长大上坡路段沥青路面抗车辙技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通荷载作用于长大上坡路段沥青路面的状况与平坡路段相比,其对沥青路面的作用时间变长,在重载、高温的综合作用下,长大上坡段沥青路面的车辙变形发展、形成速度更快。系统开展长大上坡路段沥青路面抗车辙技术研究,对有效控制和解决长大上坡路段沥青路面的车辙问题是非常必要的。
     本文通过实地调查分析了长大上坡路段沥青路面的车辙病害、路面结构内温度分布状况、重载货车运行速度变化状况,结果表明:(1)车辙、推移病害是长大上坡路段沥青路面的主要病害类型,在夏季高温、重载、低速车辆荷载综合作用下,可能在夏季温度最高的一周或两周内快速形成车辙,通常连续上坡一侧的车辙深度是其他路段的2~3倍;(2)长大上坡路段沥青路面车辙变形主要发生在中面层,其次是表面层、下面层;(3)沥青路面结构内的最高温度超过了60℃。(4)在较长的长大上坡路段,重载货车速度在下降后一直维持在20~30Km/h直至坡顶。以此为基础,提出了以满载货车车速作为定义长大上坡路段的指标。
     利用有限元数值计算法,分析了高温、坡度(水平分力)、车速、重载对长大上坡路段沥青路面应力的影响,结果表明:随着车速的降低,沥青路面应力有较大增长,坡度虽对长大上坡路段沥青路面受力状况的影响较小,但会导致重载车辆车速降低从而产生车辙变形。
     采用可变速荷载轮新型车辙仪模拟了重载车辆速度变化对沥青路面车辙的影响,不同轮速、温度、荷载条件下的车辙试验结果表明:在重载、高温、低速荷载条件下,以标准车辙试验条件设计的沥青混合料容易形成车辙,采用现行技术规范规定的60℃温度条件评价长大上坡路段沥青混合料高温稳定性不尽合理。
     采用多级嵌挤密级配设计方法和Superpave方法进行沥青混合料配合比设计,通过汉堡车辙试验和MMLS3加速加载试验研究了不同沥青(含外掺剂)、不同混合料类型在不同荷载与温度条件下的抗车辙性能,推荐了适用于长大上坡路段的沥青混合料类型及其技术要求。
     在现场调查和对长大上坡路段沥青路面受力特点分析的基础上,明确了上、中面层是沥青路面产生车辙变形的主要层位。在加速加载试验验证路面结构合理组合及厚度基础上,提出了适用于长大上坡路段的沥青路面结构组合。
     最后,基于交通管理技术措施,提出了采用夏季高温时段洒水降温、设置专用爬坡车道、调整车道系数和重载车辆分时段通行等技术措施来减轻长大上坡路段沥青路面车辙。
Compared with flat slope sections of asphalt pavement, the action time that low-speedvehicle load to uphill sections of long and large longitudinal slope is much longer, in thecondition of comprehensive combination of heavy load and high temperature, the rutting onuphill sections of long and large longitudinal slope has faster speed of development andformation.
     Carrying on the comprehensive research on the anti-rutting of asphalt pavement withuphill sections of long and large longitudinal slope, which is necessary for solving andeffectively control the rutting problem.
     The results of field survey show that:(1) the rutting and push is main types of pavementdistress with uphill sections of long and large longitudinal slope, which develop easily thatprobably rapid forming in the highest temperature of the summer for one or two weeks. underthe high temperature, combined with heavy load and low speed load, usually the rutting depthin the uphill sections of long and large longitudinal slope is2~3times than other sections.(2)the deepest rutting lies in middle layer, the second lies in surface layer.(3) The highesttemperature is over60℃in the asphalt pavement structure.(4) Overloaded truck speed afterthe fall on uphill sections of long and large longitudinal slope has maintained at20~30km/huntil the uphill sections top.
     On the basis of rutting occurrence of uphill sections of long and large longitudinal slopeand the statistics of truck speed, this paper argues that the speed of full truck as thedefinition indicator for uphill sections of long and large longitudinal.
     With the finite element modeling calculation, analysis the mechanical response andrutting formation mechanism of uphill sections of long and large longitudinal slopecomprehensively, analysis the influence of gradient (component), speed of vehicle, overloadto uphill sections of long and large longitudinal slope of asphalt pavement, it shows that thestress of asphalt pavement has bigger growth with the lower speed, growth effects to stresscondition for the slope itself is smaller, but the slope effect on the rutting mainly leads to thedecrease of heavy vehicle speed resulting in increase of effect time of vehicle load and asphaltpavement.
     It adopts the new rutting test equipments that the load and wheel speed can be changed tosimulate the influence of overload vehicles speed change(loading time) on the rutting, theresults show that the load size, loading time and temperature have an equivalent effect. And the asphalt mixture designing by standard rutting test condition is very easy to form therutting under heavy load, high temperature, low speed condition, and it shows that thetemperature conditions (60℃) in specification to verify the high temperature stability ofasphalt mixture for uphill sections of long and large longitudinal slope is very unreasonable.
     With multilevel multilevel interlocked-dense gradation design method and Superpavemethod for asphalt mixture design, through the Hamburg wheel tracking test and MMLS3accelerating wheel tracking test, analysis and evaluate the anti-rutting performance ofdifferent asphalt (containing the additive agent), different types of asphalt mixture underdifferent load, temperature conditions, then recommend the asphalt mixture type and therelevant technical indexes for uphill sections of long and large longitudinal slope.
     On the basis of field investigation and analysis on the loading characteristics of uphillsections of long and large longitudinal slope of asphalt pavement, make it clear that therutting on asphalt pavement mainly formation in the surface layer and middle layer, based onaccelerated loading test results for reasonable pavement structure combination and thicknessdesign, then put forward the suitable asphalt pavement structure for uphill sections of longand large longitudinal slope of asphalt pavement.
     On the basis of traffic management, put forward some practicable measures to reduce therutting like that water cooling during the summer high temperature, setting up exclusiveclimbing lane, adjusting lane coefficient and overload vehicles pass in different time.
引文
[1]孟书涛,李江.浙江山区高速公路长大上坡路段沥青路面抗车辙技术研究[R].北京:交通运输部公路科学研究所,2007
    [2]李福普,严二虎.“重庆高温多雨山区高速公路沥青路面关键技术研究专题”子题“重庆高温多雨山区高速公路沥青路面关键技术研究”[R].北京:交通运输部公路科学研究所,2009
    [3] Nvaneet.Garg, GodronF.Hyahoe. Asphalt concrete strain responses at high loads and lowSpeed at the National Aiprort pavement Test Facilty[J].APTF,1996
    [4] PauloA.Peeri.arJogre, C.Pais,Jogre, B.Sousa. Modeling the effect of trucks PeedonPerformance of ration of Asphalte oneertemixes[J].Transportation Research BoadrAnnual Meeting,1998
    [5]贾渝等编译.高性能沥青路面(Superpave)基础参考手册[M].北京:人民交通出版社,2005
    [6]吴浩,裴建中,张久鹏.长大纵坡路段沥青路面车辙规律及影响因素[J].长安大学学报(自然科学版),2006,29(6):28-31
    [7]李明国,牛晓霞,申爱琴.山区高速公路沥青路面的抗车辙能力[J].长安大学学报(自然科学版),2006,26(6):19-22
    [8]李明国,牛晓霞.外部条件对沥青路面抗车辙能力影响分析[J].广东公路交通,2006,(4):15-19
    [9]李辉.沥青路面车辙形成规律与温度场关系研究[D].南京:东南大学,2006
    [10]吴少鹏,王家主.长大纵坡沥青路面应力分析[J].武汉理工大学学报,2006,30(6):970-972
    [11]孟宪强,边成友,钟小明.高速公路纵坡上的中型车自由流运行速度模型[J].长江大学学报,2006,3(2):100-102
    [12]周刚,周进川,华斌等.沥青路面结构永久变形环道试验研究[J].同济大学学报(自然科学版),2008.2:187-192
    [13]杨海荣,关宏信.高温、重载、慢速条件下上坡沥青路面车辙[J].长沙理工大学学报(自然科学版),2008,5(4):13-17
    [14]夏勇.长大纵坡沥青路面结构研究[D].武汉:华中科技大学,2008
    [15]姚勇,彭赛恒,曹阳等.长大纵坡段沥青混凝土路面层间滑移研究[J].公路,2009,(4):87-90
    [16]周立波.高速公路长大纵坡车速调查分析[J].近日科苑观察,2009,(4):33-33
    [17]陈勇.长大纵坡路段沥青路面车辙形成机理与防止对策研究[D].西安:长安大学,2009
    [18]李立新,丁学峰,李跃军.移动荷载作用下长大纵坡沥青路面力学响应分析[J].公路工程,2009,34(6):38-42+46
    [19]吴浩.陡坡上坡段沥青路面车辙的形成机理和防治对策进行研究[D].西安:长安大学,博士论文,2010.4
    [20]陈渊召.长大纵坡沥青路面病害防治技术研究[D].西安:长安大学,2011
    [21]陈宝.长大纵坡路面合理结构与提高整体寿命技术研究[D].西安:长安大学,2011
    [22]詹小丽.基于DMA方法对沥青粘弹性能的研究[D].哈尔滨:哈尔滨工业大学,2007
    [23]陈光伟,李洪涛,陈荣生.沥青混合料抗剪性能研究综述[J].中国工程科学,2010,12(4):90-94
    [24]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究[J].长沙理工大学学报.2004,1(1):1-7
    [25]孙璐,邓学钧.运动负荷下粘弹性Kelvin地基上无限大板的稳态响应[J].岩土工程学报,1997,19(2):14-22
    [26]石亦平,周玉荣. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [27]谢水友.轮胎接触压力对沥青路面结构的影响研究[D].西安:长安大学,2003
    [28]姚占勇,田腾辉.不同轮压分布形式对半刚性路面结构力学响应的有限元分析[J].山东大学学报(工学版),2009,39(6):106-110+115
    [29]梁平安,单岗,陈晖等.高速公路山区长上坡路段车辙处理技术[J].公路,2006,(5):193-196
    [30]朱洪洲,黄晓明.沥青混合料高温稳定性影响因素分析[J].公路交通科技,2004,(4):1-3+8
    [31]关宏信,张起森,徐暘等.低速行车条件下沥青混合料抗车辙性能试验研究[J].土木工程学报,2010,43(10):130-134
    [32]杨永顺,王林,房建国.沥青混凝土路面抗滑磨耗层的研究与应用[R].济南:山东省公路管理局,2004
    [33]彭利红,崔世萍,黄六五.沥青混合料动态模量比对试验分析[J].山东交通科技,2016.6
    [34]许银行.陡坡路段SMA沥青混合料研究[D].西安:长安大学,2006
    [35]马翔.沥青混合料动态模量试验及模型预估[J].中国公路学报,2008,21(3):35-39+52
    [36]孟勇军.基于WLF公式确定DSR中不同平行板的温度适用范围[J].公路,2007,(5):149-153
    [37]田小革.沥青混凝土温度应力试验及其计算方法研究[J].中国公路学报,2001,14(4):15-18
    [38]吴文彪.基于老化沥青混凝土应力松弛特性的沥青路面低温开裂研究[D].长沙:长沙理工大学,2008.4
    [39]郑健龙.基于蠕变试验的沥青粘弹性损伤特性[J].工程力学,2008,25(2):193-196
    [40]王家主.长大纵坡沥青路面材料组成设计与性能研究[D].武汉:武汉理工大学,2006
    [41]杨艳群.山区高速公路长距离连续升坡路段纵坡设计研究[J].福州大学学报(自然科学版),2010,38(6):888-892
    [42]李雪连,陈宇亮,张起森.高温条件下上坡路段沥青路面结构性能研究[J].公路交通科技,2010,27(8):1-6
    [43]李开.长大纵坡对沥青路面产生车辙的影响分析[J].公路交通科技,2008,(3):45-48
    [44]杨众,贺东彪.沥青路面车辙预估方法的综述和改进[J].交通运输工程,2001,24(3):12-30
    [45]毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J].同济大学学报(自然科学版),2005,33(8):1036-1040
    [46]许严,孙立军.沥青路面沥青层剪应力变化简化模型研究[J].同济大学学报(自然科学版),2012,40(2):211-216
    [47]李晋德,韩森.陡坡路段沥青路面修筑关键技术研究[R].西安:长安大学,2007
    [48] KENNEDY T W, etal.Superior Performing Asphalt Pavement(sSuperpave): The Productof the SHRP Asphalt Research Program[A].Washington DC: Strategic HighwayResearch Program,National Research Council,1994
    [49] A.MOHSENI, M.SYMONS.Improved AC Pavement Temperature Models from LTPPSeasonal Data[A].Washington D C:Transportation Research Board77th Annual Meeting,1998
    [50]张登良.沥青及沥青混合料[M].北京:人民交通出版社,2002
    [51]张登良.沥青路面工程手册[M].北京:人民交通出版社,2003
    [52] Gretz.B.Asphalt pavement resistance to rutting, bitumens.No.1/99:24-28
    [53]万军.沥青混凝土路面车辙发展规律探讨[D].南京:东南大学,2006
    [54]徐世法,朱照宏.高等级公路沥青路面车辙控制措施的探讨[J].华东公路,1992.1
    [55]王秉纲,邓学钧.路面力学数值计算[M].北京:人民交通出版社,1990.9
    [56]谢泽华.沥青混合料高温稳定性三轴试验研究[D].长沙:长沙理工大学,2006.4
    [57] N.W.Mcleod,The Rational Design of Bituminous Paving Mixture, Highway ResearchRecord, HRB,1949, Vol.29
    [58] Norman W.Garrick, Member, AECE.Nonlinear Differential Equation for ModelingAspahlt Aging[J]. Journal of Materials in Civil Engineerin, NOV1995,265-268
    [59] Kiryukhin.G.N. Influence of rheological characteristics of asphalt concrete and interlayerbitumen on the formation of reflective cracks in pavements[A], Proceeding ofSoyuzdorni, issu.2001,4-17
    [60]郑向雷.沥青混合料高温特性研究[D].西安:长安大学,2006
    [61]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001
    [62]谢遂,孟书涛,李江.沥青混合料动稳定度试验的分析[J].公路交通科技[J].2005,22(11):14-17+49
    [63] Gretz.B,1999,Asphalt pavement resistance to rutting[J], bitumensNo.1/99,pp24-28
    [64] G.N.Kiryukhin,2002,Asphalt mixture design on the criteria of shear and crack resistanceof the pavement[A], The ninth asphalt pavement structure conference
    [65] Huang Xiaoming, Yang Yiwen, Li Hui etal. Asphalt pavement short-term rutting analysisand prediction considering temperature and traffic loading conditions[J]. Journal ofSoutheast University (English Edition),2009,Vo.l25,No.3,385-390
    [66]毕玉峰.沥青混合料抗剪试验方法及抗剪切参数研究[D].上海:同济大学,2004
    [67]姚勇,彭赛恒,曹阳,张宁,陈飞.长大纵坡段沥青混凝土路面层间滑移研究[J].公路,2009,(4):87-90
    [68]杨琳,王选仓.长大纵坡段沥青路面受力分析与车辙防治研究[D].西安:长安大学,2009
    [69]中华人民共和国交通行业标准.公路工程集料试验规程(JTG E42-2005)[S].北京:人民交通出版社,2004
    [70]中华人民共和国行业标准.公路沥青路面施工技术规范(JTG F40-2004)[S].北京:人民交通出版社,2004
    [71]王家主.长大纵坡沥青路面材料组成设计与性能研究[D].武汉:武汉理工大学,2006
    [72]詹小丽.基于DMA方法对沥青粘弹性能的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [73]何兆益,唐伯明,陈俊义等.超重车辆对重庆市公路路面使用寿命影响分析[J].重庆交通学院学报,2001,20(增刊):48-52
    [74]房建果.大粒径透水性沥青混合料组成设计与应用研究[D].上海:同济大学,2006
    [75]杨学良,刘伯莹.沥青路面温度场与结构耦合的有限元分析[J].公路交通科技,2006,23(11):1-4+9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700