基于元胞自动机的交通流建模及实时诱导策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会生产力水平的不断提高,交通运输业在人类社会生活中的地位越来越重要,其发展直接影响到社会的文明程度和经济的可持续发展。交通运输业的快速发展在给我们的生活带来极大便利的同时,也带来了一系列社会问题,主要表现在以下三个方面:交通拥堵、交通事故和环境污染。要想从根本上解决交通运输业发展带来的交通拥堵等社会问题,不仅需要加强交通基础设施的建设,还需要对交通系统进行系统科学的研究,揭示交通系统的规律和特性,从而更好地指导交通系统的建设和管理。交通流理论是解释交通现象、分析交通问题和指导交通管理的研究基础,能够有效地指导交通拥堵等问题的解决。本文在交通流建模、交通流复杂性的定量分析以及基于信息反馈的交通流诱导策略这三个方面进行了研究,不仅有其深远的理论意义,而且具有重要的工程应用价值。
     (1)基于刹车灯规则的交通流元胞自动机建模研究
     为了研究微观意义上车辆之间的相互作用对宏观意义上交通流演化的影响,并揭示三相交通流中同步流的产生机制以及同步流与宽运动堵塞之间的相变机制,本文基于刹车灯规则,在Tian模型的基础上,考虑确定性减速对随机慢化的影响,改进驾驶行为的建模规则,提出改进刹车灯模型。改进刹车灯模型修改了加速规则和随机慢化规则,不仅使车辆之间的相互作用规则更加符合驾驶员的实际驾驶行为,而且还避免了车辆过度减速现象的发生。通过对基本图和时空图的定性分析,发现该模型不仅能够很好地模拟交通流的三种状态:自由流、同步流和宽运动堵塞,而且还能够很好地描述交通流演化的复杂性特征。
     (2)基于多尺度熵的交通流复杂性定量分析
     时空图可以定性地描述交通流演化的复杂特性,但是,仅对交通流复杂性进行定性分析还不足以深刻认识交通流的本质特征。为了定量度量交通流的复杂性,以实现不同状态下的交通流复杂性对比,并分析交通流元胞自动机模型中各个参数对交通流复杂性的影响,本文以NS模型和前述提出的改进刹车灯模型为例,采用多尺度熵方法,以车头时距时间序列为研究对象,定量分析了车头时距在不同时间尺度的复杂性。分析结果表明:对于NS模型,密度对车头时距复杂性的影响较大,随机慢化概率对车头时距复杂性的影响较小;对于改进刹车灯模型,同步流的出现会显著增加车头时距的复杂性。
     (3)基于信息反馈的交通流诱导策略研究
     为了达到理想的交通流诱导效果,需要基于实时交通信息,制定合理的交通信息反馈策略。此外,基于交通流元胞自动机模型,可以实现不同场景下的交通流模拟和动态演化,从而为验证交通信息反馈策略的有效性提供基础。本文首先从ITS的实际应用现状出发,研究车联网覆盖程度对典型信息反馈策略性能的影响,为车联网环境下信息反馈策略的选取提供参考;然后,提出了一种新的信息反馈策略――加权平均速度反馈策略,并分别基于NS模型和前述改进刹车灯模型,与典型信息反馈策略进行性能对比和分析,结果表明:该策略不仅性能更好,而且具有良好的鲁棒性,使得该策略具有很强的实用性和适用性。
     论文创新点在于:(1)提出了基于刹车灯规则的改进模型,揭示了同步流和宽运动堵塞之间相变的随机特性。(2)将多尺度熵方法引入到交通流分析中,实现了交通流复杂性的定量度量。(3)分析了浮动车比例对典型信息反馈策略性能的影响,为车联网环境下信息反馈策略的选取提供参考。(4)提出了加权平均速度反馈策略(WMVFS),在不同的应用场景下都具有很好的交通流诱导性能。
With the improvement of the level of social productive forces, transportationindustry is more and more important in human society because it influents thecivilization degree of society and the sustainable development of economy. However,the rapid development of transportation industry brings great convenience to our life,as well as several social problems, such as traffic congestion, traffic accidents andenvironmental pollution. Efforts on the transportation infrastructure are not sufficientto solve the transportation problems. The systematic and scientific research of trafficsystem is also very important for the reveal of transportation system for the laws andcharacteristics and the guidance of development and management of transportationsystem. Traffic flow theory provides theoretical basis to explain the trafficphenomena, analyze the traffic problems and guide the traffic management, whichcan help to solve the social problems, such as traffic congestion. In this dissertation,traffic flow modeling, quantitative analysis of traffic flow complexity and trafficflow guidance strategy based on information feedback are focused. The research inthe dissertation has academic significance and promising application.
     (1) Traffic flow cellular automaton model based on brake light rules
     To investigate the interaction of vehicles from micro aspect and the influence ofthe interaction on traffic flow evolution from macro aspect, an improved brake lightmodel is proposed based on Tian model considering the influence of deterministicdeceleration on randomization and improving of modeling rules for drivingbehaviors, with which the generation mechanism of synchronized flow inthree-phase traffic theory and the mechanism of phase transitions betweensynchronized flow and wide moving jam are explored. The improved brake lightmodel modifies the acceleration and randomization rules. The modifications makethe interaction between vehicles more realistic and avoid the phenomenon of over-deceleration. The qualitative analyses of the fundamental diagram andspatial-temporal diagrams show that the new model can reproduce the three trafficphases: free flow, synchronized flow and wide moving jam. In addition, the newmodel can well describe the complexity of traffic flow evolution.
     (2) Quantitative complexity analysis of traffic flow based on the multi-scaleentropy method
     The spatial-temporal diagrams can describe the complexity of traffic flowevolution qualitatively. However, qualitative analysis is not enough for thecomplexity analysis of traffic flow. To describe the complexity of traffic flowquantitatively for further investigation, such as the comparison of complexity oftraffic flow between different phases and the influence of parameters of traffic flowmodel on the complexity of traffic flow, multi-scale entropy method is used toquantitatively analyze the complexity of time headway at different time scales. Thetime series of time headway are generated based on NS model and our improvedbrake light model, respectively. Analysis results show that for NS model, the vehicledensity has larger influence on the complexity of time headway than randomizationprobability does; for our improved brake light model, the emergence of synchronizedflow will increase the complexity of time headway greatly.
     (3) Traffic flow guidance strategy based on information feedback
     To fulfill successful traffic flow guidance, reasonable information feedbackstrategies based on real-time traffic information are needed. In addition, based on thetraffic flow automaton model, traffic flow simulation and evolution with differentscenarios can be achieved to provide basis for the validation of traffic informationfeedback strategies. In this dissertation, the application of Intelligent TransportationSystem (ITS) is discussed and the influence of the coverage of Internet of Vehicleson the performance of typical information feedback strategies is analyzed, which canprovide a reference for the selection of information feedback strategies with differentcoverage of Internet of Vehicles. And a new information feedback strategy is proposed, which is the Weighted Mean Velocity Feedback Strategy (WMVFS).Based on the NS model and our improved brake light model, the performances ofWMVFS and typical information feedback strategies are compared and thecharacters of WMVFS are analyzed. Results show that our new strategy has betterperformance and better robustness, which means WMVFS has better practicabilityand applicability.
     The main contributions are as follows:(1) The improved brake light model isproposed, which can reveal the random character of phase transitions betweensynchronized flow and wide moving jam.(2) The multi-scale entropy method is usedin the analysis of traffic flow, which can quantitatively measure the complexityanalysis of traffic flow.(3) The influence of the proportion of float cars on theperformance of typical information feedback strategies is analyzed, which canprovide a reference for the selection of information feedback strategies in scenarioswith Internet of Vehicles.(4) The Weighted Mean Velocity Feedback Strategy isproposed, which has good performance for traffic flow guidance in differentapplication scenarios.
引文
[1]陆化普,智能运输系统[M],北京:人民交通出版社,2002.
    [2]美国加大公共交通系统投资, http://auto.gasgoo.com/News/2012/03/060445584558344.shtml.
    [3]2013年中国交通建设投资大观, http://weekly.lmjx.net/2013/0226.html.
    [4]中国统计年鉴2012[M],北京:中国统计出版社,2012.9.
    [5]普华永道:预计2012年中国汽车销售增长10%, http://industry.caijing.com.cn/2012-04-24/111825498.html.
    [6]华盛顿再次当选美国“首堵”, http://world.people.com.cn/n/2013/0208/c157278-20470413.html.
    [7]牛文元,刘怡君,2012中国新型城市化报告[M],科学出版社,2012.
    [8]2012年全球道路交通事故已夺走120万人生命, http://www.chinanews.com/gj/2012/11-19/4339104.shtml.
    [9]2011年车祸死亡人数62387人, http://www.bjshigu.com/anli/shigu/1681.html.
    [10]刘慕仁,薛郁,孔令江,城市道路交通问题与交通流模型[J],力学与实践,2005,27(1):1-6.
    [11] Tsigaridis K., Kanakidou M., Secondary Organic Aerosol Importance in the FutureAtmosphere[J], Atmospheric Environment,2007,41(22):4682-4692.
    [12]刘丽莉,姚志良,机动车尾气排放VOCs研究进展[J],环境科学与技术,2012,35(3):68-74.
    [13]罗玮,王伯光,刘舒乐,何洁,王琛,广州大气挥发性有机物的臭氧生成潜势及来源研究[J],环境科学与技术,2011,34(5):80-86.
    [14] Chowdhury D., Santen L., Schadschneider A., Statistical Physics of Vehicular Traffic andSome Related Systems[J], Physics Reports,2000,329:199-329.
    [15] Nagel K., Rickert M., Parallel Implementation of the TRANSIMS Micro-Simulation[J],Parallel Computation,2001,27(12):1611-1639.
    [16] Helbing D., Hennecke A., Shvetsov V., Treiber M., MASTER: Macroscopic TrafficSimulation Based on a Gas-Kinetic, Non-Local Traffic Model[J], Transportation ResearchPart B,2011,35(2):183-211.
    [17]袁文平,蔡晓禹,杜豫川,上海城市快速路交通监控系统架构及模型[J],同济大学学报(自然科学版),2007,35(3):330-335.
    [18]吴清松,姜锐,李晓白,贾斌,胡茂彬,微观宏观方法相结合推进交通流理论新发展[J],交通运输系统工程与信息,2005,5(3):108-115.
    [19]贾斌,高自有,李克平,李新刚,基于元胞自动机的交通系统建模与模拟[M],北京:科学出版社,2007.
    [20]李力,姜锐,贾斌,赵小梅,现代交通流理论与应用卷I-高速公路交通流[M],北京:清华大学出版社,2011.
    [21] Kerner B.S., The Physics of Traffic[M], Springer,2004.
    [22] Kerner B.S., Introduction to Modern Traffic Flow Theory and Control[M], Springer,2009.
    [23] Nagel K., Wagner P., Woesler R., Still Flowing: Approaches to Traffic Flow and TrafficJam Modeling[J], Operations Research,2003,51(5):681-710.
    [24] Edie L.C., Car-Following and Steady-State Theory for Noncongested Traffic[J],Operations Research,1961,9(1):66-76.
    [25] Kerner B.S., Rehborn H., Experimental Features and Characteristics of Traffic Jams[J],Physical Review E,1996,53(2): R1297-R1300.
    [26] Hall F.L., Allen B.L., Gunter M.A., Empirical Analysis of Freeway Flow-DensityRelationships[J], Transportation Research Part A,1986,20(3):197-210.
    [27] Helbing D., Traffic and Related Self-Driven Many-Particle Systems[J], Reviews ofModern Physics,2001,73(4):1067-1141.
    [28] Kerner B.S., Empirical Macroscopic Features of Spatial-Temporal Traffic Patterns atHighway Bottlenecks[J], Physical Review E,2002,65(4):046138.
    [29] Kerner B.S., Experimental Features of Self-Organization in Traffic Flow[J], PhysicalReview Letters,1998,81(17):3797-3800.
    [30] Safonov L.A., Tomer E., Strygin V.V., Ashkenazy Y., Havlin S., Delay-Induced Chaos withMultifractal Attractor in a Traffic Flow Model[J], Europhysics Letters,2002,57(2):151-157.
    [31] Kinzer J.P., Application of the Theory of Probability to Problem of Highway Traffic[D],B.C.E thesis, Politech. Inst. Brooklyn,1933.
    [32] Adams W.F., Road Traffic Considered as a Random Series[J], Journal of the ICE,1936,4(1):121-130.
    [33] Lighthill M.J., Whitham G.B., On Kinematic Waves. II. A Theory of Traffic Flow on LongCrowded Roads[J], Proceedings of the Royal Society A,1955,229:317-345.
    [34] Richards P.I., Shock Waves on the Highway[J], Operations Research,1956,4(1):42-51.
    [35] Payne H.J., Models of Freeway Traffic and Control[J], Mathematical Methods of PublicSystems,1971,1(1):51-56.
    [36] Payne H.J., Freflo: a Macroscopic Simulation Model of Freeway Traffic[J], TransportationResearch Record,1979,772:68-77.
    [37] Kuhne R.D., Macroscopic Freeway Model for Dense Traffic Stop-Start Waves andIncident Detection[C], Proc. of the9th International Symposium on Transportation andTraffic Theory,1984:21-42.
    [38] Kerner B.S., Konhauser P., Cluster Effect in Initially Homogeneous Traffic Flow[J],Physical Review E,1993,48(4): R2335-R2338.
    [39] Daganzo C.F., Requiem for Second-Order Fluid Approximations of Traffic Flow[J],Transportation Research Part B,1995,29(4):277-286.
    [40] Zhang H.M., A Theory of Nonequilibrium Traffic Flow[J], Transportation Research Part B,1998,32(7):485-498.
    [41] Jiang R., Wu Q.S., Zhu Z.J., A New Continuum Model for Traffic Flow and NumericalTests[J], Transportation Research Part B,2002,36(5):405-419.
    [42] Xue Y., Dai S.Q., Continuum Traffic Model with the Consideration of Two Delay TimeScales[J], Physical Review E,2003,68(6):066123.
    [43] Prigogine I., Herman R., Kinetic Theory of Vehicular Traffic[M], Elsevier, New York,1971.
    [44] Paveri-Fontana S.L., On Boltzmann-Like Treatments for Traffic Flow: a Critical Reviewof the Basic Model and an Alternative Proposal for Dilute Traffic Analysis[J],Transportation Research,1975,9(4):225-235.
    [45] Hoogendoorn S.P., Bovy P.H.L., Generic Gas-Kinetic Traffic Systems Modeling withApplications to Vehicular Traffic Flow[J], Transportation Research Part B,2001,35(4):317-336.
    [46] Pipes L.A., An Operational Analysis of Traffic Dynamics[J], Journal of Applied Physics,1953,24(3):274-281.
    [47] Chandler R.E., Herman R,. Montroll E.W., Traffic Dynamics: Studies in Car Following[J],Operations Research,1958,6(2):165-184.
    [48] Newell G.F., Nonlinear Effects in the Dynamics of Car Following[J], Operations Research,1961,9(2):209-229.
    [49] Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y., Dynamical Model ofTraffic Congestion and Numerical Simulation[J], Physical Review E,1995,51(2):1035-1042.
    [50] Helbing D., Tilch B., Generalized Force Model of Traffic Dynamics[J], Physical Review E,1998,58(1):133-138.
    [51] Jiang R., Wu Q.S., Zhu Z.J., Full Velocity Difference Model for a Car-FollowingTheory[J], Physical Review E,2001,64(1):017101.
    [52] Chopard B., Droz M., Cellular Automata Modelling of Physical Systems[M],祝玉学,赵学龙(译),物理系统的元胞自动机模拟,北京:清华大学出版社,2003.
    [53] Gardner M., Mathematical Games: the Fantastic Combinations of John Conway's NewSolitaire Game “life”[J], Scientific American,1970,223:120-123.
    [54] Wolfram S., Statistical Mechanics of Cellular Automata[J], Reviews of Modern Physics,1983,55(3):601-644.
    [55] Wolfram S., Cellular Automata as Models of Complexity[J], Nature,1984,311:419-424.
    [56] Norman H., Packard N.H., Wolfram S., Two-Dimensional Cellular Automata[J], Journal ofStatistical Physics,1985,38(5-6):901-946.
    [57] Wolfram S., Theory and Application of Cellular Automata[M], Singapore: WorldScientific,1986.
    [58] Wolfram S., A New Kind of Science[M], Wolfram Media,2002.
    [59] Cremer M., Ludwig J., A Fast Simulation Model for Traffic Flow on the Basis of BooleanOperations[J], Mathematics and Computers in Simulation,1986,28(4):297-303.
    [60] Nagel K., Schreckenberg M., A Cellular Automaton Model for Freeway Traffic[J], Journalde Physique I,1992,2(12):2211-2229.
    [61] Biham O., Middleton A., Levine D., Self-Organization and a Dynamical Transition inTraffic-flow Models[J], Physical Review A,1992,46(10): R6124-R6127.
    [62] Takayasu M., Takayasu H..1/f Noise in a Traffic Model[J], Fractals,1993,1(4):860-866.
    [63] Benjamin S.C., Johnson N.F., Hui P.M., Cellular Automata Models of Traffic Flow Alonga Highway Containing a Junction[J], Journal of Physics A,1996,29(12):3119-3127.
    [64] Barlovic R., Santen L., Schadschneider A., Schreckenberg M., Metastable States inCellular Automata for Traffic Flow[J], European Physical Journal B,1998,5(3):793-800.
    [65] Schadschneider A., Schreckenberg M., Traffic Flow Models with 'Slow-to-Start' Rules[J],Annalen der Physik,1997,509(7):541-551.
    [66] Li X.B., Wu Q.S., Jiang R., Cellular Automaton Model Considering the Velocity Effect ofa Car on the Successive Car[J], Physical Review E,2001,64:066128.
    [67] Knospe W., Santen L., Schadschneider A., Schreckenberg M., Towards a RealisticMicroscopic Description of Highway Traffic[J], Journal of Physics A,2000,33(48):L477-485.
    [68] Jiang R., Wu Q.S., Cellular Automata Models for Synchronized Traffic Flow[J], Journal ofPhysics A,2003,36:381-389.
    [69] Kerner B.S., Klenov S.L., Wolf D.E., Cellular Automata Approach to Three-phase TrafficTheory[J], Journal of Physics A,2002,35(47):9971-10013.
    [70] Fukui M., Ishibashi Y., Traffic Flow in1D Cellular Automaton Model Including CarsMoving with High Speed[J], Journal of the Physical Society of Japan,1996,65(6):1868-1870.
    [71] Fu C.J., Wang B.H., Yin C.Y., Zhou T., Hu B., Gao K., Hui P.M., Hu C.K., AnalyticalStudies on a Modified Nagel-Schreckenberg Model with the Fukui-Ishibashi AccelerationRule[J], Chaos, Solitons&Fractals,2007,31(3):772-776.
    [72] Li X.G., Gao Z.Y., Jia B., Jiang R., Deceleration in Advance in the Nagel-SchreckenbergTraffic Flow Model[J], Physica A,2009,388:2051-2060.
    [73] Nagel K., Paczuski M., Emergent Traffic Jams[J], Physical Review E,1995,51(4):2909-2918.
    [74] Xue Y., Dong L.Y., Li L., Dai S.Q., Effects of Changing Orders in the Update Rules onTraffic Flow[J], Physical Review E,2005,71:026123.
    [75] Zhu H.B., Ge H.X., Dong L.Y., Dai S.Q., A Modified NaSch Model withDensity-Dependent Randomization for Traffic Flow[J], European Physical Journal B,2007,57:103-108.
    [76] Hu S.X., Gao K., Wang B.H., Lu Y.F., Fu C.J., Abnormal Hysteresis Effect and PhaseTransitions in a Velocity-Difference Dependent Randomization CA model[J], Phyaica A,2007,386:397-406.
    [77] Li Q.L., Wang B.H., Liu M.R., An Improved Cellular Automaton Traffic ModelConsidering Gap-Dependent Delay Probability[J], Physica A,2011,390:1356-1362.
    [78] Lee H.K., Barlovic R., Schreckenberg M., Kim D., Mechanical Restriction versus HumanOverreaction Triggering Congested Traffic States[J], Physical Review Letters,2004,92(23):238702.
    [79]彭莉娟,康瑞,考虑驾驶员特性的一维元胞自动机交通流模型[J],物理学报,2009,58(2):830-835.
    [80] Larraga M.E., Alvarez-Icaza L., Cellular Automaton Model for Traffic Flow Based onSafe Driving Policies and Human Reactions[J], Physica A,2010,389:5425-5438.
    [81]魏丽英,应力天,基于元胞自动机的混合交通流机非摩擦干扰[J],系统工程理论与实践,2010,30(10):1909-1913.
    [82] Rickert M., Nagel K., Schreckenberg M., Latour A., Two Lane Traffic Simulations UsingCellular Automata[J], Physica A,1996,231(4):534-550.
    [83] Chowdhury D., Wolf D.E., Schreckenberg M., Particle Hopping Models for Two-LaneTraffic with Two Kinds of Vehicles: Effects of Lane-Changing Rules[J], Physica A,1997,235(3):417-439.
    [84] Knospe W., Santen L., Schadschneider A., Schreckenberg M., A Realistic Two-LaneTraffic Model for Highway Traffic[J], Journal of Physics A,2002,35(15):3369-3388.
    [85] Jia B., Jiang R., Wu Q.S., Hu M.B., Honk Effect in the Two-lane Cellular AutomatonModel for Traffic Flow[J], Physica A,2005,348:544-552.
    [86]吴大艳,谭惠丽,孔令江,刘慕仁,三车道元胞自动机交通流模型研究[J],系统工程学报,2005,20(4):393-397.
    [87] Kong X.J., Gao Z.Y., Li K.P., A Two-Lane Cellular Automata Model with Influence ofNext-Nearest Neighbor Vehicle[J], Communications in Theoretical Physics,2006,45(4):657-662.
    [88]谭满春,基于Agent与模糊逻辑的车辆换道仿真模型[J],系统工程学报,2007,22(1):40-45.
    [89] Qian Y.S., Shi P.J., Zeng Q., Ma C.X., Lin F., Sun P., Wang H.L., A Study on the Effects ofthe Transit Parking Time on Traffic Flow Based on Cellular Automata Theory[J], ChinesePhysics B,2010,19(4):048201.
    [90] Nagatani T., Anisotropic Effect on Jamming Transition in Traffic-Flow Model[J], Journalof the Physical Society of Japan,1993,62:2656-2662.
    [91] Nagatani T., Jamming Transition in the Traffic-Flow Model with Two-Level Crossings[J],Physical Review E,1993,48(5):3290-3294.
    [92] Chung K.H., Hue P.M., Gu G.Q., Two-Dimensional Traffic Flow Problems with FaultyTraffic Lights[J], Physical Review E,1995,51(1):772-774.
    [93] Fukui M., Oikawa H., Ishibashi Y., Flow of Cars Crossing with Unequal Velocities in aTwo-Dimensional Cellular Automaton Model[J], Journal of the Physical Society of Japan,1996,65:2514-2517.
    [94] Torok J., Kertesz J., The Green Wave Model of Two-Dimensional Traffic: Transitions inthe Flow Properties and in the Geometry of the Traffic Jam[J], Physica A,1996,231(4):515-533.
    [95] Chowdhury D., Schadschneider A., Self-Organization of Traffic Jams in Cities: Effects ofStochastic Dynamics and Signal Periods[J], Physical Review E,1999,59(2):R1311-R1314.
    [96]陈若航,盛昭瀚,具有中心车站的元胞自动机城市交通流模型[J],系统工程学报,2006,21(5):539-543.
    [97] Sun D., Jiang R., Wang B.H., Timing of Traffic Lights and Phase Separation inTwo-Dimensional Traffic Flow[J], Computer Physics Communications,2010,181(2):301-304.
    [98] Rescher N., Complexity: A Philosophical Overview[M], New Brunswick and London:Transaction Publishers,1998.
    [99]吴彤,复杂性概念研究及其意义[J],中国人民大学学报,2004,5:2-9.
    [100]李作敏,黄中祥,张亚平,高速公路交通流分形特性分析[J],中国公路学报,2000,13(3):82-85.
    [101]贺国光,马寿峰,冯蔚东,对交通流分形问题的初步研究[J],中国公路学报,2002,15(4):82-85.
    [102]贺国光,冯蔚东,基于R/S分析研究交通流的长程相关性[J],系统工程学报,2004,19(2):166-169.
    [103]裴玉龙,李洪萍,快速路交通流时间序列分形维数研究[J],公路交通科技,2006,23(2):115-119.
    [104] Meng Q., Khoo H.L., Self-Similar Characteristics of Vehicle Arrival Pattern onHighways[J], Journal of Transportation Engineering-ASCE,2009,135(11):864-872.
    [105] Shang P.J., Shen J.S., Multi-Fractal Analysis of Highway Traffic Data[J], Chinese Physics,2007,16(2):365-373.
    [106] Shang P.J., Lu Y.B., Kamae S., Detecting Long-Range Correlations of Traffic Time Serieswith Multifractal Detrended Fluctuation Analysis[J], Chaos, Solitons and Fractals,2008,36(l):82-90.
    [107] Zhang H., Fan J., Dong K.Q., Multifractality of Traffic Time Series[C], Proc. of2009Third International Symposium on Intelligent Information Technology Application,2009:493-496.
    [108] Nair A.S., Liu J.C., Rilett L., Gupta S., Non-Linear Analysis of Traffic Flow[C], Proc. of2001International IEEE Intelligent Transportation Systems,2001,8:25-29.
    [109] Shang P.J., Li X.W., Kamae S., Chaotic Analysis of Traffic Time Series[J], Chaos, Solitons&Fractals,2005,25(l):121-128.
    [110] Shang P.J., Li X.W., Kamae S., Nonlinear Analysis of Traffic Time Series at DifferentTemporal Scales[J], Physics Letters A,2006,357(4-5):314-348.
    [111] Lan L.W., Sheu J.B., Huang Y.S., Investigation of Temporal Freeway Traffic Patterns inReconstructed State Spaces[J], Transportation Research Part C,2008,16(1):116-136.
    [112] Wang L.J., Zhang H., Meng H.D., Wang X.Q., Nonlinear Analysis of Individual VehicleBehavior in Car Following[C], Proc. of the11th International IEEE Conference onIntelligent Transportation Systems,2008:265-268.
    [113] Safonov L.A., Tomer E., Strygin V.V., Ashkenazy Y., Havlin S., Multifractal ChaoticAttractors in a System of Delay Differential Equations Modeling Road Traffic[J], Chaos,2002,12(4):1006-1014.
    [114]王东山,贺国光,交通混沌研究综述与展望[J],土木工程学报,2003,36(l):68-74.
    [115]贺国光,万兴义,基于混沌判据评价几类跟驰模型合理性的仿真研究[J],系统工程理论与实践,2004(4):123-129.
    [116]陈永海,贺国光,基于OVM模型的交通流混沌研究[J],长沙交通学院学报,2006,22(1):53-57.
    [117] Xu M., Gao Z.Y., Nonlinear Analysis of Road Traffic Flows in Discrete DynamicalSystem[C], Proc. of ASME International Design Engineering TechnicalConferences/Computers and Information in Engineering Conference,2008,3(2):021206.
    [118]蒋海峰,王鼎媛,张仲义,短时交通流的非线性动力学特性[J],中国公路学报,2008,21(3):91-96.
    [119] Shahverdiev E.M., Tadaki S., Instability Control in Two Dimensional Traffic FlowModel[J], Physics Letters A,1999,256(1):55-58.
    [120] Nagatani T., Chaotic Jam and Phase Transition in Traffic Flow with Passing[J], PhysicalReview E,1999,60(2):1535-1541.
    [121] Blank M., Dynamics of Traffic Jams: Order and Chaos[J], Moscow Mathematical Journal,2001,1(1):1-26.
    [122] Li K.P., Gao Z.Y., Nonlinear Dynamics Analysis of Traffic Time Series[J], ModernPhysics Letters B,2004,18(26-27):1395-1402.
    [123]张杰,贺国光,基于一维元胞自动机模型的交通流混沌研究[J],武汉理工大学学报(交通科学与工程版),2009,33(l):33-38.
    [124]刘力军,许满库,贺国光,基于耦合映像模型的交通流混沌现象分析[J],长安大学学报,2006,26(6):73-76.
    [125] Kolmogorov A.N., Three Approaches to the Quantitative Definition of Information[J],Problems of Information Transmission,1965,1(1):3-11.
    [126] Haynes K.E., Kulkarni R., Stough R., Traffic Grammar and Algorithmic Complexity inUrban Freeway Flow Patterns[J], Networks and Spatial Economics,2007,7(4):333-351.
    [127] Wu H.T., Ma G.Z., Estimating the Relationship Between Traffic Flow Complexity andTraffic Conflict[C], Proc. of the8th International Conference of Chinese Logistics andTransportation Professionals-Logistics: The Emerging Frontiers of Transportation andDevelopment,2008:4625-4630.
    [128] Karmakar K., Majumder S.K., Maximum Entropy Approach in a Traffic Stream[J],Applied Mathematics and Computation,2008,195(1):61-65.
    [129]张勇,关伟,交通流时间序列的复杂度测量[J],交通运输工程学报,2009,9(2):89-92.
    [130]李松,贺国光,张杰,基于交通流灰色关联熵的交通流无序转化研究[J],武汉理工大学学报,2010,34(1):113-116.
    [131] Hu J.M., Wang Y., Zhang Z., Li D., Analysis on Traffic Flow Data and Extraction ofNonlinear Characteristic Quantities[C], Proc. of13th International IEEE Conference onIntelligent Transportation Systems (ITSC),2010:712-717.
    [132] Lopez-Ruiz R., Mancini H.L., Calbet X., A Statistical Measure of Complexity[J], PhysicsLetters A,1995,(209):321-326.
    [133] Yu D., Yin X.M., Xie J.X., The Influence of Discrete Character of Following-Velocity onChaotic Character of Traffic Flow in Different Density[C], Proc. of2009InternationalConference on Measuring Technology and Mechatronics Automation,2009:617-621.
    [134] Xu Z.H., Chen X.W., Zhang M.K., Study on the Relationship of Traffic Flow Complexityand Traffic Conflict on Urban Road[C], Proc. of the9th International Conference ofChinese Transportation Professionals, ICCTP2009: Critical Issues in TransportationSystem Planning, Development, and Management,2009:555-561.
    [135] Liao G.L., Shang P.J., Scaling and Complexity-Entropy Analysis in Discriminating TrafficDynamics[J], Fractals,2012,20(3-4):233–243.
    [136] Costa M., Goldberger A.L., Peng C.K., Multiscale Entropy Analysis of Physiologic TimeSeries[J], Physical Review Letters,2002,89:068102.
    [137] Costa M., Goldberger A.L., Peng C.K., Multiscale Entropy Analysis of BiologicalSignals[J], Physical Review E,2005,71:021906.
    [138] Riihijarvi J., Mahonen P., Wellens M., Metrics for Characterizing Complexity of NetworkTraffic[C], Proc. of International Conference on Telecommunications (ICT2008),2008:1-6.
    [139] Riihijarvi J., Wellens M., Mahonen P., Measuring Complexity and Predictability inNetworks with Multiscale Entropy Analysis[C], Proc. of IEEE International Conferenceon Computer Communications (INFOCOM2009),2009:1107-1115.
    [140] Wahle J., Bazzan A.L.C., Klugl F., Schreckenberg M., Decision Dynamics in a TrafficScenario[J], Physica A,2000,287(3):669-681.
    [141] Lee K., Hui P.M., Wang B.H., Johnson N.F., Effects of Announcing Global Information ina Two-Route Traffic Flow Model[J], Journal of the Physical Society of Japan,2001,70:3507-3510.
    [142] Wang W.X., Wang B.H., Zheng W.C., Yin C.Y., Zhou T., Advanced Information Feedbackin Intelligent Traffic Systems[J], Physical Review E,2005,72:066702.
    [143] Tian L.J., Huang H.J., Liu T.L., Comparing the Information Feedback Strategies in aSignal Controlled Network[C], Proc. of International Conference on IntelligentComputation Technology and Automation,2008:238-242.
    [144]田丽君,刘天亮,黄海军,含重叠路段交通系统中信息反馈策略的比较研究[J],物理学报,2008,57(4):2122-2129.
    [145] Tian L.J., Huang H.J., Liu T.L., Information Feedback Strategies in a Signal ControlledNetwork with Overlapped Routes[J], Chinese Physics Letters,2009,26(7):078903.
    [146] Dong C.F., Ma X., Wang G.W., Sun X.Y., Wang B.H., Prediction Feedback in IntelligentTraffic Systems[J], Physica A,2009,388:4651-4657.
    [147] Sun X.Y., Wang B.H., Yang H.X., Wang Q.M., Jiang R., Effects of Information Feedbackon an Asymmetrical Two-Route Scenario[J], Chinese Science Bulletin,2009,54:3211-3214.
    [148] Davis L.C., Realizing Wardrop Equilibria with Real-Time Traffic Information[J], PhysicaA,2009,388:4459-4474.
    [149] Fukui M., Nishinari K., Yokoya Y., Ishibashi Y., Effect of Real-Time Information uponTraffic Flows on Crossing Roads[J], Physica A,2009,388:1207-1212.
    [150] Dong C.F., Ma X., Wang B.H., Advanced Information Feedback Strategy in IntelligentTwo-Route Traffic Flow Systems[J], Science China Information Sciences,2010,53(11):2265-2271.
    [151] Dong C.F., Ma X., Wang B.H., Weighted Congestion Coefficient Feedback in IntelligentTransportation Systems[J], Physics Letters A,2010,374:1326-1331.
    [152] Dong C.F., Ma X., Corresponding Angle Feedback in an Innovative WeightedTransportation System[J], Physics Letters A,2010,374:2417-2423.
    [153] Dong C.F., Ma X., Wang B.H., Sun X.Y., Effects of Prediction Feedback in Multi-RouteIntelligent Traffic Systems[J], Physica A,2010,389:3274-3281.
    [154] Dong C.F., Ma X., Wang B.H., Effects of Vehicle Number Feedback in Multi-RouteIntelligent Traffic Systems[J], International Journal of Modern Physics C,2010,21(8):1081-1093.
    [155] Sun X.Y., Jiang R., Wang B.H., Increase of Traffic Flux in Two-Route Systems byDisobeying the Provided[J], Chinese Physics Letters,2010,27(5):058902.
    [156] Davis L.C., Predicting Travel Time to Limit Congestion at a Highway Bottleneck[J],Physica A,2010,389:3588-3599.
    [157] Chen B.K., Sun X.Y., Wei H., Dong C.F., Wang B.H., Piecewise Function FeedbackStrategy in Intelligent Traffic Systems with a Speed Limit Bottleneck[J], InternationalJournal of Modern Physics C,2011,22(8):849-860.
    [158] Chen B.K., Xie Y.B., Tong W., Dong C.F., Shi D.M., Wang B.H., A Comprehensive Studyof Advanced Information Feedbacks in Real-Time Intelligent Traffic Systems[J], PhysicaA,2012,391:2730-2739.
    [159] Chen B.K., Dong C.F., Liu Y.K., Tong W., Zhang W.Y., Liu J., Wang B.H., Real-TimeInformation Feedback Based on a Sharp Decay Weighted Function[J], Computer PhysicsCommunications,2012,183:2081-2088.
    [160] Dong C.F., Ma X., Dynamic Weight in Intelligent Transportation Systems: a ComparisonBased on Two Exit Scenarios[J], Physica A,2012,391:2712-2719.
    [161] Fukui M., Ishibashi Y., Nishinari K., Dynamics of Traffic Flows on Crossing RoadsInduced by Real-Time Information[J], Physica A,2013,392:902-909.
    [162] Tian J.F., Jia B., Li X.G., Jiang R., Zhao X.M., Gao Z.Y., Synchronized Traffic FlowSimulating with Cellular Automata Model[J], Physica A,2009,388:4827-4837.
    [163] Kerner B.S., Klenov S.L., Hiller A., Rehborn H., Microscopic Features of Moving TrafficJams[J], Physical Review E,2006,73:046107.
    [164] Shannon C.E., A Mathematical Theory of Communication[J], Bell System TechnicalJournal[J],1948,27:379-423,623-656.
    [165] Pincus S.M., Approximate Entropy as a Measure of System Complexity[J], Proceedings ofthe National Academy of Sciences of the United States of America,1991,88(6):297-2301.
    [166] Richman J.S., Moorman J.R., Physiological Time-Series Analysis Using ApproximateEntropy and Sample Entropy[J], American Journal of Physiology-Heart and CirculatoryPhysiology,2000,278:2039-2049.
    [167] Adler J.L., Blue V.J., Toward the Design of Intelligent Traveler Information Systems[J],Transportation Research Part C,1998,6(3):157-172.
    [168] Richard A., Andre D.P., Robin L., Does Providing Information to Drivers Reduce TrafficCongestion?[J], Transportation Research Part A,1991,25(5):309-318.
    [169] Dia H., Panwai S., Modelling drivers' Compliance and Route Choice Behavior inResponse to Travel Information[J], Nonlinear Dynamics,2007,49(4):493-509.
    [170] Lu X., Gao S., Ben-Elia E., Information Impacts on Route Choice and Learning Behaviorin a Congested Network: An Experimental Approach[J], Transportation Research Record,2011,2243:89-98.
    [171] Car-to-Car Communications, http://www.car-to-car.org.
    [172] UMass DieselNet, http://prisms.cs.umass.edu/dome/umassdieselnet.
    [173] CarTalk2000, http://www.cartalk2000.net.
    [174] Vehicle Infrastructure Integration, http://www.nhtsa.gov.
    [175] ATLANTIC–A Thematic Long-Term Approach to Networking for the Telematics and ITSCommunity, www.trg.soton.ac.uk/archive/its/atlantic.htm.
    [176] Intelligent Transport Systems and Services for Europe, http://www.ertico.com.
    [177]经济观察网, http://www.eeo.com.cn/industry/real_estate/2010/11/02/184594.shtml.
    [178] OBD-II: On-Board Diagnostic System, http://www.obdii.com/,2009.
    [179] Laval J.A., Leclercq L., A Mechanism to Describe the Formation and Propagation ofStop-and-Go Waves in Congested Freeway Traffic[J], Philosophical Transactions of theRoyal Society A,2010,368:4519-4541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700