突发灾害下应急交通保障决策支持系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在灾害面前,城市是脆弱的:城市是人口与经济活动高度聚集的地区,交通系统是城市防灾减灾的生命线,是物资运输的通道,又是灾害条件下人员疏散、派遣营救人员以及工程队伍、运送救灾物资的路线。突发灾害的发生除了直接造成交通基础严重破坏、人员伤亡、经济损失外,还会因为车辆停滞和道路中断给派遣营救人员、运送救灾物资以及工程队伍救灾抢险造成困难,从而引发更大的间接损失。
     在科学面前,灾害是可以减轻的:在突发灾害条件下,道路交通的组织与指挥通常面临地域范围广、交通流量集中、时间紧迫、路网通行能力下降等困难,只有建立有力的指挥机构和科学的应急机制,并以安全、可靠的道路和实时的道路交通信息为基础,对路网交通流进行快速组织优化和动态诱导,才能充分发挥现有的道路效能,最大限度地保证疏散与救援交通的安全、可靠、畅通、快速。
     本文主要对突发灾害下应急交通组织保障决策支持系统的关键技术展开研究,以期提高突发灾害下城市交通应急组织、控制、诱导的能力。重点研究基于有机计算的大范围应急交通信号协调控制技术、突发灾害下交通应急疏散和多模式交通诱导技术、突发灾害下交通控制与交通诱导的协同优化技术、突发灾害下应急交通保障决策支持系统集成技术,具有一定的现实意义和实用价值。
Unexpected public disaster events have occureed frequently all over the world in last decade. These disasters not only include natural disasters, disaster accidents, such as earthquake, flood, fire and so forth, but also new types of disaster such as epidemic spreading, terrorist attack, ecological disaster and so on. All of them are tending to take place increasingly. In the meanwhile, China is being high disaster event occurrence period and will remain for a long time in the future, which brought out a stringent challenge to government and relevant authority.
     City is the center of the human’s politics, economy, society, culture and human’s habitat. In the meanwhile, it is the pivotal hub of“lifeline system”which vital to national wellbeing and the people’s livelihood, like as water, electricity, gas, communicational and transportation. With the fast economic development and acceleration of urbanization, city scale is extended rapidly. And the population, property, manufacturing, buildings and other infrastructures are becoming more and more higly centralize. Once unexpected disaster has occurred, the loss, extension, influence will be incalculable, vast and profound.
     The nature and characteristics of city state the importance and urgency of urban distaster emergency management. Establishing and perfecting emergency command system which supports and first respondes to build, sustain, and improve the capability to prepare for, protect against, respond to, recover from, and mitigate all hazards, is the most pressing task being faced by all nation across the globe, as well as minimize potential affection of disaster to urban sustainable development and people’s actual production and daily life. They are not only testing the emergency management ability of government, as well as emergency guarantee capability of urban road transport system.
     Emergency traffic guarantee is the premise condition and important part of emergency rescue, such as dispatching emergency materials, delivering rescuers and so forth. And a fast and effective emergency traffic guarantee system can lessen the loss of life and peoperty significantly and minimize other disaster loss as much as possible.
     However, although road transport is the broadest possible form of guarantee in emergency management, it is often being the the weak link of emergency evacuation and rescue as a result of its vulnerability in disaster. So only by developing a powerful disaster emergency response administration and scientific response mechanism, supported with rapidly optimal and collaboration operational traffic organization methods based on reliable road transport and realtime traffic information, road transport can achieve its maximize effectiveness and make emergency evacuation or rescue safely, reliably, smoothly and quickly.
     Supported by National High-Tech Research and Development Program (863 Program), this thesis is aimed mainly at key technologies of decision support system for emergency traffic guarantee in disaster. Specifically, it lays emphasis on the research of reliability estimation and situation analysis of urban traffic network, large-scale traffic signal coordinated control based on organic computing, emergency evacuation transport and multimodal traffic flow guidance, synergetic optimization of traffic signal control and traffic flow guidance, and integrated technology of decision support system for emergency traffic guarantee in disaster. To research these technologies, the thesis consists of seven chapters. The first chapter introduces the research background, statement of problem, purose, significance, literature review, research methods and writing ideas of thesis. Chapter Two to Chapter Six are the core content of this thesis, discuss and research urban traffic network reliability, traffic signal control, emergency evacuation and multimodal traffic flow guidance, synergetic optimization, integrated technology of decision support system for emergency traffic guarantee in disaster. Chapter Seven summarizes the research work, points out the insufficience, and gives the future works of this research. The main work and achievements of this theis are as follow:
     1) Firstly, discusses the problem existing in and confront emergency traffic guarantee. Then systhesis and analysis of emergency traffic guarantee’s current actuality and developing trend are introduced. Thirdly illustrates the objective and the significance of the research. Finally, research methods and its technical schemes is put forward by analyzing the current development of decision support system for emergency traffic guarantee and its relevant techniques.
     2) Aiming at the drawbacks in traffic signal control system, develops the framework of large-scale traffic signal coordinated control system based on organic computing by analysing coordination and control requirement in disaster. Within the system framework, emergency trunk road coordinated control technology, Inter-regional traffic signal coordinated control technology, and intra-regional boundaries traffic signal coordinated control technology are propsed respectively to be direct against different coordination and control requirement in disaster.
     3) By analyzing the demand, performace, organizational characteristics of traffic flow, a bi-level programming emergemy evacuation model is present in order to meet the requirements and needs for urgency and timeliness of traffic evacuation, and gives the solving procedure with momentum-weight practicle swarm optimization algorithm. Considering the information service demands in emergency evacuation and route guidance, a multimodal dyamical traffic flow guidance technology based on K-shorest path by modifying the traditional shorest path algorithm of multimodal transport network. Finally, points out the traffic information service manners and methods for emergency evacuation and route guidance.
     4) Analysis operational necessity and feasibility of traffic signal control and traffic flow guidance’s synergism and its hierarchy, characteristic, and pattern. Then this thesis puts forward a synergic optimization model of traffic signal control and VMS in disaster. Finally, a sloving algorithm for the bi-level programming integrated synergic optimization model is present.
     5) Presents information demands to delevlop a dicision support system for emergency traffic evacuation in disaster by analyzing user principal service requirements and service prodivers’functional requirements. By evaluating and comparing different architecture and structure of decision support system, logical and physical framework of dicision support system for emergency traffic guarantee is proposed. Finally, makes out software development method and processing of decision support system for emergency traffic guarantee by illustrating system develop impact factors and pros and cons of different development methodology, and develops the software system with Borland Delphi 7.
     Informationzation, modernization, and intelligentize for emergency command system can be set out to do hardware construction and software development respectively. With the rapid development of science technical, hardware construction is not a difficult problem anymore. In comparison, the importance and development difficulty of software are more than hardware. What is more, decision support system for emergency traffic guarantee is the top priority. Therefore, making active researching and developing relative theory and technology of decision support system for emergency traffic guarantee in disaster, is one significant research topic which has profound realistic significance and high practical value, facing traffic engineer and researcher.
引文
[1]吉林大学.重大灾害条件下交通组织保障技术申请书[R].长春:吉林大学智能交通运输研发中心, 2008.
    [2]王晓.城市道路交通系统抗震可靠性研究及应用[D].福建农林大学, 2009.
    [3]李乡状.中国国家地理百科[M].长春:吉林大学出版社, 2008.
    [4]张佰成,谭伟贤.城市应急联动系统建设与应用[M].北京:科学出版社, 2005.
    [5]于春全.北京交通管理应急指挥系统概述[J].综合运输. 2004(10): 50-52.
    [6]蒋光胜.大城市突发事件交通组织与疏散对策研究[D].北京工业大学, 2006.
    [7] Rodríguez H, Quarantelli E L, Dynes R R. Handbooks of Disaster Research [M]. Springer US, 2007.
    [8] Quarantelli E L. Emergencies, Disasters and Catastrophes Are Different Phenomena[R]. Disaster Research Center, 2000.
    [9] Quarantelli E L. Catastrophes are Different from Disasters: Some Implications for Crisis Planning and Managing Drawn from Katrina[Z]. 2006.
    [10] Quarantelli E. L.,[译]张雪,[校]陈安.突发事件、灾害与灾难的概念辨析[J].应急管理汇刊. 2009, 4(5): 53-55.
    [11]中华人民共和国国务院.国家突发公共事件总体应急预案[R].北京:中国政府网, 2006.
    [12]张钰.城市交通紧急疏散管理方法及应用研究[D].武汉理工大学, 2006.
    [13]赵林度.基于危机资源管理的城市安全应急网络研究[J].东南大学学报(哲学社会科学版). 2004, 6(04): 48-51.
    [14]池宏,祁明亮,计雷,等.城市突发公共事件应急管理体系研究[J].中国公共安全. 2005(03): 21-32.
    [15]吉林大学.非常态下道路交通异常状态信息取技术研发申请书[R].长春:吉林大学智能交通运输研发中心, 2008.
    [16] Wikipedia. Traffic signal preemption[Z]. 2010.
    [17] Khasnabis S, Rudraraju R K, Baig M F. Economic evaluation of signal preemption projects[J]. Journal of Transportation Engineering. 1999, 125(2): 160-167.
    [18] Miyawaki M, Yamashiro Z, Yoshida T. Fast emergency preemption systems (FAST)[J]. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. 1999: 993-997.
    [19] Nazmi M, Takaba S, Yusoff M N. Performance Analysis for Priority Signal Control of Fast Emergency Vehicle Preemption Systems (FAST) in Malaysia[C]. Japan: Springer, 2006.
    [20] Nelson E J, Bullock D. Impact of emergency vehicle preemption on signalized corridor operation: An evaluation[J]. Transportation Research Record. 2000(1727): 1-11.
    [21] Obenberger J, Collura J. Transition strategies to exit preemption control: State-of-the-practice assessment[J]. Transportation Research Record. 2001(1748): 72-79.
    [22] Mchale G M. An Assessment Methodology for Emergency Vehicle Traffic SignalPriority Systems[D]. Virginia: Virginia Polytechnic Insitute and State University, 2002.
    [23] Hanbali R M, Fornal C J. Emergency vehicle preemption signal timing: Constraints and solutions[J]. ITE Journal (Institute of Transportation Engineers). 2004, 74(7): 32-40.
    [24] Li L, Lin W, Liu H. Traffic signal priority/preemption control with colored petri nets[C]. Vienna, Austria: Institute of Electrical and Electronics Engineers Inc., 2005.
    [25] Obenberger J, Collura J. Methodology to assess traffic signal transition strategies for exit preemption control[J]. Transportation Research Record. 2007(2035): 158-168.
    [26] Chen K, Dow C, Lin D, et al. An NTCIP-based semantic ITS middleware for emergency vehicle preemption[C]. Beijing, China: Institute of Electrical and Electronics Engineers Inc., 2008.
    [27] Yun I, Best M, Park B. Evaluation of transition methods of the 170E and 2070 ATC traffic controllers after emergency vehicle preemption[J]. Journal of Transportation Engineering. 2008, 134(10): 423-431.
    [28]全国人民代表大会常务委员会.中华人民共和国道路交通安全法[M].北京:法律出版社, 2007.
    [29]刘红红,王鑫钥,杨兆升.城市公共交通优先的信号控制策略[J].公路交通科技. 2004, 21(05): 121-124.
    [30]林赐云.公交信号优先系统设计及实施技术研究[D].吉林大学;, 2007.
    [31]于德新,林赐云,杨兆升.基于优先权重的公交信号优先算法研究[C].中国.天津:中国民航大学出版社, 2007.
    [32]林赐云,于德新,杨兆升.公交信号优先检测系统研究[C].中国.天津:中国民航大学出版社, 2007.
    [33]张卫华,石琴,刘强.公交优先信号交叉口延误计算与配时优化方法[J].华中科技大学学报(城市科学版). 2004, 21(04): 30-33.
    [34]杨晓光,林瑜,杭明升.信号控制交叉口公共汽车优先信号确定方法研究[J].中国公路学报. 2001, 14(1): 101-108.
    [35]关伟,申金升,葛芳.公交优先的信号控制策略研究[J].系统工程学报. 2001, 16(03): 176-180.
    [36]刘小明,胡红.应急交通疏散研究现状与展望[J].交通运输工程学报. 2008, 8(03): 108-116.
    [37] Dunn C E, Newton D. Optimal Routes in GIS and Emergency Planning Applications[J]. Area. 1992, 24(3): 259-267.
    [38] Yamada T. Network flow approach to a city emergency evacuation planning[J]. International Journal of Systems Science. 1996, 27(10): 931-936.
    [39] Campos V E G, Silva P A L D, Netto P O B. Evacuation transportation planning: A method of identify optimal independent routes[J]. Urban Transport V. 1999, 44: 555-564.
    [40] Cova T J, Johnson J P. A network flow model for lane-based evacuation routing[J]. Transportation Research Part A: Policy and Practice. 2003, 37(7): 579-604.
    [41] Hamza-Lup G L, Hua K A, Le M, et al. Enhancing intelligent transportation systems to improve and support homeland security[C]. Washington, DC, United states: Institute of Electrical and Electronics Engineers Inc., 2004.
    [42] Hamza-Lup G L, Hua K A, Peng R, et al. A maximum-flow approach to dynamichandling of multiple incidents in traffic evacuation management[C]. Vienna, Austria: Institute of Electrical and Electronics Engineers Inc., 2005.
    [43] Hamza-Lup G L, Hua K A, Aved A J. Exit-point based approaches for real-time traffic evacuation management[C]. Toronto, ON, Canada: Institute of Electrical and Electronics Engineers Inc., 2006.
    [44] Aved A, Ho A H, Hua K A, et al. A mobile computing approach to automatic traffic evacuation management[C]. Toronto, ON, Canada: Institute of Electrical and Electronics Engineers Inc., 2006.
    [45] Hamza-Lup G L, Hua K A, Peng R. Leveraging e-transportation in real-time traffic evacuation management[J]. Electronic Commerce Research and Applications. 2007, 6(4): 413-424.
    [46] Sinuany-Stern Z, Stern E. Simulating the evacuation of a small city: the effects of traffic factors[J]. Socio-Economic Planning Sciences. 1993, 27(2): 97-108.
    [47] Pidd M, De Silva F N, Eglese R W. A simulation model for emergency evacuation[J]. European Journal of Operational Research. 1996, 90(3): 413-419.
    [48] Chen X, Zhan F B. Agent-based modelling and simulation of urban evacuation: Relative effectiveness of simultaneous and staged evacuation strategies[J]. Journal of the Operational Research Society. 2008, 59(1): 25-33.
    [49] Rathi A K, Solanki R S. Simulation of traffic flow during emergency evacuations: a microcomputer based modeling system[C]. Los Angeles, CA, USA: Publ by IEEE, 1993.
    [50] Tufekci S, Kisko T M. Regional Evacuation Modeling System (REMS): A decision support system for emergency area evacuations[J]. Computers & Industrial Engineering. 1991, 21(1-4): 89-93.
    [51] Hobeika A G, Kim C. Comparison of traffic assignments in evacuation modeling[J]. IEEE Transactions on Engineering Management. 1998, 45(2): 192-198.
    [52] Sheffi Y, Mahmassani H, Powell W B. A transportation network evacuation model[J]. Transportation Research Part A: General. 1982, 16(3): 209-218.
    [53] Han A F. TEVACS. Decision support system for evacuation planning in Taiwan[J]. Journal of Transportation Engineering. 1990, 116(6): 821-830.
    [54]杨孝宽,宫建,曹静.奥运会突发事件疏散路径动态路段行程时间[J].北京工业大学学报. 2007, 33(07): 702-706.
    [55]宫建.奥运应急交通疏散路径选择模型研究[D].北京工业大学;, 2007.
    [56]高超,蒋光胜,杨孝宽,等.城市应急疏散策略[J].道路交通与安全. 2007, 7(03): 6-10.
    [57]曹静,宫建,杨孝宽.奥运应急交通疏散预案评价指标体系研究[J].武汉理工大学学报(交通科学与工程版). 2008, 32(03): 431-434.
    [58]曹静.奥运应急交通疏散预案评价体系研究[D].北京工业大学;, 2007.
    [59]胡红,刘小明,杨孝宽.基于最小安全间距的应急交通疏散车辆跟驰模型[J].北京工业大学学报. 2007, 33(10): 1070-1074.
    [60]胡红,蒋光胜,杨孝宽,等.基于Link-node仿真的北京奥运应急交通疏散预案研究[J].北京工业大学学报. 2007, 33(11): 1187-1192.
    [61]高明霞,贺国光.考虑交叉口特性的疏散交通路线研究[J].土木工程学报. 2007,40(06): 80-83.
    [62]孔祥春.考虑交叉口延误的交通紧急疏散研究[D].天津大学;, 2007.
    [63]高明霞.考虑交通管控影响的疏散组织措施优化研究[D].天津大学, 2008.
    [64]陈岳明,萧德云.基于动态交通分配的路网应急疏散模型[J].清华大学学报(自然科学版). 2009, 49(08): 1102-1105.
    [65]陈岳明,萧德云.应急疏散过程建模及其算法研究[J].交通运输系统工程与信息. 2008, 8(06): 96-100.
    [66] Mouskos K C, Greenfeld J. A GIS-based multimodal advanced traveler information system[J]. Computer-Aided Civil and Infrastructure Engineering. 1999, 14(4): 267-279.
    [67] Egeler C. TRANS 3 Multi-modal travel information service for transport in the tri-national agglomeration of Basel based on real time data[C]. Monte Verità/ Ascona: 2001.
    [68] Lozano A, Storchi G. Shortest viable path algorithm in multimodal networks[J]. Transportation Research Part A: Policy and Practice. 2001, 35(3): 225-241.
    [69] Bielli M, Boulmakoul A, Mouncif H. Object modeling and path computation for multimodal travel systems[J]. European Journal of Operational Research. 2006, 175(3): 1705-1730.
    [70] Jang S, Kim T J. Modeling an interoperable multimodal travel guide system using the ISO 19100 series of international standards[C]. New York, NY 10036-5701, United States: Association for Computing Machinery, 2006.
    [71] Natvig M K, Westerheim H. A national multimodal travel information strategy based on stakeholder involvement and ITS architecture[C]. London, UK: ERTICO, 2006.
    [72] Natvig M K, Westerheim H. National multimodal travel information - A strategy based on stakeholder involvement and intelligent transportation system architecture[J]. IET Intelligent Transport Systems. 2007, 1(2): 102-109.
    [73] Rehrl K, Bruntsch S, Mentz H. Assisting multimodal travelers: Design and prototypical implementation of a personal travel companion[J]. IEEE Transactions on Intelligent Transportation Systems. 2007, 8(1): 31-42.
    [74] Zhou X, Mahmassani H S, Zhang K. Dynamic micro-assignment modeling approach for integrated multimodal urban corridor management[J]. Transportation Research Part C: Emerging Technologies. 2008, 16(2): 167-186.
    [75]汪健.支持增量更新的多模式城市交通网络时空数据模型研究[D].吉林大学, 2009.
    [76] Lin C, Yang Z, Gong B. Multimodal traffic information service system with K-multimodal shortest path algorithm[C]. Changsha, Hunan, China: IEEE Computer Society, 2009.
    [77] Kephart J O, Chess D M. The vision of autonomic computing[J]. Computer. 2003, 36(1): 41-50.
    [78] Würtz R P. Organic Computing [M]. Berlin / Heidelberg: Springer , 2008.
    [79] Parashar M, Hariri S. Autonomic computing: An overview[C]. Le Mont Saint Michel, France: Springer Verlag, 2005.
    [80] Schmeck H. Organic computing - A new vision for distributed embedded systems[C].Seattle, MA, United states: Institute of Electrical and Electronics Engineers Computer Society, 2005.
    [81]吉林大学.新一代智能化交通控制系统关键技术研发综合技术报告[R].长春:吉林大学智能交通运输研发中心, 2009.
    [82] Diakaki C, Papageorgiou M, Aboudolas K. A multivariable regulator approach to traffic-responsive network- Wide signal control[J]. Control Engineering Practice. 2002, 10(2): 183-195.
    [83] Dinopoulou V, Diakaki C, Papageorgiou M. Applications of the urban traffic control strategy TUC[J]. European Journal of Operational Research. 2006, 175(3): 1652-1665.
    [84] Diakaki C, Dinopoulou V, Aboudolas K, et al. Extensions and New Applications of the Traffic-Responsive Urban Control Strategy: Coordinated Signal Control for Urban Networks[C]. National Research Council, 2003.
    [85]史忠植.高级人工智能[M].第二版.北京:科学出版社, 2006.
    [86]史忠植.知识工程[M].北京:清华大学出版社, 1988.
    [87] [法]皮埃尔。巴尔迪, [丹麦]索恩。布鲁纳克著,张东晖等译.生物信息学--机器学习方法[M].北京:中信出版社, 2003.
    [88]陈林菁.公交优先!现代城市交通的选择[J].城市道桥与防洪. 2001(4): 52-54.
    [89] America I. Transit Signal Priority (TSP): A Planning and Implementation Handbook[M]. Washington, D.C.: United States Department of Transportation, 2005.
    [90] Soo H Y. Towards the Development of a Decision Support System for Emergency Vehicle Preemption and Transit Signal Priority Investment Planning[D]. Virginia: Virginia Polytechnic Institute and State University, 2004.
    [91] Obenberger J, Collura J. Transition strategies to exit preemption control: State-of-the-practice assessment[J]. Transportation Research Record. 2001(1748): 72-79.
    [92] Obenberger J, Collura J. Methodology to assess traffic signal transition strategies for exit preemption control[J]. Transportation Research Record. 2007(2035): 158-168.
    [93] Lee Jr D B, Carroll A A. Benefit-cost evaluation of a highway-railroad intermodal control system[C]. Cambridge, MA, United states: American Society of Civil Engineers, 2002.
    [94] Muthuswamy S, Mcshane W R, Daniel J R. Evaluation of transit signal priority and optimal signal timing plans in transit and traffic operations[J]. Transportation Research Record. 2007(2034): 92-102.
    [95] Obenberger J. Methodology to Assess Traffic Signal Transition Strategies Employed to Exit Preemption Control[D]. Virginia: Virginia Polytechnic Insitute and State University, 2007.
    [96]魏世孝,周献中.多属性决策理论方法及其在C3I系统中的应用[M].北京:国防工业出版社, 1998.
    [97]黄涛.博弈论教程:理论.应用[M].北京:首都经济贸易大学出版社, 2004.
    [98] [美]罗杰。b。迈尔森著,于寅,费剑平译.博弈论矛盾冲突分析[M].北京:中国经济出版社, 2001.
    [99]杨佩昆.重议城市干道网密度——对修改《城市道路交通规划设计规范》的建议[J].城市交通. 2003, 1(01): 52-54.
    [100] Tomforde S, Prothmann H, Rochner F, et al. Decentralised progressive signal systems for organic traffic control[C]. Venice, Italy: Inst. of Elec. and Elec. Eng. Computer Society, 2008.
    [101]金美莲.城市突发公共事件下混合流疏散问题研究[D].清华大学;, 2008.
    [102]冯佩雨.突发事件下城市交通紧急疏散的研究[D].西南交通大学, 2008.
    [103]韦献兰.突发公共事件应急交通疏散对策研究[D].北京交通大学, 2008.
    [104]鲁丛林.城市交通控制与诱导一体化中用户最优—系统最优协调模型[D].国防科学技术大学, 2005.
    [105] Wikipedia. Pontryagin's minimum principle[Z]. 2010.
    [106] Chen Y, Xiao D. Real-time traffic management under emergency evacuation based on dynamic traffic assignment[C]. Qingdao, China: Inst. of Elec. and Elec. Eng. Computer Society, 2008.
    [107]李士勇,李盼池.求解连续空间优化问题的量子粒子群算法[J].量子电子学报. 2007, 24(05): 569-574.
    [108]赵志刚,顾新一,李陶深.求解双层规划模型的粒子群优化算法[J].系统工程理论与实践. 2007, 27(08): 92-98.
    [109]蹇峰.城市道路交通信息提取关键技术研究[D].吉林大学, 2006.
    [110]吉林大学.基于多源实时交通数据的城市道路交通状态预测技术研发综合技术报告[R].长春:吉林大学智能交通运输研发中心, 2010.
    [111]周剑峰.城市交通共用信息平台数据处理技术研究[D].吉林大学, 2005.
    [112] Mouncif H, Boulmakoul A. Multimodal Transportation Networks : Object Modelling and the K-Multimodal Shortest Path[C]. Montreal, Canada: 2003.
    [113] Bell M G H. Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation[J]. Transportation Research Part B: Methodological. 2009, 43(1): 97-107.
    [114] Hershberger J, Maxel M, Suri S. Finding the k shortest simple paths: A new algorithm and its implementation[J]. ACM Transactions on Algorithms. 2007, 3(4): 1290682.
    [115] Nielsen L R, Andersen K A, Pretolani D. Finding the K shortest hyperpaths[J]. Computers and Operations Research. 2005, 32(6): 1477-1497.
    [116]李善梅.城市交通控制与诱导系统协同的关键理论与方法研究[D].吉林大学, 2007.
    [117] Smith M J. TRAFFIC SIGNALS IN ASSIGNMENT[J]. Transportation Research, Part B: Methodological. 1985, 19 B(2): 155-160.
    [118]刘新杰.城市交通控制系统与交通流诱导系统协同策略研究[D].吉林大学, 2007.
    [119]尚华艳,黄海军,高自友.可变信息标志诱导下的路径选择行为[J].系统工程理论与实践. 2009, 29(07): 166-172.
    [120] Tarry S, Graham A. The role of evaluation in ATT development[J]. Traffic Engineering and Control. 1995, 36(12): 688-693.
    [121] Chatterjee K, Hounsell N B, Firmin P E, et al. Driver response to variable message sign information in London[J]. Transportation Research Part C: Emerging Technologies. 2002, 10(2): 149-169.
    [122] Peeta S, Ramos J L, Pasupathy R. Content of variable message signs and on-line driver behavior[J]. Transportation Research Record. 2000(1725): 102-108.
    [123]姜桂艳,郑祖舵,白竹,等.拥挤条件下可变信息板交通诱导信息对驾驶行为的影响[J].吉林大学学报(工学版). 2006, 36(02): 183-187.
    [124] Peeta S, Gedela S. Real-time variable message sign-based route guidance consistent with driver behavior[J]. Transportation Research Record. 2001(1752): 117-125.
    [125] Chen A, Jayakrishnan R. A Path-based Gradient Projection Algorithm: Effects of Equilibration with a Restricted Path Set under Two Flow Update Policies[C]. Washington, D.C.: Transportation Research Board, 1998.
    [126] Chen A, Lee D. Path-based Algorithms for Large Scale Traffic Equilibrium Problems: A comparison between of the Disaggregate Simplicial Decomposition and Gradient Projection Algorithms[C]. Washington, D.C.: Transportation Research Board, 1998.
    [127] Henderson J M. A Planning Model for Optimizong Locations of Changeable Message Signs[D]. Waterloo, Ontario: University of Waterloo, 2004.
    [128] Chen A, Jayakrishnan R, Tsai W K. Faster Frank-Wolfe traffic assignment with new flow update scheme[J]. Journal of Transportation Engineering. 2002, 128(1): 31-39.
    [129] Chen L, Hu T. Dynamic flow equilibrium for flow-responsive signal settings and time-dependent traffic assignment[C]. St. Louis, MO, United states: Institute of Electrical and Electronics Engineers Inc., 2009.
    [130]李润梅,李伟.饱和路网中动态交通分配和控制一体化建模研究[J].信息与控制. 2004, 33(06): 641-645.
    [131]《中国智能运输系统体系框架》专家组.中国智能运输系统体系框架[M].北京:人民交通出版社, 2002.
    [132] Maier M W, Emery D, Hilliard R. ANSI/IEEE 1471 and systems engineering[J]. Systems Engineering. 2004, 7(3): 257-270.
    [133] Mallach E G. Decision Support and Data Warehouse Systems[M]. McGraw-Hill Higher Education, 2000: 684.
    [134]李学干.计算机系统结构[M].第四版.西安:西安电子科技大学出版社, 2006.
    [135]陈晓红.决策支持系统理论和应用[M].北京:清华大学出版社, 2000.
    [136]杨善林,倪志伟.机器学习与智能决策支持系统[M].北京:科学出版社, 2004.
    [137]冯关源,陈元忠.经济决策与决策支持系统[M].上海:上海财经大学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700