火柴头生殖多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过田间试验、观察分析,比较研究了火柴头的多样性生殖方式,其结论如下:
     (1)火柴头种子有地上大种、地上中种、地上小种和地下大种、地下中种、地下小种6种类型。不同种子的形态特征、休眠萌发特性不同。
     (2)火柴头有气生生殖枝、地表生殖枝和地下生殖枝3种。地表生殖枝和地下生殖枝无叶片,地下生殖枝不具光合色素。
     (3)火柴头有气生的雄花、开花传粉型两性花和闭花传粉型两性花以及地表闭花传粉型两性花与地下闭花传粉型两性花5种不同特性的花。
     (4)火柴头气生花花期约5个月,盛花期在7~9月,开花高峰期近70天。通常气生花枝花序中的第一朵花为雄花,雄花伸出佛焰苞30~35min后完全开放,其后40~45min,开花传粉型两性花开放。雄花开花持续4~5h,开花传粉型两性花持续2.5~3.5h。阴雨天,火柴头花时和开花高峰期滞后1h以上,且开花时间延长。
     (5)气生的开花传粉型两性花通常柱头先伸出花苞,传粉媒介为宽带细腹食蚜蝇(Sphaerophoria macrogaster)等。气生的闭花传粉型两性花、地表闭花传粉型两性花和地下闭花传粉型两性花的自花授粉依赖于自身花柱的卷曲和缠绕花药、花粉挤出而沾黏柱头。
     (6)火柴头的正常生长植株和离体克隆独立生长时的雌雄功能组合变化较大。气生开花传粉型两性花、气生闭花传粉型两性花、地表闭花传粉型两性花与地下闭花传粉型两性花的P/O比值分别为5818、3532、558、546。
     (7)采用不同的培养基培养火柴头的花粉,萌发率差别不同。其萌发率大小为:固体培养基>看护培养基>液体培养基。花粉在柱头上的萌发率小于固体培养基,而大于液体培养基。
     (8)激素的种类或者激素种类与浓度两因素互作,火柴头地下有性生殖有极显著差异;四种不同颜色的薄膜覆盖对于火柴头六类种子植株的地下有性生殖的影响是不同的。
     (9)方差分析表明不同类型种子在不同播种密度下,火柴头六类种子后代植株的地下有性生殖存在极显著的影响;相关性分析表明,火柴头的有性生殖与密度和种子类型有显著或者极显著的相关性。
     (10)针对火柴头的生物学特性,提出综合防除该种杂草的有效措施。
The dayflower (Commelina benghalensis L.)was the malignant miscellaneous grass extensive to distributes.Its reproduction diversities were 6 types of seeds,3 kinds of reproduction shoots,and 5 kinds of flowers with various biological characteristics. The results were as follows:
     (1)the 6 types of seeds,i.e. aerial and underground big,medium and small size of seed with various characters in their modalities ,dormancy and germination respectively.
     (2)the 3 kinds of reproduction shoots, i.e. the aerial reproduction shoot,the earth surface reproduction shoot and the underground reproduction shoot, and the earth surface shoot and underground shoot with no leaf lade, and the underground reproduction shoot with no chlorophylls .
     (3)the 5 kinds of flowers, i.e. staminate flower,chasmogamous hermaphrodite flower, cleistogamous hermaphrodite flower in the aerial reproductive shoot,and the earth surface cleistogamous flower and the underground cleistogamous flower.
     (4)the blooming period of the dayflower was about 5 months, with the full blooming period from June to September, and almost 70 days of the flowering peak. the first flower, always staminate flower in the aerial inflorescence, flowered after 30~35min peeping out of the spathe. the chasmogamous hermaphrodite flower blooms ( the second flower ) after the first flowering in 40~45min. the duration of staminate flowering mean 4~5h,the aerial chasmogamous hermaphrodite flower was about 2.5~3.5h. the flowering duration and the flowering peak in rainy and cloudy or rainy day were postponed more 1h than in sunny day.
     (5)the stigma of the aerial chasmogamous hermaphrodite, usually cross-pollination by some insects such as Sphaerophoria macrogaster, stretched out of the petals before the flower flowered,the type of fertilization of the aerial cleistogamous hermaphrodite flower,earth surface cleistogamous flower and underground cleistogamous flower showed us by the flower pillar tying up to round anther and resulting in self -pollination.
     (6)ovule-pollen association ratio value(P/O) of the normal plant and clone plant of the dayflower in chasmogamous hermaphrodite flower, cleistogamous hermaphrodite flower, earth surface cleistogamous flower and the underground cleistogamous flower was 5818,3532,558,546 respectively.
     (7)adopting different nutrient mediums to cultivate pollen grain of the dayflower, the germination ratio is very different for each other . the ratio cultivating in solid nutrient medium is highest.
     (8)the influence of category of hormone or two factors of hormone category and density occurred together on underground sexual reproduction of the dayflower was pole difference,with the same as the influence of four color plastic membrane on underground reproduction growth of the dayflower.
     (9)the influence together with the sowing-seed density and the types of seeds on underground sexual reproduction of the dayflower was pole difference, and the prominent or the pole correlation were here between the underground sexual reproduction and the sowing-seed density or the types of seed.
     (10)8 kinds of the strategies was put forward to prevent the crops from the dayflower .
引文
[1] 金银根. 潜性杂草火柴头生物学特性初探[J]. 杂草科学,1994(1):10~13。
    [2] Culpepper , tanley.A.S , Flanders.J.T. Tropical spiderwort(Com-melina benghalensis) control in glyphosate-resistant cotton Weed Technology [J]. 18(2). April 2004:432~436.
    [3] http://weed.njau.edu.cn/winfo/bio5.htm
    [4] Correia, Nubia Maria ,Durigan, Julio Cezar , Klink, Urubatan Palhares. Influence of type and amount of straw cover on weed emergence[J]. Journal of Environmental Science & Health Part B: Pesticides, Food Contaminants, & Agricultural Wastes,40(1). 2005:171~175.
    [5] twbster@tifton.Usda.gov
    [6] 耿志明,魏传芬,金银根等. 竹叶菜四种不同类型种子的形态特征观察[J]. 杂草科学,2004,(3):10~12。
    [7] 魏传芬,熊恒硕,金银根等. 竹叶菜四种类型种子的萌发特性及其成灾机理分析[J]. 苏农业科学,2005(1):57~60。
    [8] Chikoye D., Manyong V.M.,etal. Characteristics of speargrass (Imperata cylindrica)dominated fields in West Africa: crops, soil properties, farmer perceptions and management strategies[J]. Crop Protection ,19 (2000):481~487.
    [9] Mahmshwari P.. A Preliminary Note on the morphology of the Aerial and Underground Flowers of Commelina benghalensis Linn[J]. Current Science, 1984. 10:158~160.
    [10] Maheshwari P.,Bahadur Singh. A preliminary Note on the Morphology of the Aerial and Underground Flowers of Commlina benghalensis L. [J]. Current Science,October 1934.
    [11] Veenu Kaul. reproductive effort and sex allocation strategy in Commelina benghalensis L.,a commom monsoon weed[J]. Botanical Journal of the Linnean Society,2002(140):403~413.
    [12] 陈刚,闵海燕,朱春来等. 火柴头的繁殖对策和繁殖代价 [J]. 生态学报,26 卷第2 期 2006:521~527.
    [13] Walker.SR,JP Evenson. Biology of Commelina benghalensis L.in south to eastern Queensland,1)Growth,development and seed production, 2)Seed dormancy,germination and emergence[J]. Weed research, 1985,volume25:239~250.
    [14] Lakshmana K.K.. studies on the development of Commelina benghalensis.L.Zygote to globular proembryo[J]. Proc.Indian Acad.Sci.,1977,86:167~174.
    [15] 李扬汉. 中国杂草志[M]. 北京:中国农业出版社,1998.:1045~1046。
    [16] 印丽萍,颜玉树. 杂草种子图鉴[M]. 北京农业科技出版社,1996,228。
    [17] Kim S.Y.,Datta S.K. and B.L.Mercado. The effect of chemical and heat treatment on germination of Commelina benghalensis L.aerial seeds[J]. Weed Research,1990,Volume 30:109~116.
    [18] Wang M,Oppetijk B.J,Lu X,etal. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid[J]. Plant Mol Biol,1996,32:1125~1134.
    [19] Voll.Elemar,Franchini,Julio Cezar etal. Chemical interactions of Brachiaria plantaginea with Commelina bengalensis and Acanthospermum hispidum in soybean cropping systems[J]. Journal ofChemical Ecology. 30(7). July 2004:1467~1475
    [20] Elemar voll,Ju.Lio Cezar Franchini,etal. Chemical interactions of Brachiaria plantaginea with Commelina bengalensis and Acanthospermum hispidum in soybean cropping systems[J]. Journal of Chemical Ecology,2004 ,Vol. 30(7):1467~1475.
    [21] 强胜主编. 杂草的生物学和生态学,杂草学[M]. 北京中国农业出版社,2001:12~13。
    [22] Lakshmanan K.K. Studies on the development of Commelina benghalensis.L. , cotyledon[J]. phytomorphology,1979,28:253~261.
    [23] 金银根主编. 植物学[M]. 北京 :科学技术出版社,2.006。
    [24] Raghavendra A. S., Rao I. M. and Das V. S. R.. Characterisation of abscisic acid inhibition of stomatal opening in isolated epidermal strips [J]. Plant Science Letters, Volume 6, Issue 2, February 1976,Pages 111~115.
    [25] Raghavendra A. S., Rao I. M. and Das V. S. R.. Adenosine triphosphatase in epidermal tissue of Commelina benghalensis: Possible involvement of isozymes in stomatal movement[J]. Plant Science Letters,Volume 7,Issue 6,December 1976,Pages 391~396 .
    [26] Agepati S. Raghavendra. Energy supply for stomatal in epidermal strips of Commelina benghalensis[J]. plant physiol,1981(67):385~387.
    [27] Aart J.E,van Bel,Frans. Comparison of the uptake kinetics of valine and sucrose and their light-reactivity in mesophyll cells of Commelina benghalensis[J]. J.Plant Physiol,1986,vol 123:37~44.
    [28] Aart J.E.van Bel,Andries J.,Koops. Does light-promoted export from Commelina benghalensis leaves result from differential light-sensitivity of the cells in the mesophyll-to-sieve tube path,physiol plant[J]. 1986(67):227~234.
    [29] Aart J.E.,van Bel and Koops A.J. Uptake of [14C]sucrose in isolated minor-vein networks of Commelina benghalensis L[J]. planta,1985(164):360~369.
    [30] Veenu Kaul. Growth,development and seed production[J]. Weed Research, 1985,Vol. 25:239~24
    [31] K. Parvathi,A.S. Raghavendra. Both rubisco and phosphoenolpyruvate carboxylase are beneficial for stomata1 function in epidermal strips of Commelina benghalensis [J]. Plant Science,124 (1997):153~157.
    [32] Van Kestere W.J.P,Van Der Schoot C. Symplastic transfer of fluorescent dyes from mesophyll to sieve tube in stripped leaf tissue and partly isolated minor veins of Commelina benghalensis[J]. Plant Physiol,1988(88):667~670.
    [33] Matsuo, Mitsuhiro,Michinaga, Hideki,etal. Aerial seed germination and morphological characteristics of juvenile seedlings in Commelina benghalensis L. [J]. Weed Biology & Management,4(3). 2004:148~153.
    [34] Ramachandra A.Ready and Rama Das V.S. Stomatal Movement and sucrose uptake by guard cell protoplasts of Commelina benghalensis[J]. plant cell physiol,1986,27(8):1565~1570.
    [35] 王丰,周子仙,王庆红等. 浙江鸭趾草属植物的核型研究[J]. 广西植物,1994,14(4):354~356.
    [36] 杨德奎,康照莉. 饭包草的染色体数目和核型分析[J]. 山东师范大学学报,2003,18(3):72~73。
    [37] 陈建民,秦秋琳,金银根等. 火柴头染色体核型及核糖体基因原位杂交研究[J]. 杂草科学,2004,1:1~4。
    [38] Kepinski S,Leyser O. Ubiquitination and auxin signaling:a degrading story[J]. Plant Cell,2002,14(Suppl):581~595.
    [39] 张华峰,康慧. 植物的向光性[J]. 自然杂志,2004,26(1):16~19。
    [40] Ni W M,Chen X Y,Xu Z H,etal. Advance in study of polar auxin transport[J],Act Bot Sin (植物学报) ,2000,42 :221~228.
    [41] Estelle M. Transporters on the move[J]. Nature,2001,413 :372~375.
    [42] Geldner N.,Friml J,Stierhof Y D,etal . Auxin transport inhibitors block PIN1 cycling and vescicle trafficking[J]. Nature ,2001,413:425~428.
    [43] Friml J,Wisniewska J,Benkava E,etal. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in A rabidopsi[J]. Nature,2002,415:806~809.
    [44] Kaufmam L S. Transduction of blue light signals[J]. PlantPhysiol,1993,102:33~38.
    [45] Behriger F.J.,Davies P. J. Indole-3-acid level after phytochrome-mediated changes in the stem elongation rate of dark and light-grown Pisum seedlings[J]. Planta,1992,188:85~89.
    [46] Yu R C (余让才),Pan R C (潘瑞炽). Effects of blue light on the growth and levels of endogenous phytohormones[J]. Acta Phytophysiol Sin (植物生理学报),1997,23:175~180.
    [47] Gaba V.,Black M. The control of cell growth by light [J]. Encyclopedia of Plant Physiology,New series ,Vol 16A.Berlin:Springer-Verlag,1983,358~342.
    [48] Bruinsma J.,Hasegawa K. A new theory of phototropismits regulation by a light-induced gradient of auxin-inhibiting substrance[J]. Physiol Plant,1990,79:700~704.
    [49] Chen R M (陈汝民). Unequal distribution of 6-methoxy-2-benzox-azolinone (MBOA) is the main reason for phototropism in maize coleoptiles[J]. Acta Bot Sin,1999,41:296~300.
    [49] Chen R M (陈汝民). Physiological effects of 6-methoxy-2-benzoxa-zolinone (MBOA) from maize coleoptiles[J]. J Trop & Subt rop Bot (热带亚热带植物学报),1999,7:70~76.
    [51] 陈汝民. 6-甲氧基-2-苯并唑啉酮(MBOA)分布不均匀是引起玉米胚芽鞘向光性运动的主要原因[J].植物学报,1999,41(3):296~300.
    [52] 陈汝民. 玉米胚芽鞘向光性运动的一些特性[J]. 热带亚热带植物学报,1998,6(4):323~328.
    [53] Wang Z , Gu Y J , Chen G, etal . Negative phototropism of rice root [J]. Chinese Rice Res Newsl,2001,9(3):9~11.
    [54] 王忠,莫亿伟,钱善勤等. 水稻根的负向光性及其影响因素[J]. 中国科学(C 辑)2003,33 ,9~18。
    [55] Bao F (包方) ,LiJY(李家洋). Evidence that the auxin signaling pathway interact with plant stress response[J]. Act Bot Sin (植物学报),2002,44:537~540。
    [56] 顾蕴洁,王忠,王维学等. 水稻根的负向光性[J]. 植物生理学通讯,2001,37(5):396~398。
    [57] 莫亿伟,王忠,钱善勤等. 生长素在水稻根负向光性反应中的作用[J]. 中国水稻科学,2004,18(3):245~248。
    [58] 李春俭. 植物生长调节剂抑制根向地性生长的机制探讨[J]. 中国农业大学学报,1999,4(1):33~35。
    [59] Young L M,Evans M L,Hertel R. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays[J]. Plant Physiol,1990,92 :792~796.
    [60] 阎田,刘存德,沈全光. 植物向重性地基研究[J]. 植物学通报,1999 ,16(5):606~609。
    [61] 贾志新,艾冬梅,艾兆亮等. 植物向地性的一种新解释[J]. 生物学通报,2000,35(2):4~5。
    [62] 张大勇主编. 植物生活史进化与繁殖生态学[M]. 北京:科学出版社,2004,258~260。
    [63] 何亚平,刘建全. 植物繁育系统研究的最新进展和评述[J]. 植物生态学报,2003,27 (2):151~163.
    [64] Tommy Lennartsson,J. Gerard B,Oostermeijer, etal. Ecological significance and heritability of floral reproductive traits in Gentianella campestris (Gentianaceae) [J]. Basic and pplied Ecology,2000,1:69~81.
    [65] Vincenza Ponterin and Tammy Lynnsage. Evidence for Stigmatic Self-incompatibility,Pollination Induced Ovule Enlargement and Transmitting Tissue Exudates in the Paleoherb,Saururus cernuus L. (Saururaceae) [J]. Annals of Botany,1999,84:507~519.
    [66] 顾德兴. 杂草性状的选择[J]. 杂草科学,1997,4:2~6.
    [67] He,C.Q.(何池全),K.Y.Zhao(赵魁义)& G.Y.Yu(余国营). Advance in the ecological adapt ability of the clonal plant in wetlands[J]. Chinese Journal of Ecology,1999,18(1):38~46.
    [68] 李天煜,李洪敬,谢素霞. 水生维管植物克隆繁殖方式的多样性[J]. 广西植物,2000,20 (3) :233~238。
    [69] 陈开宁,强胜,李文朝等. 蓖齿眼子菜繁殖多样性研究[J]. 植物生态学报,2003,27 (5):672~676。
    [70] 陈绍荣,杨弘远. 花粉-雌蕊的相互作用机制[J]. 植物生理学通讯,2000,36)4:653~695。
    [71] 刑树平. 花粉管生长调控的研究进展[J]. 广西植物,1998,18(1):82~88。
    [72] 巩振辉,何玉科,王鸣等. 白菜与白芥属间花粉—柱头相互作用的研究[J]. 西北农学报,1994,3(1):35~38。
    [73] 边才苗,金则新,李钧敏. 七子花的繁殖生物学研究[J]. 云南植物研究,2002,24 (5):613~618。
    [74] 黄双全,郭友好. 传粉生物学的研究进展[J]. 科学通报,2000,45(3):225~237。
    [75] 刘志秋, 陈进. 舞花姜属3种植物繁殖策略比较[J]. 武汉植物学研究,2004, 22 (2) :145~152。
    [76] 孔继君,刘刚. 姜科植物研究进展[J]. 西北植物学报,2005,25(8):1692~1699。
    [77] 张玲,李庆军. 花柱卷曲性异交机制及其进化生态学意义[J]. 植物生态学报,2002 , 26(4):385~390。
    [78] 庆军,许再富,夏咏梅等. 山姜属植物花柱卷曲性传粉机制的研究[J]. 植物学报,2001,43(4):364~369。
    [79] Q.-J.Li,W.J.Kress,Z.-F. Xu,etal. Mating system and stigmatic behaviour during flowering of Alpinia kwangsiensis (Zingiberaceae) [J]. Plant Syst,2002,Evol. 232:123~132.
    [80] N. Miiller, J. J. Schneller and R. Holderegger. Variation in breeding system among populations of the common woodland herb Anemone nemorosa (Ranunculaceae)[J]. Plant Syst,2000 Evol. 221:69~76.
    [81] J. M. Gomez. Self-pollination in Euphrasia willkommii Freyn (Scrophulariaceae),an endemic species from the alpine of the Sierra Nevada (Spain) [J]. Plant Syst,2002Evol. 232: 63~71.
    [82] 徐正尧,马绍宾,胡昌平. 桃儿七传粉生物学特性及其在进化上的意义[J]. 武汉植物学研究,1997,15(3),223~227。
    [83] 马绍宾,徐正尧,胡志浩. 桃儿七繁殖生物学研究[J]. 西北植物学报,1997,17(1):49~55。
    [84] 阮成江,钦佩,韩睿明等. 海滨锦葵的滞后自花授粉策略[J]. 科学通报,2004,49(24),2620~2622。
    [85] CJ Ruanl,P Qin and ZX He. Delayed autonomous selfing in Kosteletzkya virginica (Malvaceae) [J]. South African Journal of Botany,2004,70(4):639~644.
    [86] YingqiangWang,DianxiangZhang,etal. A new self-pollination mechanism[J]. nature,2004,vol,431.
    [87] Ke-wei Liu,zhong-jiang Liu. Self-fertilization strategy in an orchid [J]. Nature,2006,6(22): 945~946.
    [88] Carlos lehnebach and Magaly rieros. Pollination biology of the Chilean endemic orchid Chloraea lamellata[J]. Biodiversity and Conservation,2003,12: 1741~1751.
    [89] RAJESH TANDON, T. N. MANOHARA. Pollination and Pollen-pistil Interaction in Oil Palm, Elaeis guineensis[J]. Annals of Botany,2001,87:831~838.
    [90] Anna L. Hargreaves . Steven D,etal. Do floral syndromes predict specialization in plant pollination systems? An experimental test in an “ornithophilous” African Protea[J]. Oecologia ,2004,140: 295~301
    [91] 周坚,樊汝汶. 鹅掌楸属两种植物花粉品质和花粉管生长的研究[J]. 林业科学,1994,30(5),405~411。
    [92] 周坚,樊汝汶. 中国鹅掌揪传粉生物学研究[J]. 植物学通报,1999,16(1):75~79。
    [93] 周玲玲,陆嘉惠等. 罗布麻花解剖结构的观察研究[J]. 石河子大学学报(自然科学版), 2000,4(1):39~42。
    [94] Cruden R.W. Pollen ovule ratios: A conservative indicator of breeding systems in flowering plants [J]. Evolution,1977,31:32~46.
    [95] Hulskamp M,Kocpczak SD,Horejsi TF etal . Identification of genes required for pollen stigma recognition in Arabidopsis thaliana[J]. Plant J,1995,8∶703~714.
    [96] 王忠. 植物生理学[M]. 中国农业出版社,1999,267~289。
    [97] Halstead T M,Scott T K. Plant gravitational and space research[M]. The Waverly Press Baltimore Mariland,1984.
    [98] Smith KC. 光生物学[M]. 北京:科学出版社,1984。
    [99] Meijer G. Some aspects of plant irradiation[J]. Zcta Hortic.Intern. Soc. HorticSci, 1971,22:103~108.
    [100] Chen M,Chory J,Fankhauser C. Light signal transduction in higher plants[J]. Annu. Rev Genet 2004,38,87~117.
    [101] Blakeslee J J,Bandyopadhyay A,Peer W A,etal.Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses[J]. Plant Physiol,2004,134:28~31.
    [102] Kato.T,etal. Identifying and Characterizing Plastidic 2-Oxoglutarate/Malate and Dicarboxylate Transporters in Arabidopsis thaliana[J]. PIant Cell,2002,14:33.
    [103] Briggs W R,Olney M A. Photoreceptor in plant photomorphgensis to date,five phytochromes, two crytochrome, one phototropin and one super chrome[J]. Plant Physiol,2001,125:85~88.
    [104] 李博主编. 生态学[M]. 北京:高等教育出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700