基于吸尘性能的吸尘口结构研究与流场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空吸尘车是一种利用负压工作的新型路面清扫车辆。吸尘口是其气路系统的关键部件,对吸尘效率、气路阻力、工作可靠性有决定性作用。
     国内扫路车主要有吸扫结合式、纯吸式、纯扫式三种,吸扫结合式占主导地位,但纯吸式在特定场合有很大优势,逐渐成为扫路车的一个重要的发展方向。文章首先分析了真空吸尘车的工作物质即空气和固体尘粒的物理性质,阐述了空气的流动规律及其二者之间的力学作用,从流体力学角度概括了尘粒起动的原理:在气流作用下尘粒之间发生碰撞,碰撞所产生的冲击力引起尘粒的起跳。计算了砂石、煤粉、水泥、铁粉、铁片及铁矿石等尘粒的起动速度,为吸尘口设计提供了理论依据。其次,分析了吸尘口的结构参数:排气口面积S、吸尘口长L、宽度B、收缩角α、倾斜角β。S决定了在一定流量的条件下排气管的气流速度,该速度决定了吸尘口输送尘粒进入集尘箱的能力。L关系到吸尘车的单次作业宽度,L越大单次作业宽度越大,但同时会降低吸尘口边角的吸尘效果。B关系到侧面进气的流量值和尘粒是否有足够的起动时间。收缩角α越大,吸尘口内的速度分布越不均匀,压力损失越大,一般不应超过150°。适当增加倾斜角β有助于降低气流带走尘粒的难度。再次,进行了吸尘口结构创新,建立了吸尘口参数化实体模型,该模型能实现所有参数可调,有效缩短设计周期。通过计算流体力学分析了所选设计方案的流场分布,流场分布表明设计方案存在一定的合理性。为检验吸尘口设计方案的可行性,设计制造了用于吸尘口实验的实验台,该实验台运用变频调速原理实现风机转速连续可调。通过实验对设计方案进行了实验分析和论证,吸尘口的各项指标满足了设计要求。大量的现场试验验证了吸尘口能够有效吸清多种尘粒与粉尘,满足了实际使用的要求。
Vacuum sweeper vehicle is a kind of new road sweeping vehicle which applies minus air pressure. Dust sucking mouth is one of its key parts and decides dust sucking efficiency, air resistance and work reliability.
     There are three types of road sweeping vehicle in domestic. They include the combination of sucking and sweeping vehicle, only sucking vehicle and only sweeping vehicle. At present ,the first kind dominates the domestic market, but the vacuum sweeping vehicle is becoming popular because of its good performance in some special working condition. So the vacuum sweeping vehicle is an important development direction. This paper analyzed physical character of working material as air and dust particles, the principle of air flowing and the force interaction between air and dust particles. It explained the particle pick-up principle from the angle of hydrodynamics. The principle is that solid particles collide with each other under the effect of air flow and the wallop caused the pick-up of dust particles. It computerized the pick-up speed of rock, coal powder, cement, iron powder, iron piece, iron mineral, which supplies academic basis for dust sucking mouth designing. It analyzed the structure parameters of dust sucking mouth: vent face area S, its length L, width B, shrinking angleα, tilting angleβ, and pointed out their influence on the sucking efficiency. S is related to air flow speed in the vent tube under a certain flux and this speed decides the ability of dust sucking mouth to send the particles to the collecting box. L is associated with the single working width. The single working width increases with the increase of L. But too long L will decrease the side sucking ability. B is related to the flux of the side entrance and whether there is enough time for the particle’s pick-up. The increase of shrink angle will decrease the equity of air speed distribution in dust sucking mouth, increase pressure loss and generally it must be less than 150°.A smaller titling angleβwill reduce the degree of difficulty in taking away the particles by air flow. Then it designed innovative structure of dust sucking mouth and it built the parameterized solid model and all parameters of this model are adjustable, which shortens the designing period. It simulated the flow field distribution by CFD which verifying the rationality of the design. In order to test the sucking mouth, it also designed the experiment equipment and manufactured it. This experiment equipment applied frequency conversion to change the fan speed continuously. The experiments on the experiment equipment indicated the designed dust sucking mouth had met the designing index. Lots of experiment on the spot verified that this design of the sucking mouth was successful in sucking kinds of dust particles and meeting the practical needs.
引文
[1] C. Arden Pope, III, David V. Bates, Mark E. Raizenne. Health Effects of Particulate Air Pollution: Time for Reassessment[J]. Environmental Health Perspectives,1995,103(5):472-480
    [2]方爱民,郭青云,梁保英.火电厂灰场扬尘治理[J].电力环境保护,1997,13(2):34-37
    [3]贾素云,薛扬声,王进山.上兰地区空气中尘污染来源的研究[J].华北工学院学报,2000,21(2):178-181
    [4]李钢,樊守彬,等.北京交通扬尘污染控制研究[J].城市管理与科技,2006,6(4):151-152
    [5]Yu-MinChang, Chihe-Mei Chou, Kuo-Tung Su,etc. Effectivness of street sweeping and washing for controlling TSP[J]. Atmospheric Environment, 2005,39(10):1891-1902
    [6]李永佑.我国环保清洁车辆市场分析与研究[J].中国机电工业,2002,(9):18-20
    [7]汪澍.真空吸尘车在国内扫路车市场另辟蹊径[J].商用汽车杂志,2007,(7):88-90
    [8]罗善瞀.我国扫路车的发展和研究方向[J].建设机械技术与管理,2005,(5):46-48
    [9]孙洪亮. 清扫吸尘口装置的研究[D]. 鞍山钢铁学院硕士学位论文,2000.3
    [10]袁丹红.扫路车吸嘴结构的改进[J].专用装置,2005,(2):36-37
    [11]徐宁,吴三达.吸扫式扫路车的总体设计与研究[J].商用汽车杂志,2006,(6):83-85
    [12]曾广银,等.公路清扫车吸尘系统仿真设计[J]. 系统仿真学报, 2004,16(12):2770-2773
    [13] 徐 云 , 等 . 计 算流 体 力 学 在 清 扫 车 仿 真 分 析 中 的 应 用 研 究 [J]. 系 统 仿 真 学 报 , 2004,16(2):270-273
    [14]李必红.真空吸尘车气路系统的设计研究[D].上海交通大学硕士学位论文,2005.03
    [15]施天亮.全气动干式吸尘车[P].中国:CN1456752A,2003.11.19
    [16]王琨. 吸尘罩口设计中的几个问题[J]. 水泥,1997,(6):21-23
    [17]谢立扬.国外路面清扫车概况[J].筑路机械与施工机械化,1991,8(35):2-5
    [18]Gareth Peel, Maarten Michielen, Graham Parker. Some aspects of road sweeping vehicle automation[R]. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings , 1:337-342
    [19]Daniel P.Strauser, Robert E.Field.Street Sweeper Pick-up Head[P].United States:5839157,NOV.24,1998
    [20]Robert A.Jajko, Oliver M.Julien. Dirt Deflector For Cleaning Heads[P].United States:4807327,Feb.28,1989
    [21] Balachandra R. Evaluating Modular Design [J]. Decision Sciences Institute 2002 Proceedings, SanDiego:CA, Nov.22-26,2002
    [22] 贾延林. 模块化设计[M]. 北京: 机械工业出版社,1993
    [23]赵韩,宋晖,朱家诚.基于 SolidWorks 的模块化设计关键技术研究[J].组合机床与自动化加工技术,2004,(11):24-26
    [24]黄宗益.工程机械机电一体化、机器人化[J].中国机械工程,1996,7(3):64-67
    [25]吴大鹿.加快相关技术的发展提高汽车电子控制水平[J].上海汽车,1997,(10):24-27
    [26]周光垌,严宗毅,等编. 流体力学(上、下册)[M]. 北京:高等教育出版社,1992.9
    [27]张殿印,王纯,主编. 除尘工程设计手册[M]. 北京:化学工业出版社,2003.6
    [28]韩占忠,王敬,兰小平,编. FLUENT 流体工程仿真计算实例与应用[M]. 北京:北京理工大学出版社,2004.6
    [29]孔珑.两相流体力学[M].北京:高等教育出版社,2004.1
    [30]凌裕全,无正.风沙运动的动态摄影实验[J].地理学报,1980,35(2):174-181
    [31]李战军,郑炳旭. 尘粒起动机理的初步研究[J]. 爆破,2003,20(4):17-19
    [32]Nickling WG. The initiation of particle movement by wind [J].Sedimentology, 1998,35(3):499-511
    [33] Kimberly S.Heyden, etc. Effect of particle characteristics on particle pickup velocity[J]. Power Techonology,2003,131(1):7-14
    [34]Haim Kalman, Andrei Satran, Dikla Meir, etc. Pickup(critical) speed of particles[J].Power technology, 2005,160(2):103-113
    [35]华绍曾,杨学宁,等编译.实用流体阻力手册[M].北京:国防工业出版社,1985
    [36]刘娟,贾磊.基于 SIMULINK 的物料悬浮速度仿真研究[J].仿真技术,2007,23(1):267-269
    [37]H.K.Versteeg, W.Malalasekera. An introduction to computational fluid dynamics[M]. World publishing Cooperation, 2007
    [38] Feng-Dong Yuan, Shi-Jun You. CFD simulation and optimization of the ventilation for subway side-plateform[J]. Tunnelling and Underground Space Technology ,2007,22(4):474-482
    [39] C. D. Meinhart, S. T. Wereley, J. G. Santiago. PIV measurements of a microchannel flow[J]. Experiments in Fluids, 1999, 27(5):414-419
    [40]Ronald J.Adrian. Particle-Imaging Techniques For Experimental Fluid Mechanics[J].Annual Review of Fluid Mechanics,1991,23:261-304
    [41]朱万成,唐春安,李晓等.地下工程中的正交有限元分析方法及其应用[J].工程地质学报,1999,7(4):337-343
    [42]Li Xinfeng, Mei Chi, Zhou Ping, etc. Study on Mathematical Model of Multistage and Multiphase Chemical Reactions in Flash Furnace[J]. Transactions of Nonferrous Metals Society of China, 2003, 12(1):203-207
    [43]Rudi Studer,V.Richard Benjamins,Dieter Fensel.Knowledge engneering:Principles and methods[J].Data&knowledge Engineering,1998,25(1):161-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700