高粱子粒淀粉积累与合成相关酶活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是高粱子粒的主要成分,高粱子粒淀粉的含量及直链淀粉与支链淀粉的比例决定着高粱子粒的品质,并对子粒的出米率、适口性及酿造等方面有重要影响。本研究以不同淀粉含量高粱品种为试材,通过田间试验、盆栽试验和实验室分析,研究子粒淀粉积累规律及相关合成酶活性,明确不同子粒淀粉含量高粱生理生化特性,探讨高淀粉高粱子粒淀粉合成相关酶作用机制,为今后更好地应用高淀粉高粱种质资源、培育适合于市场及社会需求的高淀粉高粱新品种提供理论依据。试验取得以下主要研究结果:
     1.对27份不同粒用高粱品种试验研究结果表明,高粱淀粉产量与生物产量、千粒重、穗粒数极显著正相关。淀粉产量与收获指数、N积累量、K积累量显著正相关。单株子粒产量与生物产量、收获指数、穗粒数极显著正相关。单株子粒产量与千粒重、K积累量呈显著正相关。淀粉含量与穗粒数呈显著负,与千粒重呈显著正相关。由此可以说明,较高的生物量是高淀粉产量的保证,提高收获指数可以增加淀粉产量。穗粒数与淀粉产量、单株子粒产量具有较高的正相关系数,适当的提高穗粒数可能会对高粱子粒产量和淀粉产量有所提高。但穗粒数的增加会对淀粉含量产生影响,这可能是由于粒数的增多,会对粒重和子粒大小产生影响的缘故。因此,在保证较高淀粉含量的前提下,适当增加穗粒数可以有效的提高子粒产量和淀粉产量。
     通过对淀粉产量和淀粉含量进行聚类分析,筛选出高淀粉产量、高淀粉含量品种锦杂105、铁杂11号和铁杂17号,高淀粉产量、低淀粉含量品种晋杂23号、辽杂11号。
     2.对高淀粉含量高粱铁杂17号和低淀粉含量高粱辽杂11号的淀粉积累特征及相关淀粉酶活性差异的结果表明,高粱子粒淀粉积累量随开花后天数呈“S型”曲线变化。铁杂17号的淀粉积累量高于辽杂11号。铁杂17号具有相对较长的积累时间,达到最大积累速率的时间早于辽杂11号,并且淀粉积累速率也较高。铁杂17号子粒中蔗糖合成酶(SS)、蔗糖磷酸化酶(SPS)、腺苷二磷酸葡萄糖焦磷酸化酶(ADPGPase)、尿苷二磷酸葡萄糖焦磷酸化酶(UDPGPase)、结合态淀粉合成酶(GBSS)活性均高于辽杂11号,ADPGPase、GBSS活性差异极显著。淀粉积累前期辽杂11号子粒中可溶性淀粉合成酶(SSS)、淀粉分支酶(SBE)活性高于铁杂17号,而中后期相反。辽杂11号子粒中DBE活性始终高于铁杂17号。相关分析结果说明,SS、ADPGPase、UDPGPase、 GBSS对直链淀粉的积累过程具有一定的催化作用,而SS、ADPGPase、UDPGPase、SSS、 SBE、淀粉去分支酶(DBE)在支链淀粉的合成过程中起调节作用。
     3.开花期干旱胁迫对不同淀粉含量高粱子粒淀粉含量、淀粉产量与子粒产量相关性状具有一定影响。试验结果表明,辽杂11号和铁杂17号的子粒淀粉含量及其组分有较大差异,支链淀粉含量的多少,主要影响着总淀粉含量的高低。开花期干旱处理,使总淀粉含量、直链淀粉含量、支链淀粉含量降低。开花期干旱处理对不同品种的影响程度不同。综合数据来看,铁杂17号淀粉含量及其组分受开花期干旱胁迫处理的影响大于辽杂11号。开花期干旱胁迫对高粱子粒的淀粉产量、子粒产量及其相关性状的影响较为严重,并且不同年份,不同品种受影响的程度各不相同。
     4.开花期干旱处理降低了淀粉含量和淀粉产量,可能是由于淀粉积累过程中开花期干旱抑制了淀粉合成相关酶活性,进而影响到了淀粉的积累。因此,通过盆栽种植方式,在开花期水分胁迫条件下研究两个淀粉含量不同高粱品种(高淀粉品种铁杂17号和低淀粉品种辽杂11号)子粒淀粉积累规律和相关合成酶活性的差异。开花期干旱胁迫条件下,总淀粉积累量、直链淀粉积累量和支链淀粉积累量在子粒灌浆中后期均呈减少趋势;最大淀粉积累速率和平均积累速率降低;子粒淀粉积累持续时间缩短,达到最大积累速率时间提前;子粒淀粉积累过程中,淀粉合成相关酶活性均受到不同程度的影响。高淀粉品种铁杂17号的淀粉积累受干旱胁迫影响大于低淀粉品种辽杂11号。开花期干旱胁迫,不同程度地抑制了高粱淀粉合成相关酶活性,进而对高粱子粒淀粉的积累产生不同程度的影响。不同高粱品种和不同淀粉组分对开花期干旱胁迫的响应也不相同。
     5.灌浆期干旱处理,降低了高粱子粒的淀粉含量、淀粉产量、单株子粒产量和千粒重,使穗粒数略有减少。灌浆期干旱使高粱子粒淀粉最大积累量降低,淀粉积累的持续时间缩短,淀粉最大积累速率有所增加。就直链淀粉而言,辽杂11号受影响较大,而对铁杂17号的影响较小。灌浆期干旱处理,对支链淀粉积累的影响较大。综合来看,辽杂11号的淀粉积累受灌浆期干旱处理的影响大于铁杂17号。辽杂11号子粒中ADPGPase活性,在整个淀粉积累过程中受灌浆期干旱影响较大,而铁杂17号在淀粉积累前期受影响较大。灌浆期干旱对辽杂11号子粒中SSS、GBSS活性的抑制程度大于铁杂17号。铁杂17号子粒中SBE活性受灌浆期干旱影响降低幅度大于辽杂11号。
Sorghum is one of the major cereal crops. Sorghum has wide adaptability, with the characteristics of drought and water-logging, saline-alkali and barren resistance, etc. Starch is the major component of sorghum grain. Sorghum grain starch content and the ratio of amylase and amylopectin relate to grain yield and quality and also have great influences on grain milling rate, palatability and brewing efficiency. This study used different sorghum varieties as testing materials to study the difference of starch content, grain starch accumulation regulation and the related synthesis enzyme activities, for confirming sorghum physiological and biochemical characteristics with different grain starch content, and the starch synthesis enzyme mechanism of sorghum with high starch content. The main results were as follows:
     1. Study results of27hybrids showed, starch yield differs significantly from different sort grain starch content, there was a significant positive correlation between starch yield and biomass, harvest index,1000-seed weight, grain amount, N, K accumulation. And there was significantly negative correlation between total starch content, amylopectin content and grain amount. Thus the higher biomass was to ensure a higher starch production, improvement of harvest index may increase the starch production. There was a higher positive correlation coefficient between grain amount and starch content, grain yield per plant, appropriate improving of grain amount might improved sorghum grain yield and starch production. But grain amount's increasing will affect the starch content, this could be due to the increasing of grain amount might caused grain weight and grain size's effect. Therefore, under the premise to ensure a higher starch content, to appropriate increase grain amount can effectively improve the grain yield and starch production.
     By clustering analysis of starch yield and starch content, to filter out the higher starch yield and starch content variety of Jinza105, Tieza11, Tieza17, and higher starch yield with lower starch content variety of Jinza23, Liaoza11.
     2. Results showed that sorghum grain starch accumulation appears'S'curve with days amount after flowering from starch accumulation characteristics and related amylase activity discrepancy of sorghum Tieza17which was the higher starch content and sorghum Liaoza11which was lower starch content. Tieza17's starch accumulation was higher Liaoza11's. Tieza 17had a relatively longer accumulation timing, the time to reach the maximum accumulation rate is earlier than Liaoza11and accumulation rate was also higher. The SS, SPS, ADPGPase, UDPGPase, GBSS activity in Tieza11grain were higher than Liaoza11, ADPGPase、GBSS activity discrepancy was significant. At earlier stage of starch accumulation, the SSS, SBE activity in Liaoza11grain was higher than Tieza17, but on the contrary at mid-late stage. The DBE activity of Liaoza11was always higher than Tieza17. The relative analysis results showed that the SS, ADPGPase, UDPGPase, GBSS activity will had some impaction to amylose starch accumulation, but the SS, ADPGPase, UDPGPase, SSS, SBE, DBE activity will affect the synthesis of amylopectin.
     3. Drought stress during flowering stage had some impact to sorghum with different starch content grain starch accumulation, starch yield and yield-related traits. The results showed that both Liaoza11and Tieza17's grain starch content and its composition had quite difference, the quantity of total starch content was mainly affected by amylopectin content. Drought treatment during flowering decreased the total starch content, amylase content, amylopectin content. Level of drought treatment's affection during flowering was different from different variety Through comprehensive date, Tieza17's starch content and the affection of its composition by drought stress during flowering was higher than Liaoza11. The affection of sorghum grain starch yield, production and its related traits by drought stress during flowering was more seriously, and the level of affection differs from different years and varieties.
     4. Under drought stress during flowering, total starch accumulation, amylase accumulation and amylopectin accumulation appeared trend of decreasing at mid-late starge of grain filling, and the maximum starch accumulation rate and mean accumulation rage were reduced, grain starch accumulation duration was shorten, the time to reach the maximum accumulation rate was earlier. Starch synthesis activity were subject to different degree of impact during grain starch accumulation, the impact of Tieza17's starch accumulation by drought stress was bigger than Liaoza11. The drought stress during flowering inhibits sorghum starch synthesis activity for different degrees, and cause different degrees of impact on the sorghum grain starch accumulation. The response to drought stress during flowering was also different from different varieties of sorghum and starch composition.
     5. Drought stress during filling stage declined the sorghum grain starch content, starch yield, yield per plant and1000-seed-weight, made the ear grain number slightly reduce. Starch accumulation quantity and the duration of starch accumulation was reduced, starch maximum accumulation rate was increased by drought stress during filling stage. In terms of amylose, Liaoza11affected was relatively serious, and had less effect on the Tieza17. Amylopectin accumulation was more influenced by drought stress during filling stage. All together, drought stress during filling stage influence on Liaoza11's starch accumulation was more than Tieza17's.ADPGPase activity of Liaoza11in the process of starch accumulation, was seriously influenced by filling stage drought, and Tieza17's affected at the early stage of starch accumulation. Drought stress during filling stage was reduced the activity of SSS and GBSS, but the inhibition of SSS and GBSS activity of Liaoza11is greater than Tieza17. Tieza17's SBE activity affected by drought stress during filling stage was greater than that of Liaoza11.
引文
1. 包劲松.1999.植物淀粉生物合成研究进展.生命科学,6:104-107.
    2. 曹士亮,许崇香,金益等.2005.黑龙江省中早熟玉米淀粉积累的动态分析.黑龙江农业科学,4:4-7.
    3. 程方民,蒋德安,吴平等.2001.早籼稻子粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报,27:201-206.
    4. 程方民,钟连进,孙宗修等.2003.灌浆结实期温度对早籼水稻子粒淀粉合成代谢的影响.中国农业科学,36(5):492-501.
    5. 董玉琛,曹永生.2003.粮食作物种质资源的品质特性及其利用.中国农业科学,36(1):111-114.
    6. 段民孝,赵久然.2002.玉米子粒淀粉研究进展.玉米科学,10(1):29-32.
    7. 高荣岐,董树亭,胡昌浩等.1992.高产夏玉米子粒形态建成和营养物质积累与粒重的关系.玉米科学,00:52-58.
    8. 高荣岐,董树亭,胡昌浩等.1993.夏玉米子粒发育过程中淀粉积累与粒重的关系.山东农业大学学报,24(1):42-48.
    9. 高松洁,郭天财,王文静等.2003.不同穗型冬小麦品种灌浆期子粒中与淀粉合成有关的酶活性变化.中国农业科学,36(11):1373-1377.
    10.高欣,肖木辑,周宇飞等.2009.种植密度对高粱子粒淀粉积累的影响.作物杂志,6:35-37.
    11.黄瑞冬,于泳,肖木辑等.2009.施磷、钾肥对高粱子粒淀粉积累规律的影响.作物杂志,2:29-32.
    12.姜东,于振文,李永庚等.2002.施氮水平对高产小麦蔗糖含量和光合产物分配及子粒淀粉积累的影响.中国农业科学,35(2):157-162.
    13.姜敏,周艳明,刘祥久等.2004.不同玉米自交系品质性状的遗传特性.沈阳农业大学学报,35(3):170-172.
    14.李爱军,史红梅,李作一等.2011.高粱淀粉遗传初探.现代农业科技,3:92-94.
    15.李超,肖木辑,周宇飞等.2009.不同播期对高粱子粒淀粉含量的影响.沈阳农业大学学报,40(6):708-711.
    16.李国锋,宋平,曹显祖等.2000.籼粳杂交稻子粒库活性与其充实关系的研究.西北植物学报,20(2):179-186.
    17.李太贵,沈波,陈能等.1997.Q酶在水稻子粒垩白形成中作用的研究.作物学报,23(3):338-344.
    18.李天,大杉立.2005,灌浆结实期弱光对水稻子粒淀粉积累及相关酶活性的影响.中国水稻科学, 19:545-550.
    19.李永庚,于振文,姜东等.2001.冬小麦旗叶蔗糖和子粒淀粉合成动态及与其有关的酶活性的研究.作物学报,27(5):658-664.
    20.粱建生,曹显祖,徐生等.1994.水稻子粒库强与其淀粉积累间关系的研究.作物学报,20(6):686-691.
    21.刘公社,周庆源,宋松泉等.2009.能源植物甜高粱种质资源和分子生物学研究进展.植物学报,44:253-261.
    22.刘鹏,胡昌浩,董树亭等.2005.甜质型与普通型玉米子粒发育过程中糖代谢相关酶活性的比较.中国农业科学,38(1):52-58.
    23.刘霞,谭胜兵,田纪春等.2010.不同淀粉组分含量小麦品种灌浆过程中淀粉去分支酶的活性及类型.中国农业科学,43(4):850-854.
    24.刘祥久,姜敏,李哲等.2004.玉米品质性状配合力研究.杂粮作物,24(5):258-260.
    25.刘岩,王敬锋,王溯等.2010.不同淀粉含量玉米品种子粒淀粉积累特性比较.山东农业科学,8:34-37.
    26.刘宗华,王琳,汤继华等.2007.不同环境条件下玉米子粒淀粉含量的配合力效应及杂种优势分析.玉米科学,15(1):11-15.
    27.马均,明东风,马文波等.2005.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究.中国农业科学,38(2):290-296.
    28.马忠良,张淑君,周紫阳等.2006.优良高粱恢复系南133的选育与利用.杂粮作物,26(3):178-179.
    29.彭估松,郑志仁.1997.淀粉的生物合成及其关键酶.植物生理学通讯,33(4):297-303.
    30.彭泽斌,田志国.2003.高淀粉玉米的产业化潜力分析.作物杂志,6:10-12.
    31.祁新,赵颖君.2001.玉米品质性状的遗传模型分析.吉林农业科学,26(3):32-35.
    32.秦大鹏,刘鹏,王空军等.2008.高淀粉玉米子粒胚乳细胞增殖与淀粉积累的关系.山东农业科学,8:35-39
    33.盛婧,郭文善.2003.小麦淀粉合成酶活性及其与淀粉积累的关系.扬州大学学报,24(4):49-53.
    34.苏丽英,吴勇,於新建等.1989.水稻叶片蔗糖磷酸合成酶的一些特性.植物生理学报,15(2):117-123.
    35.孙庆泉,吴元奇,胡昌浩等.2005.不同产量玉米子粒胚乳细胞增殖与子粒充实期的生理活性. 作物学报,31(5):612-618.
    36.谭彩霞,封超年,郭文善等.2011.不同小麦品种子粒淀粉合成酶基因的表达及其与淀粉积累的关系.麦类作物学报,31(6):1063-1070
    37.王国忠,刘秀丽.1997.不同类型水稻品种的子粒灌浆生理.江苏农学院学报,18(4):19-22.
    38.王纪华,王树安,吴庚勇等.1992.小麦子粒建成过程中的光合特性及内源激素的研究.北京农业大学学报,17:25-29.
    39.王黎明,张育松,马景生等.2002.高粱高淀粉基础材料的筛选及利用.黑龙江农业科学,2:28-29.
    40.王文静.2007.不同类型土壤对郑麦9023子粒淀粉积累及相关酶活性的影响.中国农业科学,40(1):204-211.
    41.王月福,于振文,李尚霞等.2003.小麦子粒灌浆过程中有关淀粉合成酶的活性及其效应.作物学报,29(1):75-81.
    42.夏叔芳,徐健,苏丽英等.1989.水稻叶片的蔗糖合成酶.植物生理学报,15(3):239-243.
    43.闫鸿雁,胡国宏,付立中等.2007.优良高粱恢复系4219的创制及育种应用.安徽农学通报,13:122-123.
    44.于泳,黄瑞冬,赵尚文等.2008.不同施氮水平对高粱子粒淀粉积累规律的影响.作物杂志,5:20-24.
    45.张海燕,董树亭,高荣岐等.2006.植物淀粉研究进展.中国粮油学报,21(1);41-46.
    46.张智猛,戴良香,胡昌浩等.2005.氮素对玉米淀粉积累及其相关酶活性的影响.作物学报,31(7):956-962.
    47.赵步洪,张文杰,常二华等.2004.水稻灌浆期子粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系.中国农业科学,37(8):1123-1129.
    48.钟连进,程方民.2003.水稻子粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异.作物学报,29(3):452-456.
    49.周国勤,张应香.2008.信阳234的子粒灌浆特性及蛋白质、淀粉积累动态研.山东农业科学,1:51-54.
    50.周紫阳,黄瑞冬.2011.不同淀粉含量高粱子粒淀粉积累特性的比较.作物杂志,2:81-84.
    51. Ahmadi A, Baker D A.2001. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation,35:81-91.
    52. Akiho K, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y. The starch debranching Enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology,1999,121:399-409.
    53. Alison M Smith. Making starch Original Research Article.1999. Current Opinion in Plant Biology,2: 223-229.
    54. Barnabas B, Jager K, Feher A.2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell and Environment,31:11-38.
    55. Batz O, Scheibe R, Neuhaus HE.1995. Purification of chloroplasts from fruits of green pepper Caysicum annum L. and characterization of starch synthase,198:50.
    56. Bernard S M, Habash, D Z.2009. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist,182:608-620.
    57. Biliaderis C G.1998. Structures and phase transitions of starch polymers. In:Walter RH Ed. Polysaccharide Association Structures in Foods. Marcel Dekker. New York.57-168.
    58. Boehlein S K, Shaw J R, Stewart J D, Hannah L C.2008. Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined. Plant Physiology,146: 289-299.
    59. Borlaug N.2007. Feeding a hungry world. Science,318-359.
    60. Brooks A, Jenner C F, Aspinall D.1982. Effects of water deficit on endosperm starch granules and on grain physiology of wheat and barley. Australian Journal of Plant Physiology,9:423-436.
    61. Buleon A, Colonna P, Planchot V, Ball S.1998. Starch granulesstructure and biosynthesis. International Journal of Biological Macromolecules,23:85-112.
    62. Burrell M M.2003. Starchthe need for improved quality or quantity-an overview. Journal of Experimental Botany,54:451-456.
    63. Caley C Y, Duffus C M, Jeffcoat B.1990. Effects of elevated temperature and reduced water uptake on enzymes of starch synthesis in developing wheat grains. Australian Journal of Plant Physiology,17: 431-439.
    64. Chu Pengfei, Yu Zhenwen, Wang Xiaoyan, Wu Tonghua, and Wang Xizhi.2009. Effects of Irrigation Amount on Grain Starch Content, Starch Synthase Activity and Water Use Efficiency in Wheat. Acta Agronomica Sinica,35:324-333.
    65. Conway G, Toenniessen G.1999. Feeding the world in the twenty-first century. Nature,402:55-58.
    66. Cooke G W.1977. Fertilisers, carbohydrates and lipids an introduction to the colloquium. InCooke, G W. Ed., Proceedings of the 13th Colloquium of the International Potash Institute. International Potash Institute, York, UK, pp.11-23.
    67. Cramer G R, Urano K, Delrot S, Pezzotti M, Shinozaki K.2011. Effects of abiotic stress on plantsa systems biology perspective. BMC Plant Biology,11:163.
    68. Cross J M, Clancy M, Shaw J R, Boehlein S K, Greene T W, Schmidt R R, Okita T W, Hannah L C. 2005. A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits. Plant Journal,41:501-511.
    69. Cross J M, Clancy M, Shaw J R, Greene T W, Schmidt R R, Okita T W, Hannah L C.2004. Both subunits of ADP-glucose pyrophosphorylase are regulatory. Plant Physiology,135:137-144.
    70. Dale E M, Housley T L.1986. Sucrose synthase activity in developing wheat endosperms differing in maximum weight. Plant Physiology,82:7-10.
    71. Davis B A, Garcia-Quijano M, Hadley B, Im J, Jensen J R, Nel A L, Teixeira E, Wang Z.2006. Remote sensing agricultural crop type for sustainable development in South Africa. Geocarto International,21:5-18.
    72. Denyer K, Hylton C M, Smith A M.1994. Effect of high-temperature on starch synthesis and the activity of starch synthase. Australian Journal of Plant Physiology,21:783-789.
    73. Doehlert D C, Knutson C A.1991. Two classes of starch debranching enzymes from developing maize kernels. Plant Physiology,138:566-572.
    74. Dolferus R, Ji X, Richards R A.2011. Abiotic stress and control of grain number in cereals. Plant Science,181:331-341.
    75. Dong Jiang, Weixing Cao, Tingbo Dai and Qi Jing.2003. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat Triticum aestivum L. spike. Plant Growth Regulation 41:247-257.
    76. Duffus C M.1992. Control of starch biosynthesis in developing cereal grains. Biochemical Society Transactions,20:13-18.
    77. Emes M J, Bowsher C G, Hedley C.2003. Starch synthesis and carbon partitioning in developing endosperm. Journal of Experiental Botany,54:569-575.
    78. Fabian A, Jager K, Rakszegi M, Barnabas B.2011. Embryo and endosperm development in wheat Triticum aestivum L. kernels subjected to drought stress. Plant Cell Reports,30:551-563.
    79. Foulkes M J, Sylvester-Bradley R, Weightman R, Snape J W.2007. Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Research,103:11-24.
    80. Galliard T.1987. Starch availability and utilization. InGalliard, T. Ed., StarchProperties and Potential. Blackwell Scientific Publications, London, pp:1-15.
    81. Genschel U, Abel G, Lorz H, Liitticke S.2002. The sugary-type isoamylase in wheattissue distribution and subcellular localization. Planta.214813-820.
    82. Hill LM, Smith AM.1991. Evidence that glycose 6-phosphate is imported as the substrate for starch synthase by the plastids of developing embryos. Planta,185:9.
    83. Hirel B, Le Gouis J, Ney B, Gallais A.2007. The challenge of improving nitrogen use efficiency in crop plantstowards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany,58:2369-2387.
    84. Hizukuri S, Takeda Y, Yasuda M, Suzuki A.1981. Multi branched nature of amylose and the action of debranching enzymes. Carbohydrate Research,94:205-213
    85. Hizukuri S.1993. Towards an understanding of the fine structure of starch molecules. Denpun Kagaku, 40:133-147.
    86. James M G, Robertson D S, Myers A M.1995. Characterization of the maize gene sugaryl, a determinant of starch composition in kernels. The Plant Cell.7:417-429.
    87. Jenner C F, Ugalde T D, Aspinall D.1991. The physiology of starch and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology,18:211-226.
    88. Jung K H, An G H, Ronald P C.2008. Towards a better bowl of riceassigning function to tens of thousands of rice genes. Nature Reviews Genetics,9:91-101.
    89. Keeling P L.1988. Starch biosynthesis in developing wheat grain. Plant Physiol,87:311-319
    90. Kim H Y, Lieffering M, Kobayashi K, Okada M, Mitchell M W, Gumpertz M.2003. Effects of free-air CO2 enrichment and nitrogen supply on the yield oftemperate paddy rice crops. Field Crops Research, 83:261-270.
    91. Kossmann J, Lloyd J.2000. Understanding and influencing starch biochemistry. Critical Reviews in Biochemistry and Molecular Biology,35:141-196.
    92. Kouichi M. KojiK, Yuji A, etal.1992. Starch branching enzymes from immature rice seeds. J Biochem, 112:643-651.
    93. Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y.1999. The starch debranching enzymes isoamylase and pulluanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology.121:399-409.
    94. Li Z, Sun F, Xu S, Chu X, Mukai Y, Yamamoto M, Ali S, Rampling L, Kosar-Hashemi B, Rahman S, Morell MK.2003. The structural organisation of the gene encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants. Funct Integr Genomics. 3:76-85.
    95. Liang G H, Gao Z S.2001. Phylogenetic analysis and transformation of sorghum Sorghum bicolor L.) Moench. Recent Res Dev Plant Biol.1:17-33.
    96. Lichtfouse E, Hejnak V, Skalicky M, Hnilicka F, Novak J.2009. Responses of Cereal Plants to Environmental and Climate Changes e A Review Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Springer, Netherlands, pp:91-119.
    97. Liu F L, Jensen C R, Andersen M N.2005. A review of drought adaptation in crop plantschanges in vegetative and reproductive physiology induced by ABAbased chemical signals. Australian Journal of Agricultural Research,56:1245-1252.
    98. Lynch D R, Liu Q, Tarn T R, Bizimungu B, Chen Q, Harris R, Chik C L, Skjodt N M.2007. Glycemic index-a review and implications for the potato industry. American Journal of Potato Research,84: 179-190.
    99. Mittler R, Blumwald E.2010. Genetic engineering for modern agriculturechallenges and perspectives. Annual Review of Plant Biology,61:443-462.
    100. Modheja A, Naderib A, Emamc Y, Aynehbandd A, Normohamadie G.2008. Effects of post-anthesis heat stress and nitrogen levels on grain yield in wheat T. durum and T. aestivum) genotypes. International Journal of Plant Production,2:257-267.
    101.Moradi F, Ismail A M.2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany,99:1161-1173.
    102. Morell M K, Li Z, Regina A, Rahman S, D'Hulst C, Ball S.2007. Control of Starch Biosynthesis in Vascular Plants and Algae. Annual Plant Reviews Blackwell Publishing Ltd, Oxford, pp:258-289.
    103. Morell M K, Myers A M.2005. Towards the rational design of cereal starches. Curr Opin Plant Biol.8: 204-210.
    104. Morrison W R, Karkalas J.1990. Methods in Plant Biochemistry. Vol.2. Academic Press. London, pp: 323-352.
    105. Mua J P, Jackson D S.1997. Fine structure of corn amylose and amylopectin fractions with various molecular weighs. Journal of Agricultural and Food Chemistry,45:3840-3847.
    106. Muffler K, Ulber R.2008. Use of renewable raw materials in the chemical industry-beyond sugar and starch. Chemical Engineering & Technology,31:638-646.
    107. Mu-Forster C, Huang R, Harriman RW.1996. Physical associalion of starch biosyn-thetic enzymes with starch granules of maize endosperm, granuleassociated forms of starch synthase I and starch branching synthase II. Plant Physol,111:821-829.
    108. Nakamura Y, Kobo A, Shimamune T.1997. Correlation between activities of starch debranching enzyme and apolyglucan structure in endosperms of sugary-1 mutants of rice. Plant,12:143-153.
    109. Nakamura Y, Kuki K, Park S Y.1989. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiology,30:833-839.
    110. Nakamura Y, Umemoto T, Ogata N, Kuboki Y, Yano M, Sasaki T.1996. Starch debranching enzyme R-enzyme or pullulanase from developing rice endospermpurification, cDNA and chromosomal localization of the gene. Planta,199:209-218.
    111.Nelson O, Pan D.1995. Starch synthesis in maize endosperms. Annu Rev plant physiol PMB,46: 475-496.
    112. Nicolas M E, Gleadow R M, Dalling M J.1985. Effect of post-anthesis drought on cell-division and starch accumulation in developing wheat grains. Annals of Botany,55:433-444.
    113. Okita T W.1992. Is there an alternative pathway for starch synthesis. Plant Physial,100:560.
    114. Patron N J, Smith A M, Fahy B F, Hylton C M, Naldrett M J, Rossnagel B G, Denyer K.2002. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5'-non-coding region. Plant Physiol,130:190-8.
    115. Preiss J, Ball K, Smith-white B, Iglesias A.1994. Biology and molecular biology of starch synthesis and its regulation. Oxf Surv Plant Mol Cell Biol,7:59-114.
    116. Raeker M O, Gaines C S, Finney P L, Donelson T.1998. Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chemistry,75:721-728.
    117. Reynolds M, Condon A G, Rebetzke G J, Richards R A.2004. Evidence for excess photosynthetic capacity and sink-limitation to yield and biomass in elite spring wheat. InTurner N, Angus J, Mclntyre L, Robertson M, Borrell A, Lloyd D. Eds,4th International Crop Science Congress. Fischer, Brisbane, Australia.
    118. Rook F, Hadingham S A, Li Y, Bevan M W.2006. Sugar and ABA response pathways and the control of gene expression. Plant Cell and Environment,29:426-434.
    119. Seiler C, Harshavardhan V T, Rajesh K, Reddy P S, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N.2011. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. Journal of Experimental Botany,62:2615-2632.
    120. Sicher R C, Kremer D F, Bunce J A.1995. Photosynthetic acclimation and photosynthate partitioning in soybean leaves in response to carbon dioxide enrichment. Photosynthesis Research,46:409-417.
    121. Singh S, Gupta A K, Gupta S K, Kaur N.2010. Effect of sowing time on protein quality and starch pasting characteristics in wheat Triticum aestivum L.) genotypes grown under irrigated and rain-fed conditions. Food Chemistry,122:559-565.
    122. Singh S, Singh G, Singh P, Singh N.2008. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chemistry, 108:130-139.
    123. Singletary G W, Banisadr R, Keeling P L.1994. Heat-stress during grain filling in maize-effects on carbohydrate storage and metabolism. Australian Journal of Plant Physiology,21:829-841.
    124. Smith A M, Coupland G, Dolan L, Harberd N, Jones J, Martin C, Sablowki R, Amey A.2009. Environmental Stress Garland Press, New York.
    125. Smith A M, Denyer K, Martin C.1995. What controls the amount and structure of starch in store organ. Plant Physiol,107:673-677.
    126. Stone P J, Nicolas M E.1995. A survey of the effects of high-temperature during grain filling on yield and quality of 75 wheat cultivars. Australian Journal of Agricultural Research,46:475-492.
    127. Takeda Y, Hizukuri S, Takeda C, Suzuki A.1987. Structures of branched molecules of amyloses of various origins and molar fractions of branched and unbranched molecules. Carbohydrate Research, 165:139-145.
    128. Tester R F, Karkalas J, Qi X.2004. Starch-composition, fine structure and architecture. Journal of Cereal Science,39:151-165.
    129. Tetlow I J.2011. Starch biosynthesis in developing seeds. Seed Science Research,21:5-32.
    130. Turton, A, Nicol, A, Earle, A, Meissner, R, Mendelson, S, Quaison, E.2003. Policy Options in Water-stressed StatesEmerging Lessons from the Middle East and Southern Africa University of Pretoria Pretoria.
    131. Uhlmann N K, Beckles D M.2010. Storage products and transcriptional analysis of the endosperm of cultivated wheat and two wild wheat species. Journal of Applied Genetics,51:431-447.
    132. Wang L Z, White P J.1994. Structure and properties of amylose, amylopectin and intermediate material of oat starches. Cereal Chemistry,71:263-268.
    133. WHO.2003. Diet, Nutrition and the Prevention of Chronic Diseases, In WHO Technical Report Series. World Health Organisation of the Food and Agriculture Organization of the United Nations, Geneva.
    134. Worch S, Rajesh K, Harshavardhan V T, Pietsch C, Korzun V, Kuntze L, Borner A, Wobus U, Roder M S, Sreenivasulu N.2011. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biology,11,1.
    135. Yamashita M, Matsumoto D, Murooka Y.1997. Amino acid residues specific for the catalytic action towards alpha-1,6-glucosidic linkages in Klebsiella pullulanase. J Fermentation Bioeng,84:283-290.
    136. Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L.2003. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research,81:69-81.
    137. Yang J C, Zhang J H.2010. Grain-filling problem in'super' rice. Journal of Experimental Botany,61: 1-4.
    138. Yang L X, Wang Y L, Dong G C, Gu H, Huang J Y, Zhu J G, Yang H J, Liu G, Han Y.2007. The impact of free-air CO2 enrichment FACE and nitrogen supply on grain quality of rice. Field Crops Research,102:128-140.
    139. Yin X Y, Struik P C, van Eeuwijk F A, Stam P, Tang J J.2005. QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany,56:967-976.
    140. Yokoi S, Bressan R A, Hasegawa P M.2002. Salt stress tolerance of plants. JIRCAS Working Report, 25-33.
    141. Yoshida S.1975. Physiological aspects of grain yield. Annual Review of Plant Physiology,23: 437-464.
    142. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi S K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal,61:672-685.
    143. Yoshimoto Y, Tashiro J, Takenouchi T, Takeda Y.2000. Molecular structure and some physicochemical properties of high-amylose barley starch. Cereal Chemistry,77:279-285.
    144. Zhang B, Horvath S.2005. A general framework for weighted gene coexpression network analysis. Statistical Applications in Genetics and Molecular Biology 4.
    145. Zhang H, Li H W, Yuan L M, Wang Z Q, Yang J C, Zhang J H.2012. Postanthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany,63:215-227.
    146. Zhang N Y, Gibon Y, Gur A, Chen C, Lepak N, Hohne M, Zhang Z W, Kroon D, Tschoep H, Stitt M, Buckler E.2010. Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize IBM mapping population. Plant Physiology,154: 1753-1765.
    147. Zhang T, Wang Z, Yin Y, Cai R, Yan S, Li W.2010. Starch content and granule size distribution in grains of wheat in relation to post-anthesis water deficits. Journal of Agronomy and Crop Science,196: 1-8.
    148. Zhang X L, Szydlowski N, Delvalle D, D'Hulst C, James M G, Myers A M.2008. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. BMC Plant Biology,8,96.
    149. Zhang Z X, Chen J, Lin S S, Li Z, Cheng R H, Fang C X, Chen H F, Lin W X.2012. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Science,185:259-273.
    150. Zhao H, Dai T, Jiang D, Cao W.2008. Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. Journal of Agronomy and Crop Science,194: 47-54.
    151. Zheng J, Fu J J, Gou M Y, Huai J L, Liu Y J, Jian M, Huang Q S, Guo X Y, Dong Z G, Wang H Z, Wang G Y.2010. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Molecular Biology,72:407-421.
    152. Zhu G, Ye N, Jianchang Y, Peng X, Zhang J.2011. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. Journal of Experimental Botany,62:3907-3916.
    153. Zhu T, Budworth P, Chen W Q, Provart N, Chang H S, Guimil S, Su W P, Estes B, Zou G Z, Wang X. 2003. Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnology Journal,1:59-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700