面向T-CPS的微观交通认知方法及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通问题日趋严峻,如何以科学的方法准确认知交通现象,如何以先进的技术支撑交通系统的发展,以有效缓解交通拥堵、降低排放/能耗和提高行驶安全,是亟待解决的重要问题。目前,交通信息化与智能化已成为国际上交通系统现代化的主要发展方向,是当代科学技术前沿领域。而由于交通系统本质是非线性、强耦合、泛时空复杂系统,而传统交通系统的感知、计算、通信和控制等过程之间缺乏广泛的互联互通互操作,导致交通系统尚未实现充分的协调与优化。信息物理系统(Cyber Physical Systems, CPS)技术和交通流理论的出现,为上述问题的解决提供了新的途径。因此,在CPS的架构下,研究交通现象的认知方法及相关问题,具有重要的理论和实际意义。
     本文主要围绕面向交通信息物理系统(Transportation Cyber Physical Systems,T-CPS)的微观交通认知方法展开研究。具体内容包括:重点针对传统交通系统的感知、计算、通信和控制等过程之间缺乏广泛的互联互通互操作,提出T-CPS面向服务的基本架构。基于微观交通流理论,系统的讨论微观认知模型的优化速度函数、稳定性分析、非线性分析及零动态等关键问题,进而研究基于FVD认知模型的交通拥堵反馈控制。考虑T-CPS环境下综合交通信息对跟驰车辆行为的影响,提出一种基于多前车位置、速度差和加速度差信息(Multiple Headway, Velocity&Acceleration Difference, MHVAD)的跟驰模型,以准确客观的认知交通现象。理论分析和数值仿真均验证了MHVAD模型的有效性。
     论文的主要工作包括:
     ①充分利用CPS中物理系统与信息系统之间的相互作用与反馈特点,提出包含感知、通信、计算、控制和服务五个层次的T-CPS基本架构。
     传统交通系统由于缺乏广泛的互联互通互操作,尚未实现充分的协调与优化。而CPS是通过集成3C(Computation, Communication, Control)技术将信息基元与物理元素融为一体,并基于信息系统和物理系统之间的相互作用与反馈,进而实现对物理系统的精确认知和有效控制的前沿技术。本文基于CPS概念并结合交通系统的特点,构建面向服务的T-CPS基本架构,诠释了相应层次的功能,讨论了T-CPS的特点及若干关键技术,为下一代智能交通系统(Intelligent Transportation System, ITS)发展提供理论支撑。
     ②针对交通现象认知的微观方法——跟驰模型,系统的讨论了跟驰模型的优化速度函数、稳定性分析、非线性分析及零动态等关键问题。
     交通流跟驰模型是T-CPS中从微观层面认知交通流状态变化的主要方法之一,一直以来广受学者的关注。现有的跟驰模型大部分均是基于OV模型扩展而来,而OV模型的核心就在于优化速度函数,因此掌握优化速度函数的特点对于研究基于跟驰模型的交通认知方法至关重要;
     在基于跟驰模型的交通认知研究中,模型的稳定性分析是一个重要内容。本文系统的讨论了跟驰模型的局部稳定和渐近稳定问题。此外,为了有效分析跟驰模型的稳定性问题,本文给出了一类二阶系统构造Lyapunov函数的引理,并予以严格证明。随后,据此讨论了交通流跟驰模型的Lyapunov稳定性问题;
     为了揭示交通系统的非线性特性,本文从两方面入手,一方面根据传统的方法,应用微小变量法来导出跟驰模型的mKdV方程;另一方面,引入零动态的概念,导出跟驰模型的零动态方程,这是跟驰模型研究中的一个新的尝试。
     ③从反馈及系统控制的角度,研究基于跟驰模型的交通拥堵反馈控制问题
     交通系统本质上是一个复杂的系统。根据物理学的基本规律可知,力是物体运动的原因,而加速度则是改变物体运动状态的原因。为了从系统和控制的角度来展开研究,本文通过设计加速度信息作为反馈信号,并基于FVD模型,讨论了基于跟驰模型的交通拥堵反馈控制问题,仿真结果表明了本方法的有效性。
     ④考虑T-CPS环境下综合交通信息对跟驰车辆行为的影响,提出了MHVAD跟驰模型。
     为了更加准确的认知实际的交通现象,综合考虑前导车辆的数量、位置、速度差和加速度差等信息的共同影响,提出了MHVAD跟驰模型。并讨论了MHVAD模型的稳定性,同时分别从启动过程、停止过程和演化过程三方面讨论了MHVAD模型的动态性能,并与现有模型进行比较,结果表明MHVAD模型的性能较优,从而为准确的认知交通流运行规律提供基础。
     综上所述,本文提出了面向服务的T-CPS基本架构,系统讨论了T-CPS中微观认知方法——跟驰模型的优化速度函数、稳定性分析、非线性分析、零动态等关键问题,研究了基于跟驰模型的拥堵反馈控制问题,提出了一种基于多前车位置、速度差和加速度差信息(MHVAD)的跟驰模型,理论分析和仿真实验均验证了上述工作的有效性。
Regards to the increasingly severe traffic problems,it is an important issuedemanding prompt solution that how to accurately cognize the traffic phenomena in reallife with scientific methods, and how to relieve traffic jam, reduce emissions/energyconsumption and improve driving safety with advanced technology development oftransportation system. Currently, the informatization and intelligence of transportationhas become the main development direction of the modernization of internationaltransportation system, which is the front area in subject of contemporary science andtechnology. However, the traditional transportation system has not yet achieved fullcoordination and optimization as a result of the lack of extensive interconnection,intercommunication and interoperability among the process of perception,communication, computation and control. And with the emergence of cyber-physicalsystem (CPS) and traffic flow theory, a new way to solve the above problems from theviewspoint of advanced technology and accurate perception arises. Therefore, it is withimportant theoretical and practical significance to study the traffic cognition method andrelated problems in the transportation cyber physical systems (T-CPS) environment.
     This dissertation focus on the T-CPS oriented microscopic traffic cognitivetechniques and related key problems. Specially, a service-oriented architecture for theT-CPS is put forward according to the lack of extensive interconnection,intercommunication and interoperability among the process of perception,communication, computation and control of the traditional transportation system. Thenthe systematic discussions of optimal velocity function, stability analysis, nonlinearanalysis and zero-dynamics of microscopic car-following model are conducted based onmicroscopic traffic flow theory. Moreover, the feedback control of traffic congestion isinvestigated from the system and control perspective, and thereby, a called multipleheadway, velocity&acceleration difference (MHVAD) car-following model is proposedtaking into account the comprehensive information in the T-CPS environment. In theend, theoretical analysis and numerical simulation both prove the validity of MHVADmodel.
     The main works of this dissertation are as follows:
     ①Considering the interaction and feedback between the physical system andcyber system of CPS, the basic architecture of T-CPS including perception, communication, computation, control and service is proposed.
     Since the traditional transportation system has not yet achieved full coordinationand optimization as a result of the lack of widespread interconnection,intercommunication and interoperability. And CPS is a multi-dimensional complexsystem, integrating of cyber element and physical element through the3C (Computation,Communication, Control) technology. Its main characteristic is achieving the preciseperception and effective control of the physical system through the interaction andfeedback between the cyber system and physical system. So the dissertation introducesthe CPS into transportation system and puts forward a service-oriented architecture forT-CPS, and then explains the function of corresponding layers, finally discusses somekey techniques and applications of T-CPS to provide theory support for next generationof ITS.
     ②Regards to the microscopic cognitive technique for trafficphenomenon——car-following model, the systematic discussions of the key issues ofthe following model, such as optimal velocity function, stability analysis, nonlineardynamic analysis and the zero dynamics are carried out.
     Car-following model attracted more attention is one of the main approaches tocognize the revolution of traffic state from the microscopic viewpoint in T-CPS. Andcurrently, many car-following models are improved as a function of OV model,nevertheless, the key of OV model lies on the optimal velocity function. Therefore, it isof importance to study the cognitive technique based on car-following model with thecharacteristics of optimal velocity function.
     The stability analysis of car-following model is one important aspect in the trafficcognitive based on car-following model. And the local stability and the asymptoticstability of car-following model are systematic discussed in this dissemination. Inconsideration of the strong coupling and nonlinear characteristics of traffic system, toanalyze the stability effectively, a lemma of Lyapunov function construction for oneclass of second-order system is put forward and proved according to the related controltheory, and then, the Lyapunov stability of car-following model is discussed.
     To reveal the nonlinear characteristics of traffic system, on one hand, the mKdVequation of car-following model is derived through the small variation methodaccording to the traditional approach; while on the other hand, a new attempt to obtainthe zero dynamics equation of car-following model is carried out with emphasis on theconcept of zero dynamics.
     ③The feedback control of traffic jam based on car-following model isinvestigated from the system and control viewpoint.
     The traffic system is essentially a complex system. According to the fundamentallaws of physics, force is the reason for the movement of objects, while the accelerationis the reason for changing the state of the movement of objects. To conduct a study fromthe system and control perspective, the acceleration information is designed as thefeedback signal, and the feedback control of traffic jam based on car-following model isdiscussed based on the FVD model. And smulation results show the effectiveness of theproposed method in the final.
     ④A MHVAD car-following model is proposed in consideration of thecomprehensive information in T-CPS environment.
     To cognize the traffic phenomenon accurately, a MHVAD car-following model isput forward taking into account the comprehensive impacts of the number, position,velocity difference and acceleration difference of preceding vehicles. And the stabilityof MHVAD model is conducted in detail. Then the dynamic performance of MHVADmodel is discussed from the start process, stop process and revolution process.Compared with the existing models, the simulation results show that the performance ofMHVAD model is better than that of those models, which can provide the basis fortraffic state cognitive accurately.
     In conclusion, the basic architecture of T-CPS is proposed, and regards to themicroscopic cognitive technique for traffic phenomenon——car-following model, thesystematic discussions of its optimal velocity function, stability analysis, nonlinearanalysis are conducted, moreover, the zero dynamics of car-following model is made,then, the feedback control of traffic jam is studied, and in the end, a MHVADcar-following model is proposed and theoretical analysises and simulation resultsvalidate the effectiveness of the work.
引文
[1]唐孝威,张训生,陆坤权.交通流与颗粒流[M].杭州:浙江大学出版社.2004.
    [2] CPS Steering Group. Cyber-physical systems executive summary [EB/OL].[2011-06-04]http://precise.seas.upenn.edu/events/iccps11/doc/CPS-Executive-Summary.pdf.
    [3]王中杰,谢露露.信息物理融合系统研究综述[J].自动化学报.2011,37(10):1157-1166.
    [4]李建中,高宏,于博.信息物理融合系统(CPS)的概念、特点、挑战和研究进展[C].中国计算机学会.2010,2-17.
    [5] A. Bestavros, A. Kfoury, A. Lapets, M. Ocean. Safe compositional network sketches: formalframework [C]. In Proceedings of the13th ACM International Conference on HybridSystems: Computation and Control. New York, USA: ACM,2010,231-241
    [6]赵俊华,文福拴,薛禹胜,李雪,董朝阳.电力CPS的架构及其实现技术与挑战[J].电力系统自动化.2010,34(16):1-7.
    [7] Domestic Policy Council Office of Science and Technology Policy, USA. AmericanCompetitiveness Initiative [EB/OL].[2010-03-02].http://www.casted.orgcn/upload/newsAttach20080805111202.pdf
    [8] President’s Council of Advisors on Science and Technology (PCAST), USA. LeadershipUnder Challenge: Information Technology R&D in a Competitive World: An Assessment ofthe Federal Networking and Information Technology R&D Program.[EB/OL].
    [2010-03-21].http://www. Nitrd.gov/pcast/reports//PCAST-NIT-FINAL.pdf
    [9] CPS Steering Group. Cyber-Physical Systems, Executive Summary [R]. Technical Report,March2008,[Online]. Available:http://varma.ece.cmu.edu/Summit/.
    [10]中国国家自然科学基金委员会.2010项目指南:重点项目[EB/OL].[2010-03-21].http://www.nsfc.gov.cn/nsfc/cen/xmzn/2010xmzn/02/06.html
    [11]中华人民共和国科学技术部国家科技计划项目申报中心.国家重点基础研究发展计划、国家重大科学研究计划2010年度重要支持方向[EB/OL].[2010-03-22].http://program.most.gov.cn/htmledit/E9ED307C-D6A1-81D7-EE32-8C09D9FDEDAA.html
    [12]李国杰.21世纪上半叶发展信息科学技术的战略取向[EB/OL].[2010-02-26]http://www.ict.ac.cn/liguojiewenxuan/wzlj/lgjxsbg/201103/P020110310512667618887.pdf
    [13]姜锐.交通流复杂动态特性的微观和宏观模式研究[D].合肥:中国科学技术大学.2002.
    [14] S. P. Hoogendoorn, P. H. L. Bovy. State-of-the-art of vehicular traffic flow modeling [J].Special issue on road traffic modelling and control of the journal of systems and controlengineering.2011,215(14):283-303.
    [15]刘岩.车辆跟驰模型研究[D].大连.大连交通大学.2006.
    [16]张智勇.城市快速道路车辆跟驰模型研究[D].北京.北京工业大学.2002.
    [17] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama. Dynamics model of trafficcongestion and numerical simulation [J]. Physic Review E.1995,1(51):1035-1042.
    [18] D. Helbing, B. Tilch. Generalized force model of traffic dynamics [J]. Physic Review E.1998,58:133-138.
    [19] S. Sawada. Nonlinear analysis of a differential-difference equation withnext-nearest-neighbour interaction for traffic flow [J]. Journal of Physics A: Mathematicaland General.2001,34:11253-11259.
    [20] R Jiang, Q. S. Wu, Z. J. Zhu. Full velocity difference model for a car-following theory [J].Physic Review E2001,64,017101-017105
    [21] Y. Xue. A Car-following model with stochastically considering the relative velocity in atraffic flow [J]. Acta Physic Sinica.2003,52(11):2750-2756.
    [22] X. M. Zhao, Z. Y. Gao. A new car-following model: full velocity and acceleration differencemodel [J]. The European Physical Journal B.2005,47:145-150.
    [23]王涛,高自友,赵小梅.多速度差模型及其稳定性分析[J].物理学报.2006,55:634-638.
    [24] H. X. Ge. Two velocity difference model for a car following theory [J]. Physica A.2008, doi:10.1016/j.physa.2008.02.081.
    [25] D. F. Xie, Z. Y. Gao, X. M. Zhao. Stabilization of traffic flow based on the multipleinformation of preceding cars [J].Communications Computational Physics.2008,3(4):899-912.
    [26]彭光含,孙棣华,闫川.一个改进的交通流模型及数值计算[J].系统仿真学报.2008,20(17):4697-4702.
    [27] Peng Guanghan, Sun Dihua. Multiple car-following model of traffic flow and numericalsimulation [J]. Chinese Physics B.2009,18(12):5420-5429.
    [28]孙棣华,李永福,田川.基于多前车位置和速度差信息的跟驰模型[J].系统工程理论与实践.2010,30(7):1326-1332.
    [29] Y. LI, D. SUN, W. LIU, M. ZHANG, M. ZHAO, X. LIAO, L.TANG. Modeling andsimulation for microscopic traffic flow based on multiple headway, velocity andacceleration difference [J].Nonlinear Dynamics.2011,66(1-2):15-28.
    [30] P. Sitbon, N. Bulusu, W.Feng. Urban-Scale Sensing for Science [C]. National Workshop forResearch on High-Confidence Transportation Cyber-Physical Systems: Automotive,Aviation and Rail.Washington, DC, November18-20,2008.
    [31] D. Garlan, B.Krogh, A. Tsakiris. Developing Vehicles for Future Transportation Systems:Challenges&Research Directions [C]. National Workshop for Research onHigh-Confidence Transportation Cyber-Physical Systems: Automotive, Aviation andRail.Washington, DC, November18-20,2008.
    [32] E.Clarke, B. Krogh, A. Platzer, R.Rajkumar. Analysis and Verification Challenges forCyber-Physical Transportation Systems [C]. National Workshop for Research onHigh-Confidence Transportation Cyber-Physical Systems: Automotive, Aviation andRail.Washington, DC, November18-20,2008.
    [33] A. Tiwari. Formal Verification of Transportation Cyber Physical Systems [C]. NationalWorkshop for Research on High-Confidence Transportation Cyber-Physical Systems:Automotive, Aviation and Rail.Washington, DC, November18-20,2008.
    [34] N. Gaddam, G. Kumar, A.Somani. Securing Physical Processes against Cyber Attacks inCyber-Physical Systems [C]. National Workshop for Research on High-ConfidenceTransportation Cyber-Physical Systems: Automotive, Aviation and Rail.Washington, DC,November18-20,2008.
    [35] C. Pu. Intelligent, integrated and Intermodal Transportation Services [C]. NationalWorkshop for Research on High-Confidence Transportation Cyber-Physical Systems:Automotive, Aviation and Rail. Washington, DC, November18-20,2008.
    [36] C.Walter, B.LaValley, P.Ellis, K.Bayer. Dependable Automotive Cyber-Physical Systems
    [C].National Workshop for Research on High-Confidence Transportation Cyber-PhysicalSystems: Automotive, Aviation and Rail. Washington, DC, November18-20,2008.
    [37] H.Zhang. Predictable Messaging in Wirreless Automotive CPS [C]. National Workshop forResearch on High-Confidence Transportation Cyber-Physical Systems: Automotive,Aviation and Rail. Washington, DC, November18-20,2008.
    [38] F. Zhang, W. Wolf. Cyber-Physical Control for Future Transportation Systems [C]. NationalWorkshop for Research on High-Confidence Transportation Cyber-Physical Systems:Automotive, Aviation and Rail. Washington, DC, November18-20,2008.
    [39] R.Cartwright, A. Cheng, P. Hudak, M.Malley, W. Taha1. Cyber-Physical Challenges inTransportation System Design [C].National Workshop for Research on High-ConfidenceTransportation Cyber-Physical Systems: Automotive, Aviation and Rail.Washington, DC,November18-20,2008.
    [40] R. Sengupta, Y.Fallah. The Rise of the Mobile Internet: What does it mean forTransportation [C].National Workshop for Research on High-Confidence TransportationCyber-Physical Systems: Automotive, Aviation and Rail.Washington, DC, November18-20,2008.
    [41] S. Ghiasi. Design Methodologies for Synthesis and Execution of Cyber-Physical Systems
    [C]. National Workshop for Research on High-Confidence Transportation Cyber-PhysicalSystems: Automotive, Aviation and Rail.Washington, DC, November18-20,2008.
    [42] R.Cleaveland. Research Challenges in Automotive Control Software [C]. NationalWorkshop for Research on High-Confidence Transportation Cyber-Physical Systems:Automotive, Aviation and Rail.Washington, DC, November18-20,2008.
    [43] M. Iqbal, H. Lim.A Cyber-Physical Middleware Framework for Continuous Monitoring ofTraffic Distribution System [C]. WCPS,2009:401-402.
    [44] R. Fallah, C. Huang. Design of Cooperative Vehicle Safety Systems Based on TightCoupling of Communication, Computing and Physical Vehicle Dynamics [C]. ICCPS2010:31-38.
    [45] X. M. Zhao, Z. Y. Gao. Controlling traffic jams by a feedback signal [J]. The EuropeanPhysical Journal B.2005,43:565-572.
    [46] B. S. Kerner, H. Rehborn. Experimental properties of phase transitions in traffic flow [J].Physic Review Letters.1997,79:4030-4033.
    [47] T. Nagatani, Nakanishi K. Delay effect on phase transitions in traffic dynamics [J]. PhysicReview E.1998,57(6):6415-6421.
    [48] Y. Xue. Analysis of the stability and density waves for traffic flow [J]. Chinese Physics.2002,11(11):1128-1135.
    [49] L. Li, P. F. Shi. Phase transition in a new car-following traffic flow model [J]. ChinesePhysics.2005,14(3):0576-0583.
    [50] H. X. Ge, S. Q. Dai, Y. Xue, Dong L Y. Phase transition and modified KdV equation in acooperative driving system [J]. Physic Review E.2005,71:066119-066126.
    [51] Z. P. Li, X. B. Gong, Y. C. Liu. An improved car-following model for multiphase vehiculartraffic flow and numerical tests [J]. Communications Computational Physics.2006,46(2):367-373.
    [52] Z. P. Li, Y. C. Liu. Analysis of stability and density waves of traffic flow model in an ITSenvironment [J]. The European Physical Journal B.2006,53:367-374.
    [53] L.A. Pipes. An operational analysis of traffic dynamics [J]. Journal of Applications Physics.1953,24(1):274-281.
    [54] L. A. Pipes. Car-following models and the fundamental diagram of road traffic [J].Transportation Research Part B.1967,1:21-29.
    [55] Y. L. Weng, T. J. Wu. Car-following model for vehicular traffic [J]. Journal of ZhejiangUniversity-Science A.2002.3(4):412-417.
    [56] M. Brackstone, M. McDonald. Car-following: a historical review [J]. TransportationResearch Part F2.1999,181-196.
    [57]张智勇,荣建,任福田..跟车模型研究综述[J].公路交通科技.2004,21(8):108-113.
    [58] R.M.Michaels. Perceptual factors in car following [C]. In Proceedings of the SecondInternational Symposium on the Theory of Road Traffic Flow. Paris. OECD.1963:44-59.
    [59] S. Darbha, K. R. Rajagopal, V. Tyagi. A review of mathematical models for the flow oftraffic and some recent results [J]. Nonlinear Analysis.2008,69:950-970.
    [60] T.W. Forbes, H.J. Zagorski, E.L. Holshouser, and W.A. Deterline, Measurement of DriverReactions to Tunnel Conditions [C]. In Proceedings of Highway Research Board,1958,37:345-357.
    [61] L.J.Pignataro. Traffic Engineering Theory and Practice [M]. Prentice-Hall, Inc, EnglewoodCliffs.1973
    [62] W. Leutzbach. An introduction to the theory of traffic flow [M].Springer-Verlag, Berlin.1988.
    [63] M.Jepsen. On the Speed-Flow Relationships in Road Traffic: A Model of Driver Behavior
    [C]. Proceedings of the Third International Symposium on Highway Capacity, Copenhagen,Denmark.1998:297-319.
    [64] R. E. Chandler, R. Herman, E. W. Montroll. Traffic dynamics: studies in car following [J].Operations Research.6:165-184.
    [65] R.W.Rothery. Car following models. Senior Lecturer, Civil Engineering Department, TheUniversity of Texas, ECJ Building6.204.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9292&rep=rep1&type=pdf.
    [66] D. C. Gazis, Herman R, Potts R. Car-following theory of steady state traffic flow [J].Operations Research.1959,7:499-595.
    [67] L. C. Edie. Car following and steady state theory for non-congested traffic [J]. OperationsResearch.1960,9:66-76.
    [68] D. C. Gazis, R. Herman, R. W. Rothery. Nonlinear follow the leader models of traffic flow[J]. Operations Research.1961,7:499-505.
    [69] M. Bando, K. Hasebe. Analysis of optimal velocity model with explicit delay [J]. PhysicReview E.1998,58(5):5429-5435.
    [70] H. X. Ge, S. Q. Dai, L. Y. Dong, Y. Xue. Stabilization effect of traffic flow in an extendedcar-following model based on an intelligent transportation system application [J]. PhysicReview E.2004,70:066134-066140.
    [71] M. Treiber, A. Hennecke, D. Helbing. Derivation, properties and simulation of agas-kinetic-based nonlocal traffic model [J]. Physic Review E.1999,59:239-253.
    [72] Y. Xue, L. Y. Dong, Y. W. Yuan, S. Q. Dai. Numerical simulation on traffic flow with theconsideration of relative velocity [J]. Acta Physic Sinica.2002,51(3):492-496.
    [73] H. X. Gong, H. C. Liu, B. H. Wang. An asymmetric full velocity difference car-followingmodel [J]. Physica A.2008,387:2595-2602.
    [74] Y. Sugiyama, M. Fukui, M. Kikuchi, et al.Traffic jams without bottlenecks—experimentalevidence for the physical mechanism of the formation of a jam [J]. New Journal of Physics.2008,10:033001-033008.
    [75] C. Kikuchi, P. Chakroborty. Car following model based on a fuzzy inference system [J].Transportation Research Record.1992,1365:82-91.
    [76]彭光含.交通流复杂耦合动态特性模拟研究[D].重庆:重庆大学.2009.
    [77]李硕.车辆跟驰模型仿真[D].重庆:重庆大学.2009.
    [78] K. Nagel, M. Schreckenberg. A cellular automation model for freeway traffic [J]. J.Phys.IFrance.1992,2:2221-2229.
    [79] M. Fukui, Y. Ishibashi. Traffic flow in1D cellular automaton model including cars movingwith high speed [J]. J. Phys. Soc. Japan,1996,65(6):1868-1870.
    [80] S. Krauss, P. Wagner, C. Gawron. Metastable states in a microscopic model of traffic flow[J]. Physic Review E,1997,55(4):5597-5602.
    [81] D. Helbing, M. Schreckenberg. Cellular automata simulating experimental properties oftraffic flow [J]. Physic Review E,1999,59(3):2505-2508.
    [82] D. Chowdhury, L. Santen, A. Schadschneider. Statistical physics of vehicular traffic andsome related systems [J]. Physics Report,2000,329:199-329.
    [83] Y. Xue, L. Y. Dong, S. Q. Dai. An improved one-dimensional cellular automation model oftraffic flow and the effect of deceleration probability [J]. Aata Physica Sinica.2001,50(03):0445-0450.
    [84] H.X. Ge, H.B. Zhu, S.Q. Dai. Cellular automaton traffic flow model considering intelligenttransportation system [J].Aata Physica Sinica.2005,54(10):4621-4627.
    [85] H. H. Tian, Y. Xue, S. J. Kan, Y. J.Liang. Study on the energy consumption using thecellular automaton mixed traffic model [J]. Aata Physica Sinica.2009,58(07):4506-4514.
    [86] J. X. Ding, H. J. Huang, T. Q. Tang. A cellular automaton model of traffic considering thedynamic evolution of velocity randomization probability [J]. Aata Physica Sinica.2009,58(11):7591-7596.
    [87] N.Jia, S. F.Ma. Comparison between the optimal velocity model and theNagel-Schreckenberg model [J]. Aata Physica Sinica.2010,59(02):0832-0842.
    [88] Nagatani T. Traffic jam and shock information in stochastic traffic flow model of a two-laneroadway [J]. Journal of the Physical Society of Japan.1994,63:52-58.
    [89] T. Nagatani. Dynamical jamming transition induced by a car accident in traffic flow modelof a two-lane roadway [J]. Physica A.1994,202:449-458.
    [90] S. Kurata, T. Nagatani. Spatio-temporal dynamics of jams in two-lane traffic flow with ablockage [J]. Physica A.2003,318:537-550.
    [91] T. Q. Tang, H. J. Huang. Traffic flow model of two lanes and numerical calculation [J].Chinese Science Bulletin.2004,49:1937-943.
    [92] T. Q. Tang, H. J. Huang. Wave properties of a traffic flow model for freeways with twolanes [J]. Journal of Beijing University of Aeronautics and Astronautics.2005,31:1121-1124.
    [93] T. Q. Tang, H. J. Huang, Z. Y. Gao. Stability of the car-following model on two lanes [J].Physics Review E.2005,72:066124-066131.
    [94] T. Q. Tang, H. J. Huang, S. C. Wong, R. Jiang. Lane changing analysis for two-lane trafficflow [J]. Acta Mathematica Sinica.2007,23:49-54.
    [95] D. H. Sun, G. H. Peng. A viscous continuum traffic flow model with the consideration ofcoupling effect for two-lane freeways [J]. Chinese Physics B.2009,(in press).
    [96] D. H.Sun, G. H. Peng, L. P. Fu, H. P.He. A continuum traffic flow model with theconsideration of coupling effect for two-lane freeways [J]. Acta Mechanica Sinica.2009,(inpress).
    [97] P. S. Addison, D. J. Low. A novel nonlinear car-following model [J]. Chaos.1998,8(4):791-799.
    [98] L. A. Safonov, E. Tomer, V. V. Strygin, Y. Ashkenazy, S. Havlin. Multifractal chaoticattractors in a system of delay-differential equations modeling road traffic [J]. Chaos.2002,12(4):1006-1014.
    [99] D. S. Wang, G. G. He. Summary and prospects of the study on traffic chaos [J]. China CivilEngineering Journal.2003,36(1):68-75.
    [100] G. G. He, D. S. Wang. Simulation study on the transition between chaos and order motion inthe traffic flow [J]. China Civil Engineering Journal.2003,36(7):53-57.
    [101] G. G. He, X. Y. Wan. Simulation Research on Evaluating of Reasonability for theCar-Following Models Based on Chaos Criterion [J]. System Engineering g Theory&Practice.2004,4:0123-0130.
    [102] S. C. Lo, H. J. Cho. Chaos and control of discrete dynamic traffic model [J]. Journal of theFranklin Institute.2005,342:839-851.
    [103] M. Xu, Z. Y. Gao. Chaos in a dynamic model of urban transportation network flow based onuser equilibrium states [J]. Chaos, Solitons and Fractals.2007, doi:10.1016/j.chaos.2007.01.077.
    [104] K. J. A strom, P. Hagander and J. Sternby. Zeros of sampled systems [J]. Automatica,1983,20(1):31-38.
    [105] J. I. Yuz and G. C. Goodwin.On sampled-data models for nonlinear systems [J]. IEEE Trans.on Automatic Control.2005,50(10):1477-1489.
    [106]王笑京,齐彤岩,蔡华.智能交通系统体系框架原理与应用[M].北京:中国铁道出版社.2004.
    [107]徐志伟,李沛旭,查礼.计算机系统变革性研究的四个问题[J].计算机研究与发展,2008,45(12):2011-2019.
    [108]何积丰. Cyber-Physical Systems [J].中国计算机学会通讯.2010,6(1):25-29.
    [109]华东师范大学软件学院.信息-物理融合系统CPS发展战略论坛[EB/OL].http://news.ecnu.edu.cn/keynews/2010/2010,keynews,072980.shtml,2010.
    [110] National Science Foundation of the United States. Cyber-Physical Systems (CPS)[EB/OL].
    [2011-06-27]. http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm?org=NSF.
    [111] E. Lee. Cyber physical systems: Design challenges [C]. The Eleventh IEEE InternationalSymposium on Object/Component/Service-Oriented Real-Time Distributed Computing.Los Alamitos: IEEE Computer Society,2008[Invited Paper]:363-369.
    [112] Y. Tan, S. Goddard, L. P′erez. A prototype architecture for cyber-physical systems [J]. ACMSIGBED Review,2008.5(1):1-2.
    [113] I. Lee. Embedded and Cyber Physical Systems [EB/OL].[2009-01-30].http://www.seas.upenn.edu/~lee/09cis480/.
    [114]谭朋柳,舒坚,吴振华.一种信息-物理融合系统体系结构[J].计算机研究与发展.2010,47(2):312-316.
    [115] R. Poovendran. Cyber-Physical Systems: Close encounters between two parallel worlds [C].Proceedings of the IEEE,2010,98(8):1363-1366.
    [116]吕琳媛,陆君安,张子柯等.复杂网络观察[J].复杂系统和复杂性科学.2010,7(2-3):0173-0187.
    [117]王振东,王慧强,陈晓明,林俊宇.Cyber Physical Systems-物理网络系统[J].小型微型计算机系统.2011,32(5):881-888.
    [118]李克强,陈涛,罗禹贡,王建强.智能环境友好型车辆-概念、体系结构及工程实现[J].汽车工程.2010,9:743-748.
    [119]罗亮红.基于ZlGBEE的车路协同关键技术研究[D].广州:华南理工大学.2010.
    [120]王云鹏.智能车路协调系统[C].第三届智能交通科技论坛.武汉:武汉理工大学,2010.
    [121]陈超,吕植勇,付珊珊,彭琪.国内外车路协调系统发展现状综述[J].交通信息与安全.2011,1(29):102-108.
    [122]王云鹏.车路智能协同技术发展现状与展望[R].2009年中国智能交通年会,深圳:中国智能交通协会,2009.
    [123]杨明.无人自动驾驶车辆研究综述与展望[J].哈尔滨工业大学学报.2006,38(ZK):1259-1262.
    [124] E. D.Dickmanns. The development of machine vision for road vehicles in the last decade
    [A].In: Proceedings of IEEE intelligent vehicle symposium.2002.
    [125] M. Bertozzi, A. Broggi, A.Fascioli. Vision-based intelligent vehicles:state of the art andperspectives [J].Robotics and autonomous systems.2000,32:1-16.
    [126]宋涛,董力耘,邝华,李兴莉,戴世强.考虑停车视距的优化速度函数[J].上海大学学报(自然科学版).2011,17(2):147-154.
    [127]李永福,孙棣华,崔明月.全速度差跟驰模型的Lyapunov稳定性分析[J].控制理论与应用.2010,27(12):1669-1673.
    [128]袁源.基于多前车信息及速度差的微观跟驰模型及其特性研究[D].重庆:重庆大学.2008
    [129]孟庆勋.优化速度模型及其改进模型的验证和推广[D].上海:上海大学.2005.
    [130] H. M. Zhang. Analysis of the stability and wave properties of a new continuum traffictheory [J]. Transportation Research Part B.1999,33:399-415.
    [131] H. M. Zhang. A non-equilibrium traffic flow model devoid of gas-like behavior [J].Transportation Research Part B.2002,36:275-290.
    [132] T. Q. Tang, H. J. Huang, Y. Zhang. Stability analysis for traffic flow with perturbations [J].International Journal of Modern Physics C.2008,19:1367-1375.
    [133] D. C. GAZIS. Traffic Theory [M]. Kluwer Academic Publishers. New York, Boston,Dordrecht, London, Moscow.2002.
    [134] K. Konishi, H. Kokame, K. Hirata. Coupled map car-following model and itsdelayed-feedback control [J]. Physic Review E.1999,70(4):4000-4007.
    [135] K. Konishi, H. Kokame, K. Hirata. Decentralized delayed-feedback control of an optimalvelocity traffic model [J]. The European Physical Journal B.2000,15(4):715-722.
    [136] D. A. Kurtz, D. C. Hong. Traffic jams, granular flow, and soliton selection [J]. PhysicReview E.1995,52:218-221.
    [137] T. S. Komatsu, S. Sasa. Kink soliton characterizing traffic congestion [J]. Physic Review E.1995,52(5):5574-5582.
    [138] T. Nagatani. Modified KdV equation for jamming transition in the continuum models oftraffic [J]. Physica A.1998,261:599-607.
    [139] T. Nagatani. Stabilization and enhancement of traffic flow by the next-nearest-neighborinteraction [J]. Physic Review E.1999,60(6):6395-6401.
    [140] Z. P. Li, Y. C. Liu, F. Q. Liu. A dynamical model with next-nearest-neighbor interaction inrelative velocity [J]. International Journal of Modern Physics C.2007,18:819-832.
    [141] H. X. Ge, R. J. Cheng, S. Q. Dai. KdV and kink-antikink solitons in car-following models[J]. Physica A.2005,357:466-476.
    [142] Y. Lei, Z. K. Shi. Nonlinear analysis of an extended traffic flow model in ITS environment[J]. Chaos, Solitons and Fractals.2008,36:550-558.
    [143] L. Yu, Z. K. Shi, B. C. Zhou. Kink-antikink density wave of an extended car-followingmodel in a cooperative driving system [J]. Communication in Nonlinear Science andNumerical Simulation.2008,13:2167-2176.
    [144]胡跃明.非线性系统理论与应用(第2版)[M].北京:国防工业出版社.2005,7.
    [145]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社.2005,9.
    [146]李殿璞.非线性控制系统理论基础[M].黑龙江:哈尔滨工程大学出版社.2007,7.
    [147] B. S. Kerner, H. Rehborn. Experimental features and characteristics of traffic jam [J].Physic Review E.1996,53:1297-1300.
    [148] T. Nagatani. Thermodynamic theory for the jamming transition in traffic flow [J]. PhysicReview E.1998,58(4):4271-4276.
    [149]张勇,关伟.离散交通流的变结构控制[J].控制与决策.2012,27(1):47-52.
    [150]杨旭华,董颖颖,杨海东,王万良.一种改进的自动化高速公路交通流速度控制器设计[J].控制理论与应用.2009,1:0103-0106.
    [151] B. A. Rafael, G. A. Amir. Variable structure decentralized control and estimation forhighway traffic systems [J]. Journal of Dynamic Systems, Measurement, and Control.2008,130(4):0410021-04100211.
    [152] C. C. Chien, Y. Zhang, P. A. Ioannou. Traffic density control for automated highwaysystems [J]. Automatica.1997,33(7):1273-1286.
    [153]谢劲松,韩印,范炳权,等.快速路系统反馈控制器设计及算法[J].交通运输工程学报.2008,8(4):99-103.
    [154]沈国江,胡丹,孙优贤.城市高速公路交通的神经网络建模与控制[J].信息与控制.2004,33(6):729-734.
    [155] B. Ran, S. Leight, B. Chang. A microscopic simulation model for merging control on adedicated-lane automated highway system [J]. Transportation Research Part C: EmergingTechnologies.1999,7(6):369-388.
    [156] L. Alvarez, R. Horowitz, C. V. Toy. Multi-destination traffic flow control in automatedhighway systems [J].Transportation Research Part C:Emerging Technologies.2003,11(1):1-28.
    [157] A. Girault. A hybrid controller for autonomous vehicles driving on automated highways [J].Transportation Research Part C: Emerging Technologies,2004,12(6):421-452.
    [158]韩祥临,姜长元,葛红霞,戴世强.基于智能交通系统的耦合映射跟驰模型和交通拥堵控制[J].物理学报.2007,56(8):4383-4392.
    [159] X. M. Zhao, Z. Y. Gao. The stability analysis of the full velocity and acceleration differencemodel [J]. Physica A.2007,375:679-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700