基于物理属性的城市快速路交通流特征参数模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着大城市交通网络建设的发展,快速路已成为城市交通大动脉,在城市交通系统中发挥着不可替代的作用。对快速路构建动态交通模型并进行动态交通态势评估,是对大城市快速路系统乃至全网的交通管理及优化方案实施的重要基础。作为动态交通模型的路网供给能力的标定参数,路网中每条快速路路段的自由流速度、通行能力、临界速度及阻塞密度四个交通流特征参数的合理设定是准确进行动态交通态势评估的关键。利用常规方法估计交通流特征参数,需要获得快速路路段的24小时交通流数据,并选取适用于快速路交通流特性描述的交通流模型进行曲线拟合。然而,由于快速路网中大部分快速路路段未设检测器,且部分已设检测器路段无法获得各交通状态下的交通流数据样本点,使得依赖于交通流数据的传统交通流特征参数估计方法难以应用。此外,由于出入口及公交设施密集等因素,快速路的交通流特性更为复杂,基于高速公路数据建立的交通流模型对快速路的适用性也有待研究。
     在此背景下,本文提出了基于物理属性的城市快速路交通流特征参数模型。在对快速路交通流特性定量分析的基础上,提出利用快速路物理特征因素直接推导交通流特征参数的思路,面向应用建立基于物理属性的快速路交通流特征参数模型。主要研究成果包括:
     1、对快速路交通流特性进行定量研究,提出快速路时空平均速度转化公式及占有率-密度转化公式;采用适用于快速路的Van Aerde四参数单一结构模型,在对快速路断面交通流特征参数综合分析的基础上,对比分析基本路段、出入口附近路段及公交车站附近路段的确定型交通流特征参数特点;提出利用边界线分析通行能力区域筛选算法进行通行能力分布分析,经实测数据分析表明,快速路通行能力分布服从Gamma及Lognormal分布。
     2、提出基于物理属性的快速路交通流特征参数模型建模框架,以系统性实现直接建立快速路物理特征因素和各交通流特征参数的函数关系的基本思路,其中快速路断面特征矩阵聚类分析及快速路断面交通流特征参数模型构建为核心模块。
     3、建立快速路断面特征矩阵聚类模型,以实现物理-交通流特征强相关快速路断面样本提取。子成果包括:(1)提出出入口及公交设施等快速路基本物理特征;(2)建立基于模拟退火遗传算法(SAGA)优化聚类数的K-Means聚类算法的快速路断面特征矩阵聚类核心模型;(3)将物理特征数据及交通流特征数据视为二源特征数据,提出快速路断面二源特征数据类型匹配模型。
     4、构建快速路断面交通流特征参数模型,子成果包括:(1)基于物理特征基本因素,提出含出入口综合指标及公交综合指标的物理特征因素;(2)基于特征强相关快速路断面样本,建立物理特征因素与各交通流特征参数的多元交通流特征参数模型,并实现参数估计及模型验证。
     5、以北京西三环快速路交通走廊动态交通模型为基础平台,对所建立的快速路交通流特征参数模型进行测试。结果表明,在出入口及公交设施密度大且缺乏有效实测交通流数据情况下,较之传统的采用统一交通流特征参数的方法,利用所建立的交通流特征参数模型进行动态交通模型的交通流特征参数标定,能更准确地捕捉快速路交通流特性。
ABSTRACT:With the development of road networks in megacities, expressways have become the urban traffic artery and played an irreplaceable role in urban transportation systems. Developing the dynamic traffic model and assessing the dynamic traffic states is the important foundation for the implementation of traffic management and optimization for not only expressway systems but the entire road network of a megacity as well. The determination of the calibration parameters of the road network supply capacity in the dynamic traffic model, e.g. the traffic flow characteristic parameters of each road section of expressways in the road network including the free flow speed, capacity, critical speed and jam density, is the key to the accurate assessment of dynamic traffic states. The traditional method in estimating traffic flow characteristic parameters needs to obtain 24h traffic flow data of sections, select traffic stream model which is suitable to describe the traffic flow characteristics of expressways, and conduct curve fitting. However, since most of road sections of expressways do not have detectors, and the traffic flow data sample could not be obtained in each traffic state in several detected road sections, the traditional method in estimating traffic flow characteristic parameters that has heavily relied on traffic flow data is hardly applied in practice. Moreover, since traffic characteristics of expressways are more complex than those of other classes of roads because of the high densities of ramps and bus stops, the applicability of existing traffic stream models, which have been developed primarily for freeways, should be examined.
     In this context, the research in this dissertation strives to develop traffic flow characteristic parameter models of urban expressways based on physical properties. After a quantitative analysis of traffic characteristics of expressways, it presents a new approach to deriving traffic flow characteristic parameters directly from physical characteristic parameters of expressways. As a result, the application-oriented traffic flow characteristic parameter models of expressways based on physical properties are developed. The research in the dissertation consists of the following accomplishments:
     1. Quantitative analyses of traffic flow characteristics of expressways are conducted, and formulas that transform the time mean speed to the space means speed and the occupancy to the density are proposed. Using the Van Aerde single-regime model, which is considered suitable for expressways, the dissertation analyzed and compared deterministic traffic flow characteristic parameters of the basic section, the section near ramps and the section near bus stops based on the comprehensive analysis of traffic flow characteristic parameters of expressways,. The algorithm for the selection of the range of capacities based on the Bound-line analysis is proposed and the stochastic distribution analysis of capacity is conducted. The analysis of the field data indicates that the capacity of expressways follows the Gamma distribution and Lognormal distribution.
     2. A framework for building traffic flow characteristic parameter models for expressways based on physical properties is established in order to identify direct functions between physical characteristic parameters and each of traffic flow characteristic parameters. The framework includes two essential modules, the character matrix cluster analysis of sections and the development of the traffic flow characteristic parameter models on expressways.
     3. The character matrix clustering model for sections on the expressway is established, attempting to select the sectional samples with a high correlation between physical and traffic flow characteristics. The relevant achievements include:(1) basic physical characteristic parameters of expressways that consider both series of ramps and transit facilities are identified; (2) based on the SAGA-K Means cluster algorithm, the character matrix cluster model of the section on the expressway is established; and (3) a cluster matching model for dual sources of data for expressways is developed by considering the physical characteristic data and traffic flow characteristic data as two sources of data,
     4. The traffic flow characteristic parameter models for the section on the expressway based on physical properties are developed. The relevant achievements include:(1) on the basis of basic physical characteristic parameters, the physical characteristic parameters incorporating the ramp comprehensive index and the transit comprehensive index are proposed; and (2) using samples with a high correlation, the multivariate models of physical characteristic parameters and traffic flow characteristic parameters are developed, and the parameter estimation and model validation are conducted.
     5. Using the dynamic traffic model of the western 3rd ring-road expressway corridor of Beijing as the basic platform, the proposed traffic flow characteristic parameter models are tested. The results indicate that, with the high densities of ramps and transit facilities and in the absence of valid observed traffic flow data, calibrating the dynamic traffic model by the proposed traffic stream model could better capture the traffic flow characteristics of expressways than could the traditional method that uses the uniform traffic flow characteristic parameters.
引文
[1]GB/T50280-98.城市规划基本术语标准[S].
    [2]Transportation Research Board. Highway Capacity Manual [M],2000.
    [3]王炜,过秀成.交通工程学[M].江苏:东南大学出版社,2000.
    [4]佐佐木纲,饭田恭敬.交通工程学[M].邵春福,杨海,史其信,等译.北京:人民交通出版社,1994.
    [5]张起森,张亚平.道路通行能力分析[M].北京:人民交通出版社,2002.
    [6]Jiang R. and Q. S. Wu. Study on the Complex Dynamic Properties of Traffic Flow the Micro and Macro Modeling [J].中国科学院研究生院学报.2006,23(6):848-854.
    [7]Rakha H. Validation of Van Aerde's Simplified Steady-state Car-following and Traffic Stream Model [J]. Transportation Letters:The International Journal of Transportation Research,2009, 1(3):227-244.
    [8]TRB, Traffic Flow Theory Committee (N. Gartner, C. Messer, A. Rathi, Editors). Traffic Flow Theory, a State of the Art Report [R],2001.
    [9]Del Castillo J. M. and F. G. Benitez. On the Functional Form of the Speed Density Relationship I:General Theory [J]. Transportation Research, Part B:Methodology,1995,29B (4):373-389.
    [10]Greenshields B. A Study of Traffic Capacity [A]. Highway Research Board Proceedings,1935, 14:448-477.
    [11]Greenberg H. An Analysis of Traffic Flow [J], Operations Research,1959,7:79-85.
    [12]Underwood R. T. Speed, Volume and Density Relationships, Quality and Theory of Traffic Flow [M]. New Haven:Yale Bureau of Highway Traffic,1961.
    [13]Edie L. C. Following and Steady-State Theory for Non-congested Traffic [J]. Operations Research,1961,9:66-76.
    [14]Dick A.C. Speed/Flow Relationships within an Urban Area [J]. Traffic Engineering Control, 1966,8(6):393-396.
    [15]Van Aerde M. Single Regime Speed-Flow-Density Relationship for Congested and Uncontested Highways [A], Presented at the 74th TRB Annual Conference, Washington, D.C., 1995, Paper No.950802.
    [16]Lighthill M. J. and G. B. Whitham. On Kinematic Waves:Ⅱ. A Theory of Traffic Flow on Long Crowded Roads [A]. Proceedings of the royal society.1955,229(1178) of A:317-345.
    [17]Richards P. I. Shocks Waves on the Highway [J]. Operations Research,1956,4:42-51.
    [18]Prigogine I. and R. Herman. Kinetic Theory of Vehicular Traffic [M]. Elsevier, New York, 1971.
    [19]Paveri-Fontana S. L. On Boltzmann-Like Treatments for Traffic Flow:A Critical Review of the Basic Model and An Alternative Proposal for Dilute Traffic Analysis [J]. Transportation Research B,1975,9:225-235.
    [20]邵春福.交通规划原理[M].北京:中国铁道出版社,2004.
    [21]Pipes L. A. An Operational Analysis of Traffic Dynamics [J]. Journal of Applied Physics,1953, 24:271-281.
    [22]Pipes L. A. Car-Following Models and the Fundamental Diagram of Road Traffic [J]. Transportation Research,1967,1:21-29.
    [23]Gazis D. C., R. Herman, and R. B. Potts. Car Following Theory of Steady State Traffic Flow [J]. Operations Research,1959,7(4):499-505.
    [24]Gazis D. C., R. Herman, and R. W. Rothery. Non-Linear Follow the Leads Models of Traffic Flow [J]. Operations Research,1961,9:545-567.
    [25]Cremer M. and J. Ludwig, A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations [J]. Mathematics and Computers in Simulation,1986,28:297-303.
    [26]Wolfram S. Statistical Mechanics of Cellular Automata [J]. Reviews of Modern Physics,1983, 55:601-644.
    [27]Nagel K. and M. Schreckenberg. A Celluar Antomaton Model for Freeway Traffic [J]. Journal of Physics I Prance,1992,2:2221-2229.
    [28]Biham O. and A. A. Middleton, D. A., Levine. Self-Organization and a Dynamical Transition in Traffic Flow Models [J]. Physical Review A,1992,46:6124-6127.
    [29]Van Aerde M. and Assoc. INTEGRATION Release 2.30 for Windows-User's Guide, Volume II:Advanced Model Features [R]. Michel Van Aerde & Associates, Ltd., Blackburg, Virginia, 2005.
    [30]May A. D. Traffic Flow Fundamentals [M]. Washington D. C.:Library of Congress Cataloging in Publication Data,1990.
    [31]Transportation Research Board. Highway Capacity Manual [M],1985.
    [32]Zhang H. M. and T. Kim. A Car-Following Theory for Multiphase Vehicular Traffic Flow [J]. Transportation Research Part B:Methodological,2005,39(5):385-399.
    [33]杨少辉,马林,王殿海,陈莎.城市快速路停车波模型修正[J].吉林大学学报(工学版),2008,38(4):808-811.
    [34]Athol P.1. Interdependence of Certain Operational Characteristics within a Moving Traffic Stream [J], Highway Research Record,1965,72:58-57.
    [35]Hillegas B. D., D. G. Houghton and P.1. Athol. Investigation of Flow-Density Discontinuity and Dual-Mode Traffic Behavior [J]. Transportation Research Record,1974,495:53-60.
    [36]Banks J. H. Freeway Speed-Flow-Concentration Relationships:Marc Evidence and Interpretations [J]. Transportation Research Record,1989,1225:53-60.
    [37]Daganzo C. F. A Behavioral Theory of Multi-Lane Traffic Flow Part I:Long Homogeneous Freeway Sections [J]. Transportation Research Part B:Methodology,2002,36:131-158.
    [38]Newell G. E. A Simplified Car-fallowing Theory:A Lower Order Model [J]. Transportation Research Part B:Methodology,2002,36:195-205.
    [39]Koshi M., M. Iwasaki, and I. Ohkura. Some Findings and an Overview on Vehicular Flow Characteristics [A], Proceedings of 8th International Symposium on Transportation and Traffic Flow Theory, University of Toronto Press, Toronto, Canada,1983:403-426.
    [40]Kerner B. S. Experimental Features of Self-Organization in Traffic Flow [J]. Physical Review Letters,1998,81(17):3797-3800.
    [41]Banks J. H. Review of Empirical Research on Congested Freeway Flow [A].81th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2002.
    [42]Van Aerde M. and R. Hesham, Multivariate Calibration of Single Regime Speed-Flow-Density Relationships [A]. Proceedings of the vehicle navigation and information systems (VNIS) conference, Seattle, Washington,1995.
    [43]Erlingsson S., A. M. Jonsdottir, and T. Thersteinsson. Traffic Stream Modeling of Road Facilities [A]. Transport Research Arena Europe,2006.
    [44]Zhao N. L., L. Yu, H. Zhao, J. F. Guo, and H. M. Wen. Analysis of Traffic Flow Characteristics on Ring-Road Expressways in Beijing using FCD and RTMS Data [J]. Transportation Research Record,2009,2124:178-185.
    [45]Van Aerde M. and H. Rakha. INTEGRATION Release 2.30 for Windows:User's Guide[R], Virginia Tech Transportation Institute, Blacksburg, Virginia,2002.
    [46]Dixon K. K., C. H. Wu, W. Sarasua, and J, Daniel. Estimating Free-Flow Speed of Rual Multilane Highways [J]. Transportation Research Record,2007,1678:73-82.
    [47]Iwasaki M. Empirical Analysis of Congested Traffic Flow Characteristics and Free Speed Affected by Geometric Factors on an Intercity Expressway [J]. Transportation Research Record,1991,1320:242-250.
    [48]Stewart J. A., H. Rakha and M. Van Aerde. Analysis of Temporal and Spatial Variability of Free Speed along a Freeway Segment [J]. Transportation Research Record,1995,1494:1-10.
    [49]Ibrahim A. T, and F. L. Hall. Effect of Adverse Weather Conditions on Speed-Flow-Occupancy Relationships [J], Transportation Research Record,1994,1457: 184-191.
    [50]Brilon W. and M. Ponzlet. Variability of Speed-Flow Relationships on German Autobahns [J], Transportation Research Record,1996,1555:91-98.
    [51]May A.D. Capacity and Level of Service for Freeway Systems [R], Third Interim Report, Phase C-Tasks C1 through C10, June 12,1998.
    [52]Kyte M., Z. Khatib, and P. Shannon. Effect of Weather on Free-Flow Speed [J]. Transportation Research Record,2007,1776:60-68.
    [53]钟小明.平曲线半径及纵坡对高速公路自由流运行速度的影响[D].北京:北京工业大学硕士学位论文,2002.
    [54]李洪萍,裴玉龙,杨中良.快速路自由流速度及其影响因素[J].吉林大学学报(工学版),2007,27(4):772-776.
    [55]朱顺应,王红,王炜.自由流车速影响因素定量分析神经网络法[J].公路交通科技,2001,18(3):60-63.
    [56]张亚平.快速路基本路段交通流特性和通行能力研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2005.
    [57]钟连德,李秀文,荣建,任福田,周荣贵.城市快速路基本路段通行能力的确定[J].北京工业大学学报,2006,32(7):605-609.
    [58]郝媛,徐天东,干宏程,孙立军.城市快速路交通流特性研究[J].交通运输工程与信息学报,2006,4(4):21-27.
    [59]杨小宝,张宁,关羽.基于行为分析的道路通行能力中车道数因素研究[J].土木工程学报,2009,42(10):104-110.
    [60]Hess J. W. Capacities and Characteristics of Ramp-Freeway Connections [J]. Transportation Research Record,1963,27:69-115.
    [61]熊列强,王富.道路入口匝道连接处通行能力计算模型[J].华中科技大学学报(自然科学版),2006,9:91-93.
    [62]李秀文.城市快速路分合流区通行能力研究[D].北京:北京工业大学工学硕士学位论文,2005.
    [63]Lertworawanich P. and L. Elefteriadou. A Methodology for Estimating Capacity at Ramps Weaves Based on Gap Acceptance and Linear Optimization [J]. Transportation Research Part B,2003,37:459-483.
    [64]孟祥燕.高等级道路交织区通行能力研究[D].南京:东南大学硕士学位论文,2006.
    [65]Zhang Y. and H. Rakha. Systematic Analysis of Weaving Section Capacity [A].84th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2005.
    [66]Zhang Y. and H. Rakha. Analytical Procedures for Estimating Capacity of Freeway Weaving, Merge, and Diverge Sections [J]. Journal of Tranpsortation Engineering,2006,132:618-628.
    [67]Kim T., D. J. Lovell, and J. Paracha. A New Methodology to Estimate Capacity for Freeway Work Zones [A].80th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2001.
    [68]Xing J., H. Takahashi, and K. Iida. Analysis of Bottleneck Capacity and Traffic Safety in Japanese Expressway Work Zones [A].89th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2010.
    [69]Nikolic G., R. Pringle, K. Bragg, and D. Mendoza. Expressway Single-Lane Work Zone Capacities with Commercial Vehicle Impacts [A].89th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2010.
    [70]Lorenz, M., and L. Elefteriadou. Defining Freeway Capacity as a Function of Breakdown Probability [J]. Transportation Research Record,2001,1776:43-51.
    [71]Brilon, W., J. Gerstefeldt, and M. Regler. Reliability of Freeway Traffic Flow:A stochastic Concept of Capacity [A]. Transportation and Traffic Theory, Proceedings of the 16th International Symposium on Transportation and Traffic Theory, Elsevier Science,2005: 125-144.
    [72]Ozguven, E. E., and K. Ozbay. Nonparametric Bayesian Estimation of Freeway Capacity Distribution from Censored Observations [J]. Transportation Research Record,2008,2061: 20-29.
    [73]Zhao N. L. and L. Yu. Statistical Distribution of Capacities on Ring-Road Expressways of Beijing Based on Bound-Line Analysis [A].89th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2010.
    [74]郭继孚,全永案,郑猛,李先.北京城市快速路速度-流量研究[J],城市交通,2000,24(11):42-44.
    [75]北京交通大学.奥林匹克公园周边地区道路交通仿真系统研究[R].北京:北京交通大学,2007.
    [76]北京交通大学.北京市路网可靠性研究[R].北京:北京交通大学,2007.
    [77]北京交通大学.城市路网动态评估与分析预报模型[R].北京:北京交通大学,2008.
    [78]高奖.大城市快速路规划与设计关键问题研究[D].南京:东南大学硕士学位论文,2006.
    [79]陈琨.基于移动源数据的城市路网行程时间可靠性评价模型与算法[D].北京:北京交通大学博士学位论文,2008.
    [80]Gerlaugh D.L., M. J. Huber. Traffic Flow Theory [R]. Transportation Research Board Special Report.1976.
    [81]荆便顺.识别路段交通平均速度的一种相关分析法[J].中国公路学报,1995年,8(Ⅰ):28-32,38.
    [82]耿彦斌.城市道路交通流数据质量控制理论与模型[D].北京:北京交通大学博士学位论文,2006.
    [83]Polus, A. and Pollatschek M. A., Stochastic Nature of Freeway Capacity and Its Estimation [J]. Canadian Journal, Vol.29,2002, pp.842-852.
    [84]Jia, A. X., B. M. Williams and N. M. Rouphail. Identification and Calibration of Site Specific Stochastic Freeway Breakdown and Queue Discharge [A].89th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2010.
    [85]Zhao N. L., L. Yu, Y. B. Geng, and X. M. Chen. Support Vector Machine-Based Approach to Data-Layer Multi-Source ITS Data Fusion [J]. Journal of Transportation Systems Engineering and Information Technology.2007,7(2):32-38.
    [86]中华人民共和国交通部.JTG B01——2003,公路工程技术标准[S].北京,人民交通出版社,2004:57.
    [87]钟连德,荣建,孙小端. 关于高架快速路车道宽度设置的探讨[J]. 公路交通科技,2006,23(10):117-119.
    [88]王芳.快速路基本路段通行能力调查与分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005.
    [89]韩胜娟.SPSS聚类分析中数据无量纲化方法比较[J].科技广场,2008,3:229-231.
    [90]XU R, DONALDW. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks,2005,16(3):645-678.
    [91]Maulik U, Bandyopadhay S. Genetic alagorithm-based clustering technique [J]. Pattern Recognition,2000,33(9):P1455-1465.
    [92]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2009.
    [93]王小平,曹立明.遗传算法——理论应用与软件实现[M].西安:西安交通大学出版社,2003.
    [94]史忠植.知识发现[M].北京:清华大学出版社,2002.
    [95]武兆慧,张桂娟,刘希玉.基于模拟退火遗传算法的聚类分析[J].计算机应用研究,2005,12:P24-26.
    [96]Mehdi A. and Y. L. Zhang. Categorizing Free Flow Condition Using Clustering Methods [A]. 89th Transportation Research Board Annual Meeting CD-ROM, Washington, D.C.,2010.
    [97]王亚琴,朱扬勇.路网交通流的空间聚类分析[J].计算机研究与发展,2007,44(Suppl.):169-175.
    [98]郭伟,姚亚丹,付毅,胡坚明,刘宁.区域交通流特征提取与交通状态评估方法研究[J].公路交通科技,2005,22(7):101-104,114.
    [99]Wang D. H., Z. S. Yang, and H. Zhang. Cluster Analysis Used in Dealing with Traffic Flow Information [A]. IEEE IVEC’99,1999,1:114-116.
    [100]Krishna K. and M. Narasimha Murty. Genetic K-Means Alogrithm [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,1999,29(3):434-439.
    [101]张长胜,孙吉贵,杨凤芹,张慧杰.一种基于PSO的动态聚类算法[J].计算机研究与发 展,2007,44(z2):21-23.
    [102]李永森,杨善林,胡笑旋,等.空间聚类算法中的K值优化问题研究[J].系统仿真学报,2006,18(3):P574-576.
    [103]刘靖明,韩丽川,侯立文.基于粒子群的K-均值聚类算法[J].系统工程理论与实践,2005,6(3):P55-58.
    [104]覃煜, 晏克非.高架道路上匝道通行能力理论模型研究[J].武汉交通科技大学学报,2000,24(6):612-614.
    [105]张云颜,李文权.高速公路入口匝道通行能力模型研究[J].交通运输工程与信息学报,2004,2(3):88-92.
    [106]钟连德,荣建,孙小端,任福田.快速路交织区运行分析研究[J].北京工业大学学报,2006,32(10):907-912.
    [107]交通部公路科学研究所,北京工业大学.高速公路基本路段通行能力研究报告[R].北京:北京工业大学,2000.
    [108]杨小宝,张宁.道路通行能力中车道数因素的数学分析[J].武汉理工大学学报(交通科学与工程版),2008,32(4):603-606.
    [109]何晓群.实用回归分析[M].高等教育出版社,北京,2007.
    [110][美]约翰.内特.张勇,王国明,赵秀珍译.应用线性回归模型[M].中国统计出版社,北京,1990.
    [111]杨方.基于PEMS的轻型车热稳状态下微观尾气排放模型[D].北京交通大学博士论文,2005.
    [112]赵慧.基于二源数据的城市路网动态OD估计模型及算法[D].北京交通大学博士论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700