825.
    
    [62] Kobayashi T, Yoshizawa M, Stamm U, et al., Relaxation dynamics of photoexcitations in polydiacetylenes and polythiophene [J]. J Opt. Soc. Am. B, 1990, 7(8): 1558-1578.
    
    [63] a. Torruellas, W. E.; Neher, D.; Zanoni, R.; Stegeman, GL; Kajzar, F.; Leclerc, M. Third-order optical spectroscopy of polythiophene. [J]. J. Opt. Soc. Am. B 1995, 12(5): 882-888. b. Swiatkiewicz, J.; Prasad, P. N.; Karasz, F. E.; Druy, M. A.; Glatkowski, P. Anisotropy of the linear and third-order nonlinear optical properties of a stretch-oriented polymer film of poly-[2, 5-dimethoxy paraphenylenevinylene]. [J]. Appl. Phy. Lett. 1990, 56(10): 892-894. c. Sugiyama, T.; Wada, T.; Sasabe, H. Optical nonlinearity of conjugated polymers. [J]. Synth. Met. 1989, 28(1-2): 323-328. d. Kaino, T.; Kubodera, K.; Kobayashi, H.; Kurihara, T.; Saito, S.; Tsutsui, T.; Tokito, S.; Murata, H. Optical third-harmonic generation from poly(2,5-thienylene vinylene) thin films.[J].Appl.Phys.Lett.1988,53(21):2002-2004.
     e.Houlding,V.H.;Nahata,A.;Yardley,J.T.;Elsenbaumer,R.L.Optical third harmonic response of amorphous poly(3-methyl-4'-octyl-2,2'-bithiophene -5,5'-diyl) thin films.[J].Chem.Mater.1990,2(2):169-172.
    [64]a.Osaheni,J.A.;Jenekhe,S.A.;Vanherzeele,H.;Meth,J.S.Third-order nonlinear optical properties of thin films of polyanilines and poly(o-toluidines).[J].Chem.Mater.1991,3(2):218-221.
    b.Agrawal,A.K.;Jenekhe,S.A.;Vanherzeele,H.;Meth,J.S.[J].J.Phys.Chem.1992,96(7):2837-2843.
    c.Osaheni,J.A.;Jenekhe,S.A.;Vanherzeele,H.;Meth,J.S.;Sun,Y.;MacDiarmid,A.G.Nonlinear optical properties of polyanilines and derivatives.[J].J.Phys.Chem.1992,96(7):2830-2836.
    [65]a.Kaino,T.;Kubodera,K.-I.;Tomaru,S.;Kurihara,T.;Saito,S.;Tsutsui,T.;Tokito,S.[J].Electron.Lett.1987,23:1095-1097.
    b.Mathy,A.;Ueberhofen,K.;Schenk,R.;Gregorius,H.;Garay,R.;Mullen,K.;Bubeck,C.Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene):A comparison with oligomers and scaling laws for conjugated polymers.[J].Phys.Rev.B 1996,53(8):4367-4376.
    [66]Agrawal,A.K.;Jenekhe,S.A.;Vanherzeele,H.;Meth,J.S.Third-order nonlinear optical properties of conjugated rigid-rod polyquinolines.[J].J.Phys.Chem.1992,96(7):2837-2843.
    [67]Jenekhe,S.A.;Yang,C.J.;Vanherzeele,H.;Meth,J.S.Cubic nonlinear optics of polymer thin films.Effects of structure and dispersion on the nonlinear optical properties of aromatic Schiff base polymers.[J].Chem.Mater.1991,3(6):985-988.
    [68]Franco D'Amore,Johann Osmond,Silvia Destri,Mariacecilia Pasini,Valerio Rossi,William Porzio.Effects of backbone modification on the linear and third order nonlinear optical properties in fluorene based copolymers.[J].Synthetic Metals 2005,149(2-3):123-127.
    [69]R.Sehroedera.W.Graupner U.Scherf B.Ullrich.[J].J.Chem.Phys.2002,116(8):3449-3454.
    [70]Xiaowei Zhan,Yunqi Liu,Daoben Zhu,Wentao Huang,Qihuang Gong.Femtosecond Third-Order Optical Nonlinearity of Conjugated Polymers Consisting of Fluorene and Tetraphenyldiaminobiphenyl Units:Structure-Property Relationships.[J].J.Phys.Chem.B 2002,106(8):1884-1888.
    [71]M.Tong,C.-X.Sheng,Z.V.Vardeny.[J].Physical Review B 207,75(12):125207-1-125207-10.
    [72] a. Varanasi, P. R.; Jen, A. K.-Y.; Chandrasekhar, A. J.; Namboothiri, I. N. N.; Rathna, A. The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules: Theoretical Investigation on Push-Pull Heteroaromatic Stilbenes. [J]. J. Am. Chem. Soc. 1996, 118(49): 12443-12448. b. Albert, I. D. L.; Marks, T. J.; Ratner, M. A. Large Molecular Hyperpolarizabilities. Quantitative Analysis of Aromaticity and Auxiliary Donor-Acceptor Effects. [J]. J. Am. Chem. Soc. 1997, 119(28): 6575-6582. c. He, M. Q.; Leslie, T. M.; Sinicropi, J. A. Synthesis of Chromophores with Extremely High Electro-optic Activity. 1. Thiophene-Bridge-Based Chromophores. [J]. Chem. Mater. 2002, 14(11): 4662-4668. d. Wu, X.; Wu, J.; Jen, A. K.-Y. Highly Efficient, Thermally and Chemically Stable Second Order Nonlinear Optical Chromophores Containing a 2-Phenyl-tetracyanobutadienyl Acceptor. [J]. J. Am. Chem. Soc. 1999, 121(2): 472-473.
    
    [73] Philip A. Sullivan, Andrew J. P. Akelaitis, Sang Kyu Lee, Genette McGrew, Susan K. Lee, Dong Hoon Choi, Larry R. Dalton. Novel Dendritic Chromophores for Electro-optics: Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior. [J]. Chem. Mater. 2006,18(2): 344-351.
    [74] Jingdong Luo, Marnie Haller, Hong Ma, Sen Liu, Tae-Dong Kim, Yanqing Tian, Baoquan Chen, Sei-Hum Jang, Larry R. Dalton, Alex K.-Y. Jen. Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics. [J]. J. Phys. Chem. B 2004, 108(25): 8523-8530.
    
    [75] Zhen Li, Anjun Qin, Jacky W. Y. Lam, Yuping Dong, Yongqiang Dong, Cheng Ye, Ian D. Williams, Ben Zhong Tang. Facile Synthesis, Large Optical Nonlinearity, and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing Azobenzene Chromophores. [J]. Macromolecules 2006, 39(4): 1436-1442.
    [76] Zhichao Zhu, Zhong'an Li, Yong Tan, Zhen Li, Qianqian Li, Qi Zeng, Cheng Ye. Jingui Qin. New hyperbranched polymers containing second-order nonlinear optical chromophores: Synthesis and nonlinear optical characterization. [J]. Polymer 2006, 47(23): 7881-7888.
    
    [77] Yaowen Bai, Naiheng Song, Jian Ping Gao, Xun Sun, Xiaomei Wang, Guomin Yu, Zhi Yuan Wang. A New Approach to Highly Electrooptically Active Materials Using Cross-Linkable, Hyperbranched Chromophore-Containing Oligomers as a Macromolecular Dopant. [J]. J. AM. CHEM. SOC. 2005,127(7): 2060-2061.
    [78]Philip A.Sullivan,Harrison Rommel,Yi Liao,Benjamin C.Olbricht,Andrew J.P.Akelaitis,Kimberly A.Firestone,Jae-Wook Kang,Jingdong Luo,Joshua A.Davies,Dong Hoon Choi,Bruce E.Eichinger,Philip J.Reid,Antao Chen,Alex K-Y.Jen,Bruce H.Robinson,Larry R.Dalton.Theory-Guided Design and Synthesis of Multichromophore Dendrimers:An Analysis of the Electro-optic Effect.[J].J.AM.CHEM.SOC.2007,129(24):7523-7530.
    [1]Grem G,Leising G.Electroluminescence of wide-band gap chemically tunable cyclic conjugated polymers.[J].Synth Met 1993,57(1):4105-4110.
    [2]a.Ohmori Y,Uchida M,Muro K,Yoshino K.Blue electroluminescent diodes utilizing poly(alkylfluorene).[J].Jpn J Appl Phys 1991,30(12B):L1941-3.
    b.Fukuda M,Sawada K,Yoshino K.Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics.[J].J Polym Sci,Part A:Polm Chem 1993,31(10):2465-2471.
    [3]Grem G,Martin V,Meghdadi F,Paer C,Stampfl J,Sturm J,Tasch S,Leising G.Stable poly(para-phenylene)s and their application in organic light emitting devices.[J].Synth Met,1995,71(1-3):2193-2194.
    [4](a) Miteva T,Meisel A,Knoll HG,Nothofer U,Scherf DC,Muller K,Meerholz A,Yasuda D,Neher.Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping.[J].Adv Mater 2001,13(8):565-570.
    (b) Nakazawa YK, Carter SA, Nothofer HG, Scherf U, Lee VY, Miller RD, Scott JC. Effects of polymer sidebranching in double- and single-layer polyfluorene light-emitting diodes. [J]. Appl Phys Lett 2002, 80(20): 3832-3834.
    [5] (a) Bliznyuk VN, Carter SA, Scott JC, Klarner G, Miller RD, Miller DC. Electrical and Photoinduced Degradation of Polyfluorene Based Films and Light-Emitting Devices. [J]. Macromolecules 1999, 32(2): 361-369. (b) List EJW, Guentner R, Freitas PSD, Scherf U. The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials. [J]. Adv Mater 2002, 14(5): 374-378. (c) Lee JI, Klaemer G, Miller RD. Oxidative Stability and Its Effect on the Photoluminescence of Poly(Fluorene) Derivatives: End Group Effects. [J]. Chem Mater 1999, 11(4): 1083-1088. (d) Gaal M, List EJW, Scherf U. Excimers or Emissive On-Chain Defects? [J]. Macromolecules 2003, 36(11): 4236-4237. (e) Gamerith S, Gaal M, Romaner L, Nothofer HG, Guntner R, Freitas PSD, Scherf U, List EJW. Comparison of thermal and electrical degradation effects in polyfluorenes. [J]. Synth Met 2003, 139(3): 855-858.
    
    [6] (a) Li J, Bo Z. "AB2 + AB" Approach to Hyperbranched Polymers Used as Polymer Blue Light Emitting Materials. [J]. Macromolecules 2004, 37(6): 2013-2015. (b) Ding LM, Bo Z, Chu QH, Li J, Dai LM, Pang Y, Karasz FE, Durstock MF. Photophysical and Electroluminescent Properties of Hyperbranched Polyfluorenes. [J]. Macromol Chem Phys 2006,207(10): 870-878.
    
    [7] Xin Y, Wen GA, Zeng WJ, Zhao L, Zhu XR, Fan QL, Feng JC, Wang LH, Wei W, Peng B, Cao Y, Huang W. Hyperbranched Oxadiazole-Containing Polyfluorenes: Toward Stable Blue Light PLEDs. [J]. Macromolecules 2005, 38(16): 6755-6758.
    [8] a. Erwin Bacher, Steffen Jungermann, Markus Rojahn, Valerie Wiederhirn, Oskar Nuyken. Photopatteming of Crosslinkable Hole-Conducting Materials for Application in Organic Light-Emitting Devices. [J]. Macromol. Rapid Commun. 2004, 25(22): 1191-1196. b. Steffen Jungermann, Nina Riegel, David Muller, Klaus Meerholz, Oskar Nuyken. Novel Photo-Cross-Linkable Hole-Transporting Polymers: Synthesis, Characterization, and Application in Organic Light Emitting Diodes. [J].Macromolecules 2006, 39(26): 8911-8919. c. Philipp Zacharias, Malte C Gather,Markus Rojahn, Oskar Nuyken, Klaus Meerholz. New Crosslinkable Hole Conductors for Blue-Phosphorescent Organic Light-Emitting Diodes. [J]. Angew. Chem. Int. Ed. 2007,46(23): 4388-4392.
    [9] Muller CD, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K. Multi-colour organic light-emitting displays by solution processing. [J]. Nature 2003,421(6925): 829-833.
    
    [10] Lu HH, Liu CY, Jen TH, Liao JL, Tseng HE, Huang CW, Hung MC, Chen SA. Excimer Formation by Electric Field Induction and Side Chain Motion Assistance in Polyfluorenes. [J]. Macromolecules 2005,38(26): 10829-10835.
    
    [11] (a) Gao C, Yan D. Hyperbranched polymers from synthesis to applications. Hyperbranched polymers - All problems solved after 15 years of research. [J]. Prog Polym Sci 2004, 29(3): 183-275. (b) Brigitte V. Hyperbranched polymers-All problems solved after 15 years of research? [J]. J Polym Sci Part A: Polym Chem 2005,43(13): 2679-2699.
    
    [12] Malte C. Gather, Anne Kohnen, Aurelie Falcou, Heinrich Becker, Klaus Meerholz. Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography. [J]. Adv. Funct. Mater. 2007, 17(2), 191-200.
    
    [13] David Muller, Markus Gross, Klaus Meerholz, Thomas Braig, Michael S. Bayerl, Florian Bielefeldt, Oskar Nuyken. Novel cross-linkable hole-transport monomer for use in organic light emitting diodes. [J]. Synthetic Metals 2000,111-112:31-34.
    
    [14] G Klaerner, R. D. Miller. Polyfluorene Derivatives: Effective Conjugation Lengths from Well-Defined Oligomers. [J]. Macromolecules 1998,31(6), 2007-2009.
    
    [15] a. V. N. Bliznyuk S. A. Carter J. C. Scott, G Klalrner, R. D. Miller, D. C. Miller. Electrical and Photoinduced Degradation of Polyfluorene Based Films and Light-Emitting Devices. [J]. Macromolecules 1999, 32(2): 361-369. b. Xiong Gong, Daniel Moses, Alan J. Heeger, Steven Xiao. Iterative transfer perturbation method and its applications to the interaction between a polymer and small molecules. [J]. Synthetic Metals 2004,141(1-2): 17-20.
    
    [16] Z. K. Chen, H. Meng, Y. H. Lai, Photoluminescent Poly(p-phenylenevinylene)s with an Aromatic Oxadiazole Moiety as the Side Chain: Synthesis, Electrochemistry, and Spectroscopy Study. [J]. Macromolecules, 1999,32(13): 4351.
    
    [17] Lian-hui Wang, Zhi-kuan Chen, En-tang Kang, Hong Meng, Wei Huang. Synthesis, spectroscopy and electrochemistry study on a novel di-silyl substituted poly(p-phenylenevinylene). [J]. Synthetic Metals 1999,105(2): 85-89.
    [1]a.Adachi C,Tsutsui T,Saito S.Organic electroluminescent device having a hole conductor as an emitting layer.[J].Appl Phys Lett,1989,55(15):1489-1491.
    b.Schulz B,Stiller B,Zetzsche T,Knochenhauer G,Dietel R,Brehmer L.Characterization of 2,5-Di-p-Tolyl-1,3,4-oxadiazole Crystals by Atomic Force Microscopy.[J].Chem Mater,1995,7(5):1041-1044.
    c.Wang C,Jung G Y,Hua Y,Pearson C,Bryce M R,Petty M C,Batsanov A S,Goeta A E,Howard J A K.An Efficient Pyridine- and Oxadiazole-Containing Hole-Blocking Material for Organic Light-Emitting Diodes:Synthesis,Crystal Structure,and Device Performance.[J].Chem Mater,.2001,13(4):1167-1173.
    d.Bettenhausen J,Strohriegl P,Brutting W,Tokuhisa H,Tsutsui T.Electron transport in a starburst oxadiazole.[J].J.Appl.Phys.,1997;82(10):4957-4961.
    [2]Chung-Wen Wu,Chien-Min Tsai,and Hong-Cheu Lin.Synthesis and Characterization of Poly(fluorene)-Based Copolymers Containing Various 1,3,4-Oxadiazole Dendritic Pendants.[J].Macromolecules 2006,39(13):4298-4305.
    [3]Youngeup Jin,Jin Young Kim,Sung Heum Park,Jinwoo Kim,Sungeun Lee,Kwanghee Lee,Hongsuk Suh.Syntheses and properties of electroluminescent polyfluorene-based conjugated polymers,containing oxadiazole and carbazole units as pendants,for LEDs.[J].Polymer 2005,46(26):12158-12165.
    [4]G.Klaerner,R.D.Miller.Polyfluorene Derivatives:Effective Conjugation Lengths from Well-Defined Oligomers.[J].Macromolecules 1998,31(6):2007-2009.
    [1]Roncali,J.Chem.ReV.1997,97,173.Barbarella,G.;Melucei,M.;Sotigu,G.The Versatile Thiophene:An Overview of Recent Research on Thiophene-Based Materials.[J].Adv.Mater.2005,17(13):1581-1593.
    [2]Tsuie,B.;Reddinger,J.L.;Scotzing,G.A.;Soloducho,J.;Katritzky,A.R.;Reynolds,J.R.[J].J.Mater.Chem.Electroactive and luminescent polymers:new fluorene-heteroeycle-based hybrids.1999,9(9):2189-2200.
    [3]Liu,B.;Yu,W.-L.;Lai,Y.-H.;Huang,W.Synthesis,Characterization,and Struetttre-Property Relationship of Novel.Fluorene-Thiophene-Based Conjugated Copolymers.[J].Macromolecules 2000,33(24):8945-8952.
    [4]Bin Liu,Yu-Hua Niu,Wang-Lin Yu,Yong Cao,Wei Huang.Application of alternating fluorene and thiophene copolymers in polymer light-emitting diodes.[J]. Synthetic Metals 2002,129(2): 129-134.
    
    [5] O. Inganas, T. Granlund, M. Theander, M. Berggren, M.R. Andersson, A. Ruseckas, V. Sundstrom. [J]. Opt. Mater. NY 1998,9 (8): 104-106.
    
    [6] Inmaculada Prieto, Julie Teetsov, Marye Anne Fox, David A. Vanden Bout, Allen J. Bard. A Study of Excimer Emission in Solutions of Poly(9,9-dioctylfluorene) Using Electrogenerated Chemiluminescence. [J]. J. Phys. Chem. A 2001, 105(3): 520-523.
    
    [7] Bin Liu, Yu-Hua Niu, Wang-Lin Yu, Yong Cao, Wei Huang. Application of alternating fluorene and thiophene copolymers in polymer light-emitting diodes. [J]. Synthetic Metals 2002,129 (2): 129-134.
    
    [8] Anne DB, Isabelle L, Ye T, Marie D. Light-Emitting Diodes from Fluorene-Based π-Conjugated Polymers. [J]. Chem. Mater. 2000,12(7): 1931-1936.
    [1]a.Boorum,M.M.;Vasilev,Y.V.;Drewello,T.;Scott,L.T.Groundwork for a Rational Synthesis of C[sub 60]:Cyclodehydrogenation of a C[sub 60]H[sub 30].[J].Science 2001,294(5543):828-831.
    b.Scott,L.T.;Boorum,M.M.;McMahon,B.J.,Hagen,S.;Mack,J.;Blank,J.;Wegner,H.;de Meijere,A.A Rational Chemical Synthesis of C[sub 60].[J].Science 2002,295(5559):1500-1503.
    c.Pei,J.;Wang,J.-L.;Cao,X.-Y.;Zhou,X.-H.;Zhang,W.-B.Star-Shaped Polycyclic Aromatics Based on Oligothiophene-Functionalized Truxene:Synthesis,Properties,and Facile Emissive Wavelength Tuning.[J].J.Am.Chem.Soc.2003,125(33):9944-9945.
    [2]a.Cao,X.-Y.;Zhang,W.-B.;Wang,J.-L.;Zhou,X.-H.;Lu,H.;Pei,J.Extended π-Conjugated Dendrimers Based on Truxene.[J].J.Am.Chem.Soe.2003,125(41):12430-12431.
    b.Cao,X.-Y.;Liu,X.-H.;Zhou,X.-H.;Zhang,Y.;Jiang,Y.;Cao,Y.;Cui,Y.-X.;Pei,J.Giant Extended π-Conjugated Dendrimers Containing the 10,15-Dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene Chromophore:Synthesis,NMR Behaviors,Optical Properties,and Electroluminescence.[J].J.Org.Chem.2004,69(18):6050-6058.
    [3]Dehmlow,Eckehard V.;Kelle,Torsten.[J].Synthetic Communications.(1997),27(11):2021-2031.
    [4]Xiong Gong,Daniel Moses,Alan J.Heeger,Steven Xiao.Excitation energy transfer from polyfluorene to fluorenone defects.[J].Synthetic Metals 2004,141(1-2):17-20.
    [5]a.Bliznyuk VN,Carter SA,Scott JC,Klarner G,Miller RD,Miller DC.Electrical and Photoinduced Degradation of Polyfluorene Based Films and Light-Emitting Devices.[J].Maeromoleeules 1999,32(2):361-369.
    b.List EJW,Guentner R,Freitas PSD,Scherf U.The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials.[J].Adv Mater 2002,14(5):374-378.
    c.Lee JI,Klaerner G, Miller RD. Oxidative Stability and Its Effect on the Photoluminescence of Poly(Fluorene) Derivatives: End Group Effects. [J]. Chem Mater 1999, 11(4): 1083-1088. d. Gaal M, List EJW, Scherf U. Excimers or Emissive On-Chain Defects? [J]. Macromolecules 2003, 36(11): 4236-4237. e. Gamerith S, Gaal M, Romaner L, Nothofer HG, Guntner R, Freitas PSD, Scherf U, List EJW. Comparison of thermal and electrical degradation effects in polyfluorenes. [J]. Synth Met 2003, 139(3): 855-858.
    [1]a.Burroughes,J.H.;Bradley,D.D.C.;Brown,A.R.;Marks,R.N.;Mackay,K.;Friend,R.H.;et al.Light-emitting diodes based on conjugated polymers[J].Nature,1990,347(6012):539-541.
    b.Friend,R.H.;Gymer,R.W.;Holmes,A.B.;Burroughes,J.H.;Marks,R.N.;Taliani,C.;Bradley,D.D.C.;Dos Santos,D.A.;Brédas,J.L.;Logdlund,M.;Salaneck,W.R.Electroluminescence in conjugated polymers[J].Nature,1999,397(6715):121-129.
    [2]a.Dimitrakopoulos,C.D.;Malenfant,P.R.L.Organic Thin Film Transistors for Large Area Electronics[J].Adv.Mater.,2002,14(2),99-117.
    b.Katz,H.E.;Bao,Z.;Gilat,S.L.Synthetic Chemistry for Ultrapure,Processable,and High-Mobility Organic Transistor Semiconductors[J].Ace.Chem.Res.,2001,34(5):359-369
    [3]a.Brabec,C.J.;Cravino,A.;Meissner,D.;Sariciftci,N.S.;Fromherz,T.;Rispens,M.T.;Sanchez,L.J.;Hummelen,C.Origin of the Open Circuit Voltage of Plastic Solar Cells[J].Adv.Funct.Mater.,2001,11(5):374-380.
    b.Coakley,K.M.;
    McGehee,M.D.Conjugated Polymer Photovoltaic Cells[J].Chem.Mater.,2004,
    16(23):4533-4542.
    
    [4]a.Bumm,L.A.;Arnold.J.J.;Cygan,M.T.;Dunbar,T.D.;Burgin.T.P.;Jones,L.;Allara,D.L.;Tour,J.M.;Weiss,P.S.Are single molecular wires conducting?[J].Sciences,1996,271(5256):1705-1707.
    b.Joachim,C.;Gimzewski.J.K.;Aviram,A.Electronics using hybrid-molecular and mono-molecular devices[J].Nature,2000,408(6812):541-548.
    [5]a.Shi Tang,Meirong Liu,Ping Lu,Hong Xia,Mao Li,Zengqi Xie,Fangzhong Shen,Cheng Gu,Huiping Wang,Bing Yang,Yuguang Ma.A Molecular Glass for Deep-Blue Organic Light-Emitting Diodes Comprising a 9,9'-Spirobifluorene Core and Peripheral Carbazole Groups.[J].Adv.Funct.Mater.2007,17(15):2869-2877.
    b.Itaru Osaka,Genevieve Sauvé,Rui Zhang,Tomasz Kowalewski,Richard D.McCullough.Novel Thiophene-Thiazolothiazole Copolymers for Organic Field-Effect Transistors.[J].Adv.Mater.2007,19(23):4160-4165.
    c.HongbinWu,Jianhua Zou,Feng Liu,Lei Wang,Alexander Mikhailovsky,Guillermo C.Bazan,Wei Yang,Yong Cao.Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes.[J].Adv.Mater.2008,20(4):696-702.
    d.Ping-I Shih,Chen-Han Chien,Fang-Iy Wu,Ching-Fong Shu.A Novel Fluorene-Triphenylamine Hybrid That is a Highly Efficient Host Material for Blue-,Green-,and Red-Light-Emitting Electrophosphorescent Devices.[J].Adv.Funct.Mater.2007,17(17):3514-3520.
    [6]Malte C Gather,Anne Kohnen,Aurelie Falcou,Heinrich Becker,Klaus Meerholz.Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography.[J].Adv.Funct.Mater.2007,17(2):191-200.
    [7]M.D.Joswick,I.H.Cambell,N.N.Barashkov,J.P.Ferraris.Systematic investigation of the effects of organic film structure on light emitting diode performance.[J].J.Appl.Phys.1996,80(5):2883-2890.
    [8]a.Comil,D.Beljonne,J.-P.Calbert,J.-L.Brédas.Interchain Interactions in Organic π-Conjugated Materials:Impact on Electronic Structure,Optical Response,and Charge Transport.[J].Adv.Mater.2001,13(14):1053-1067.
    b.O.J.Korovyanko,R.Osterbacka,X.M.Jiang,Z.V.Vardeny,and R.A.J.Janssen.Photoexcitation dynamics in regioregular and regiorandom polythiophene films.[J].Phys.Rev.B,2001,64(23):235122-235128.
    c.Yusuke Shimizu,Takashi Kobayashi,Takashi Nagase,Hiroyoshi Naito.Optical properties of air-stable semiconducting copolymer based on polythiophene. [J]. Appl. Phys. Lett. 2007, 91(14): 141909-1-141909-3.
    [9] Yoshino, K.; Morita, S.; Uchida, M.; Muro, K.; Kawai, T.; Ohmori, Y Novel electrical and optical properties of poly(3-alkylthiophene) as functions of alkyl chain length and their functional applications. [J] Synthetic Metals. 1993,55(1): 28-35.
    [1]a.Philip A.Sullivan,Andrew J.P.Akelaitis,Sang Kyu Lee,Genette McGrew,Susan K.Lee,Dong Hoon Choi,Larry R.Dalton.Novel Dendritic Chromophores for Electro-optics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior.[J].Chem.Mater.2006,18(2):344-351.
    b.Philip A.Sullivan,Harrison Rommel,Yi Liao,Benjamin C.Olbricht,Andrew J.P.Akelaitis,Kimberly A. Firestone,Jae-Wook Kang,Jingdong Luo,Joshua A.Davies,Dong Hoon Choi,Bruce E.Eichinger,Philip J.Reid,Antao Chen,Alex K-Y.Jen,Brace H.Robinson,Larry R.Dalton.Theory-Guided Design and Synthesis of Multichromophore Dendrimers:An Analysis of the Electro-optic Effect.[J].J.AM.CHEM.SOC.2007,129(24):7523-7530.
    c.Jingdong Luo,Mamie Hailer,Hong Ma,Sen Liu,Tae-Dong Kim,Yanqing Tian,Baoquan Chen,Sei-Hum Jang,Larry R.Dalton,Alex K.-Y.Jen.Nanoscaie Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Folymers for Electro-Optics.[J].J.Fhys.Chem.B 2004,108(25):8523-8530.
    d.Yaowen Bai,Naiheng Song,Jian Fing Gao,Xun Sun,Xiaomei Wang,Guomin Yu,Zhi Yuan Wang.A New Approach to Highly Electroopticaily Active Materials Using Cross-Linkable,Hyperbranched Chromophore-Containing Oligomers as a Macromolecular Dopant.[J].J.AM.CHEM.SOC.2005,127(7):2060-2061.
    [2]Zhen Li,Anjun Qin,Jacky W.Y.Lam,Yuping Dong,Yongqiang Dong,Cheng Ye,Ian D.Williams,Ben Zhong Tang.Facile Synthesis,Large Optical Nonlinearity,and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing Azobenzene Chromophores.[J].Macromolecules 2006,39(4):1436-1442.
    [3]Zhichao Zhu,Zhong'an Li,Yong Tan,Zhen Li,Qianqian Li,Qi Zeng,Cheng Ye,Jingui Qin.New hyperbranched polymers containing second-order nonlinear optical chromophores:Synthesis and nonlinear optical characterization.[J].Polymer 2006,47(23):7881-7888.
    [4]周见红.有机聚合物电光特性及器件研究[D].上海:上海交通大学,2006
    [5]G.Meredith,J.Vandusen,and D.Williams.Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers.[J].Macromolecules,1982,15(5):1385-1389.
    [6]Michael M.Choy.Robert L Byer.Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals.[J].Physical Review B.1976,14(4):1693-1706.
    [7]Zhang XH,Chen ZH,Cui DF,et al.,Observation of a large de Kerr effect in the intervalence subband of Sil-xGex/Si multiple quantum wells.[J].Applied Physics Letters,1996,69(21):3164-3166.
    [8]Yariv A,and Yeh P.,Optical waves in Crystals[M].John Wiley & Sons,New York,1984:Chapter 7.
    [9]Yoshito Shuto,Michiyuki Amano.Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films.[J].J.Appl.Phys.1995,77(9):4632-4638.
    [1].Masamichi lkai,Shizuo Tokito,Youichi Sakamoto,Toshiyasu Suzuki,Yasunori Taga.Highly efficient phosphorescence from organic light-emitting devices with an exeiton-block layer.[J].Appl.Phys.Lett.2001,79(2):156-158.
    [2]a.Y.Wang,N.Herron,V.V.Grushin,D.LeCloux,V.Petrov.Highly Efficient electroluminescent materials based on fluorinated organometallic iridium compounds.[J].Appl.Phys.Lett.2001,79(4):449-451.
    b.H.Z.Xie,M.W.Liu,O.Y.Wang,X.H.Zhang,C.S.Lee,L.S.Hung,S.T.Lee,P.F.Teng,H.L.Kwong,H.Zheng,C.M.Che.Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the use of Sterically Hindered Spacers in Phosphorescence Molecules.[J]. Adv. Mater. 2001, 13(16): 1245-1248. c. J.P.Duan, P.P.Sun, C.H.Cheng. New Indium Complexes as Highly Efficient Orange-Red Emitters in Organic Light-Emitting Diodes. [J]. Adv. Mater. 2003,15(3): 224-228.
    
    [3] a. J.Brooks, Y.Babayan, S. Lamansky, P.I.Djurovich, I.Tsyba, R.Bau, M.E.Thompson. Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes. [J]. Inorg. Chem. 2002, 41(12): 3055-3066. b. Min Sun, Hao Xin, Ke-Zhi Wang, Yong-An Zhang, Lin-Pei Jin, Chun-Hui Huang. Bright and monochromic red light-emitting electroluminescence devices based on a new multifunctional europium ternary complex. [J]. Chem. Commun. 2003, (6): 702-703.
    
    [4] Jacek C. Ostrowski, Matthew R. Robinson, Alan J. Heeger, Guillermo C. Bazan. Amorphous iridium complexes for electrophorescent light emitting devices. [J]. Chem. Commun. 2002, (7): 784-785.
    
    [5] X.Chen, J.L.Liao, Y.Liang, M.O.Ahmed, H.E.Tseng, S.A.Chen. High-Efficiency Red-Light from Polyfluorenes Grafted with Cyclometalated Complexes and Charge Transport Moiety. [J]. J. Am. Chem. Soc. 2003, 125(3): 636-637.
    
    [6] J.Pei, X.L.Liu, W.L.Yu, Y.H.Lai, Y.H.Niu, Y.Cao. Efficient Energy Transfer to achieve Narrow Bandwidth Red Emission from Eu3+-Grafting Conjugated Polymers. [J]. Macromoleculars. 2002, 35(19): 7274-7280.
    
    [7] Schwab PFH, Fleischer F, Michl J. Preparation of 5-brominated and 5,5'-dibrominated 2,2'-bipyridines and 2,2'-bipyrimidines [J]. J. Org. Chem., 2002, 67 (2): 443-449.
    
    [8] Nonoyama, Studies on Reactions of Thioketones with Trimethyl-(trifluoromethyl)Silane Catalyzed by Fluoride Ions [J]. M. Bull. Chem. Soc. Jpn. 1974, 47(5): 767-769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700