物流网络结构复杂性及优化设计问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物流网络是物流活动的载体,是整个物流管理活动赖以存在和发挥效能的物质基础。无论从网络结构角度还是从系统内部相互作用关系看,物流网络都是-个复杂的大系统,其中有许多优化问题需要解决。因此,采用复杂系统及优化理论研究物流网络的结构特点及设计问题,可以更好地理解物流活动的运作规律,为解决物流管理问题提供新的视角,为进一步合理规划物流网络提供理论基础。
     本论文结合复杂网络的相关理论对物流网络的承载能力及价格演化特点进行了分析,采用博弈论的知识建立了服务定价及节点选址的双层规划模型,并对模糊条件下物流配送路径优化问题进行了探讨。
     本论文的主要内容有如下几个方面:
     (1)基于复杂网络理论,研究了不同结构特点物流网络的承载能力,分析了最优的网络拓扑结构。介绍了物流网络复杂性的研究方法。模拟了各类复杂网络在弹性需求条件承载能力与相关参数的关系,随着参数β的增大,即OD对间的费用估计越准确,系统产生的OD总需求量越小,并在最后达到平衡状态。同时得到系统总OD需求量与网络规模呈幂律关系,其指数受参数β的影响不大。更重要的是模拟结果显示网络规模越大,系统承载的平均OD需求量越小,这一现象为我们合理进行网络设计提供了科学依据。
     (2)研究了物流网络中价格演化特性。空问价格规律指的是如果供应价格加上运输费用小于需求价格,有交易产生,否则没有交易。本文首先以物流网络中空间价格规律为基础,研究了价格在不同网络结构中演化的基本特征。发现网络连接随机化程度越大,群落结构越明显,平均价格下降越快,系统将在较短时间达到平衡。对于无标度网络其规模越大,价格平均水平下降越慢。这主要是因为不同网络结构其平均最短距离不同,造成价格演化影响程度不同而形成的。
     同时考虑物流服务商和客户各自的竞争特点,应用博弈论和双层规划理论分析了物流服务的定价问题。并应用算例对模型和算法进行了验证,结果表明算法有很好的收敛性,其它相关参数对上下层目标函数值的影响程度不同。
     (3)建立了考虑流量均衡及信息共享条件下的物流设施选址模型。从节约社会资源的角度考虑,物流中心的修建要尽量使流量分布均衡,建立了考虑流量分布均匀的物流中心选址双层规划模型,并给出了一个简单的求解算法,算例分析表明该模型从理论上可以避免物流资源利用不充分的问题。同时建立了考虑信息共享条件下物流节点的选址问题,通过数值模拟得到随着信息共享程度的增加,系统总费用会有明显的降低,但随着共享水平的进一步增加,系统费用的变化会逐渐稳定。这说明信息共享水平将影响物流企业及客户的利益,合理的信息共享程度能同时提高双方的收益。
     (4)研究了模糊机会约束条件下物流配送路径优化问题。在前人研究的基础上,提出了基于模糊机会约束的物流配送路径优化模型,并给出了基于模糊模拟的遗传算法求解该问题,实验计算结果表明,采用模糊模拟技术可以方便地处理模糊机会约束条件下物流配送路径优化问题,为快速解决此类问题提供了一种新的尝试。
Logistics network, as a carrier of logistics activities, is the physical foundation of the logistics managemnt. Logistics network is also a complex system, in which many optimized problems need to be solved. Hence, to study the logistcs network with complex system and optimization theories could understand runing rules of logistics activities further well and provide a new effective method and scientific foundation to research and plan the network. This dissertation mainly disscusses the complexity of logistics networks and analyses its price evolving characteristics. Logistics network design models with different conditions are proposed and logistics vehicle routing problem with fuzzy constraints is studied.
     The main content and innovation of this dissertation are summarized as follows:
     (1) Based on complex network theory, the bearing capacity of logistics networks with different topologies is studied, and optimal network structure is obtained. By considering the elastic demand condition, we analyze load distributions and bearing capacities with different parameters through artifcially created scale-free networks. The simulation results show that the load distribution follows a power-law form, which means some ordered pairs, playing the dominant role in the transportation network, have higher demand than other pairs. We also have found that, with the decrease of perceptual error, the total and average ordered pair demand will decrease and then stay in a steady state. However, with the increase of the network size, the average demand of each ordered pair will decrease, which is particularly interesting for the network design problem.
     (2) The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. And vice versa. This paper studies the evolution results of trade price in different network structures. Simulation results show that the greater the degree of random network connection and the more obvious the community structure are, the average price down faster, the system will reach equilibrium in a short time. For a scale-free network, the larger of the network size, the slower of the average price falls. These results show that the network with shorter path length is sensitive to the variation of prices.
     Taking into consideration the characteristics of their competition of the logistics service provider and customers, game theory and bilevel programming are used to describe the pricing of logistics services. And application example of the model and algorithm are tested, the results show that the algorithm has good convergence, other relevant parameters have different effects on the upper and lower objective function values.
     (3) By taking the flow uniformity into account, the location model is established to reduce the logistics resource waste and to distribute the flow uniformly. A simple solution algorithm is given and the example shows that the model is effective. Sharing market information has been recognized as an effective approach to reduce demand distortion and improve supply chain performance. This paper proposes a bilevel model to solve the location problem by considering information sharing effects. The results show that with the increase of the information sharing, the total system cost will significantly reduce. But with the further increase of the level of the information sharing, the system cost will be gradually stable. This shows that the level of information sharing will affect the interests of the logistics business and customers, a reasonable degree of the information sharing can also improve the profits of both.
     (4) Logistics vehicle routing problem with fuzzy constraints is studied. On the basis of previous studies,the optimizing model of logistics vehicle routing problem with fuzzy chance constraints is established, and a fuzzy analogy genetic algorithm for solving this problem is proposed. Finally, a simple experimental example is given. The result shows that this algorithm is a valid method to solve the disdeterminate problem, and have good search optimal capacity.
引文
Albert R and Barabasi A L.2002. Statistical Mechanics of Complex Networks. Reviews of Modern Physics,74:47-97.
    Albert R, Jeong H and Barabasi A L.2000. Error and attack tolerance of complex networks. Nature, 406:378-381.
    Amaral LAN, Scala A, Barthelemy M and Stanley H E.2000. Classes of small-world networks. Proceedings of the National Academy of Sciences USA,97:11149-11152.
    Arribas I and Urbano A.2005. Nash equilibria in a model of multiproduct price competition:an assignment problem. Journal of Mathematical Economics,41:351-385.
    Ballou R H.1998. Business logistics management. New Jersey:Prentice-Hall.
    Ballou R H.1999. Business logistics management-planning organizing and controlling the supply chain. New Jersey:Prentice Hall.
    Bard J F.1983. An algorithm for solving the general bilevel programming problem. Mathematics of Operations Research,8:260-272.
    Bard J F.1984. An investigation of the linear three level programming problem. IEEE Transactions on Systems, Man and Cyernetics,14:711-717.
    Bard J F and Moore J T.1990. A branch and bound algorithm for the bilevel programming problem. SIAM, Journal on Scientific Computing,11:281-292.
    Bard J F and Moore J T.1992. An algorithm for the discrete bilevel programming problem. Naval Research Logistics,39:419-435.
    Barabasi A L and Albert R.1999. Emergence of scaling in random networks. Science,286:509-512.
    Barahona F and Jensen D.1998. Plant location with minimum inventory. Mathematical Programming,83:101-111.
    Ben-Ayed O and Blair C E.1990. Computational difficulties of bilevel linear programming. Operations Research,38:556-559.
    Ben-Ayed O, Boyce D E and Blair C E.1988. A general bilevel linear programming formulation of the network design problem. Transportation Research,22B:311-318.
    Berman O, and Simchi-Levi D.1989. The Traveling Salesman Location Problem on Stochastic Networks. Transportation Science,23:54-57.
    Bertsimas D.1992. A vehicle routing problem with stochastic demand. Operations Research,40: 574-585.
    Boccaletti S Latora V, Moreno Y, Chavez M and Hwang D U.2006. Complex networks:structure and dynamics. Physics Reports,424:175-308.
    Boguna M, Pastor-Satorras R and Vespignani A.2003. Absence of epidemic threshold in scale-free networks with connectivity correlations. Physical Review Letter,90:028701.
    Bowersox D J and Cross D J.1986. Logistics management-the integrated supply chain process. New York:MaGrow-Hill.
    De Brunet Herve and Le Denn Yves.1990. La demarche logistique. Paris:Afnor Gestion.
    Dorogovtsev S N, Mendes J F F and Samukhin A N.2000. Structure of growing networks with preferential linking. Physical Review Letters,85:4633-4636.
    Burbridge J L.1984. Automated production control with a simulation capability. Proceeding of the international Federation for Information Processing Conference, W G 5-7 Copenhange,1-11.
    Button K J and Gillingwater D.1985. Transport location and spatial policy. Hampshire:Gower.
    Buxton G 1975. Effective marketing logistics. New York:MaCMillan Press.
    Chen Q H and Shi D H.2004. The modeling of scale-free networks. Physica A,335:240-248.
    Chorafas D N.1975. Warehousing. New York:MacMillm Press.
    Christopher M.1985. The strategy of distribution management. Hampshire:Gower.
    Clarke G and Wright J.1964. Scheduling of vehicles from a central depot to number of delivery points. Operations Research,12:12-18.
    Cohen R, Ben-Avraham D and Havlin S.2003. Efficient immunization strategies for computer networks and populations. Phisical Review Letters,91:247901.
    Cowan R and Jonard N.2004. Network Structure and the Diffusion of Knowledge. Journal of Economic Dynamics Control,28:1557-1575.
    Crucitti P, Latora V and Marchiori M.2004. Model for cascading failures in complex networks. Physical Review E,69:045104.
    Dezso Z and Barabasi A L.2002. Halting viruses in scale-free networks. Physical Review E,65: 055103.
    Edmunds T A and Bard J F.1992. An algorithm for the mixed-integer nonlinear bilevel programming problem. Annals of Operations Research,34:149-162.
    Edward W S, Donald J B and Frank H M.1961. Physical distribution management. New York: Macmillan Company.
    Erdos P and Renyi A.1960. On the evolving of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Science,5:17-61.
    Flake G W, Lawrence S, Giles C L and Coetzee F M.2002. Self-organization and identification of Web communities. IEEE Computer,35:66-71.
    Gendreau M.1996. A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Operations Research,44:469-477.
    Gillett B E and Miller L R.1974. A heuristic algorithm for the vehicle dispatch problem. Operations Research,22(4):340-349.
    Girvan M and Newman M E J.2002. Community structure in social and biological networks. The Proceedings of the National Academy of Sciences (USA),99:7821-7826.
    Goh K I, Kahng B and Kim D.2003. Packet transport and load distribution in scale-free network models. PhysicaA,318:72-79.
    Harker P T.1991. Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research,54 (1):81-94.
    Hillier F M, Liebeman G J.1995. Introduction to operations research. New York:McGraw-Hill.
    Holmberg K.1999. Exact solution methods for uncapacitated location problem with convex transportation costs. European Journal of Operational Research,114:127-140.
    Holme P, Huss M and Jeong H.2003. Subnetwork hierarchies of biochemical pathways. Bioinformatics,19:532-538.
    James C. et al.1999. Contemporary logistics. New Jersey:Prentice-Hall.
    Jeroslow R G 1985. The polynomial hierarchy and a simple model for competitive analysis. Mathematical Programming,32:146-164.
    Kasilingam R G.1998. Logistics and transportation:design and planning. Kluwer Academic Publisher, Boston.
    Keenan P B.1998. Spatical decision support system for vehicle routing. Decision support systems, 22:65-71.
    Klemm K and Eguiluz V M.2002. Highly clustered scale-free networks. Physical review E,65: 036123.
    Klose A and Drexl A.2005. Facility location models for distribution system design. European Journal of Operational Research,162:4-29.
    Krapivsky P L, Redner S and Leyvraz F.2000. Connectivity of growing random networks. Physical Review Letters,85:4629-4632.
    Li B, Jiang W S.1998. Optimization complex functions by chaos search. Cybernetics and Systems, 29:409-419.
    Li C G and Maini P K.2005. An evolving network model with community structure. arXiv:physics/0510239.
    Liu B D.2002. Theory and practice of uncertain programming. Physica-Verlag, Heidelberg.
    Lu Z Q and Bostel N.2007. A facility location model for logistics systems including reverse flows: The case of remanufacturing activities. Computers& Operations Research,34:299-323.
    Martin C.1994. Logistics and supply chain management-strategies for reducing costs and improving services. New York:Financial Times/Pitman Publishing.
    Meng Q, Yang H and Bell M G H.2001. An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem. Transportation Research Part B,35(1):83-105.
    Milgram S.1967. The small world problem. Psychology Today,1:60-67.
    Miller T C, Friesz T L and Tobin R L.1996. Equilibrium Facility Location on Networks. Springer.
    Molloy M and Reed B.1998. The Size of the Giant Component of a Random Graph with a Given Degree Sequence. Combinatorics, Probability & Computing,7(3):295-305.
    Moore C and Newman M E J.2000. Epidemics and percolation in small world networks. Physical Review E,61:5678-5682.
    Motter A E and Lai Y C.2002. Cascade-based attacks on complex networks. Physical Review E,66: 065102.
    Nagurney A.1999. Network economics:a variational inequality approach. Kluwer Academic Publishers, Boston.
    Nagurney A and Dong J.2002. A multiclass, multicriteria traffic network equilibrium model with elastic demand. Transportation Research Part B,36:445-469.
    Newman M E J.2003. The structure and function of complex net works. SIAM Review,45: 167-256.
    Newman M E J and Girvan M.2004. Finding and evaluating community structure in networks. Physical Review E,69:026113.
    Newman M E J, Moore C and Watts D J.2000. Mean field solution of the small-world network model. Physical Review Letters,84:3201-3204.
    Newman M E J and Watts D J.1999. Renormalization group analysis of the small-world network model. Phys. Lett. A,263:341-346.
    Owen S H and Daskin M S.1998. Strategic facility location:a review. European Journal of Operational Research,111:423-447.
    Osamu M.1999. A Genetic Algorithm Approach to Vehicle Routing Problem with Time Deadlines in Geographical Information Systems. Http://ieeexplore.ieee.org/ie15/6569/17543/00812471.pdf?arnumber=812471.
    Pastor-Satorras R and Vespignani A.2001. Epidemic spreading in scale-free networks. Physical Review Letter,86:3200.
    Psaraftis H N.1988. Dynamic vehicle routing problem. Vehicle Routing:Methods and Studies, Amsterdam, North-Holland.223-248.
    Quayle M, Bwan J. Logistics:An integrated approach. London:Tudor,1993.
    Redner S.1998. How popular is your paper? An empirical study of the citation distri.ution. The European Physical Journal B,4:131-134.
    Reyes P M.2005. Logistics networks:A game theory application for solving the transshipment problem. Applied Mathematics and Computation,168:1419-1431.
    Rhim H, Ho T H and Karmarkar U S.2003. Competitive location, production, and market selection. European Journal of Operational Research,149:211-228.
    Romualdo P S and Vespignani A.2001. Epidemic Spreading in Scale-Free Networks. Physical Review Letters,86(14):3200-3203.
    Sariklis D and Powell S.2000. Heurisde method for the open vehicle routing problem. Journal of the Operational Research Society,51 (5):564-573.
    Sen P et al.2003. Small-world properties of the Indian Railway network. Physical Review E,.67: 036106.
    Shaw J P.1980. A Parametric Complementary Pivot Approach to Multilevel Programming. Master's Thesis, Dept. Of Industrial Engineering, SUNY at Buffalo.
    Sheffi Y.1985. Urban transportation networks:equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs, New Jersey.
    Stein M and Frank v.1998. macrologistics management catalist for organization change. Florida:St. Lucie Press.
    Sun H J and Gao Z Y.2004. A Bi-level Model for Logistics Network Design Problem Based on SPE. Proceedings of 2004 International Conference on Traffic & Transportation Studies.
    Sun L J and Gao Z Y.2007. An equilibrium model for urban transit assignment based on game theory. European Journal of Operational Research,181:305-314.
    Taniguchi E.1999. Optimal size and location planning of public logistics terminals. Transportation Research E,35:207-222.
    Teodorovic D, Pavkovic G.1996. The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain. Fuzzy Set and Systems,82:307-317.
    Dror M, Laporte G, Trudeau P.1989. Vehicle routing with stochastic demands:Properties and frame solution frameworks. Transportation Science,23:166-176.
    Vito L and Massimo M.2002. Is the Boston subway a small-world network?. Physica A,314: 109-113.
    Wang X F and Chen G R.2002. Synchronization in scale-free dynamical networks:robustness and fragility. IEEE Transactions on Circuits and systems Part I:Regular Paper,49(1):54-62.
    Watts D J and Strogatz S H.1998. Collective dynamics of'small-world'networks. Nature,393: 440-442.
    Wu J J, Gao Z Y, Sun H J and Huang H J.2004a. Urban Transit System as a Scale-free Network. Modern Physics Letters B,18(19&20):1043-1049.
    Wu J J, Gao Z Y, Sun H J.2004b. Simulation of Traffic Congestion with SIR Model. Modern Physics Letters B,18(30):1537-1542.
    Wu J J, Gao Z Y, Sun H J.2005. Random and Preferential Attachment Networks with Aging. Chinese Physics Letters,22(3):765-768.
    Wu J J, Gao Z Y, Sun H J and Huang H J.2006. Congestion in Different Topologies of Traffic Networks. Europhysics Letters,74:560-566.
    Wilding R.1998. The supply chain complexity triangle, Uncertainty generation in the supply chain. International Journal of Physical Distribution& Logistics Management,28(8):599-616.
    Yang H, Zhang X and Meng Q.2004. Modeling private highways in networks with entry-exit based toll charges. Transportation Research B,38 (3):191-213.
    Yang H, Zhang X N and Meng Q.2007. Stackelberg games and multiple equilibrium behaviorsn on networks. Transportation Research Part B,41:841-861.
    Zhao L, Lai Y-C, Park K and YeN.2005. Onset of traffic congestion in complex networks. Physical Review E,71:026125.
    Zhao X M and Gao Z Y.2006. A chaotic approach for the bi-level discrete equilibrium network design problem. Journal of System Science and Information,4:193-202.
    Zheng J F, Gao Z Y and Zhao X M.2007. Properties of transportation dynamics on scale-free networks. PhysicaA,373:837-844.
    Zhou G, Min H and Gen M.2002. The balanced allocation of customers to multiple distribution centers in the supply chain network:a genetic algorithm approach. Computers& Industrial Engineering,43:251-261.
    Zhou J, Lam W H K and Heydecker B G.2005. The generalized Nash equilibrium model for oligopolistic transit market with elastic demand. Transportation Research Part B,39:519-544.
    蔡临宁.物流系统规划——建模及实例分析,北京:机械工业出版社.2003.
    车宏安,顾基发.无标度网络及其系统科学意义,系统工程理论与实践.2004,4:11-16.
    陈军,陈寒凝.协同学理论与虚拟物流企业联盟的形成,中国市场.2007,49:30-31.
    程国全,王转,鲍新中.现代物流网络与设施,北京:首都经济贸易大学出版社.2004.
    辞海编委会,辞海,上海:上海辞书出版社.1989.
    戴汝为.系统科学与复杂性科学,上海:上海科技教育出版社.2001.
    邓明荣,葛洪磊.基于损失函数的物流服务价格竞争模型,商业研究.2005,6:72-74.
    丁立言.物流基础,清华大学出版社.2000.
    方传伟.供应链环境下的物流网络规划研究,南京理工大学硕士学位论文.2004.
    方锦清.2006.网络科学的理论模型探索及其进展.科技导报,24(12):67-72.
    高自友,宋一凡,四兵锋.城市交通连续平衡网络设计—理论与方法.北京:中国铁道出版社,2000.
    高自友,孙会君.现代物流与交通运输系统,人民交通出版社.2003.
    高自友,赵小梅,黄海军.复杂网络(第九章),上海科技教育出版社.2006.
    何明珂.物流系统论,北京:中国审计出版社,2001.
    何明珂.物流系统的治理结构,北京工业大学学报.2002,2(1):12-16.
    胡伏湘,邓文达.计算机网络技术教程-基础理论与实践,北京:清华大学出版社,2004.
    胡海波,王林.2005.幂律分布研究简史.物理,34(12):889-896.
    黄海军.城市交通网络平衡分析理论与实践.北京:人民交通出版社.1994.
    黄园高,周晶.收费公路和公共交通之间的定价博弈分析,东南大学学报.2004,2:268-273.
    姜大立,杜文.基于遗传算法的物流配送中心选址模型,物流技术.1997,5:3-6.
    姜大立,杜文,张拥军.易腐物品物流配送中心选址的遗传算法,西南交通大学学报,1998,33(4):425-429.
    鞠颂东.物流网络:物流资源的整合与共享,北京:社会科学文献出版社.2007.
    郎茂祥.基于遗传算法的物流配送路径优化问题研究,中国公路学报.2002,15(3):76-79.
    朗文出版(远东)有限公司词典编译出版部.朗文现代英汉双解词典,北京:现代出版社.1996.
    黎青松,袁庆达,杜文.最优库存策略。下的选址模型,系统工程.1999,6:7-11.
    梁世翔,孙守成.物流园区协同的非线性动力学模型,武汉理工大学学报.2006,5:895-898.
    李军,郭耀煌.物流配送—车辆优化调度理论与方法,北京:中国物资出版社.2001.
    林国龙,宋柏,沙梅等译.物流管理—供应链过程的一体化,北京:机械工业出版社.1999.
    刘宝碇,赵瑞清.随机规划与模糊规划,北京:清华大学出版社.1998.
    刘灿齐.现代交通规划学,北京:人民交通出版社.2001.
    刘海燕,李宗平.物流配送中心选址模型,西南交通大学学报.2000,3:311-314.
    刘蕾.信息技术与物流业的发展,成都电子科技大学学报(社科版).2001,3(6):48-51.
    刘威,魏明侠,周焕.物流服务定价的博弈分析,物流科技.2007,1:64-67.
    陆化普,王超.两层次物流中心规划模型求解的遗传算法,土木工程学报(交通工和分册)2001,1(1):1-5.
    吕金虎.复杂动力网络的数学模型与同步准则,系统工程理论与实践.2004,4:17-22.
    马祖军,代颖.产品回收逆向物流网络优化设计模型,管理工程学报.2005,19(4):114-117.
    毛良伟.混沌动力学在宏观物流预测中的运用,技术经济.2003,5:53-54.
    宁方华,陈子辰,熊励.熵理论在物流协同中的应用研究.浙江大学学报(工学版),2006,40(10):1705-1708.
    汝宜红,田源,徐杰.配送中心规划,北京:北方交通大学出版社.2002.
    沈立新,陈燕,孙兆刚.基于双层规划的虚拟物流企业联盟伙伴选择模型及求解算法,科学技术与工程.2005,5(4):244-249.
    沈立新等.基于双层规划的虚拟物流企业伙伴选择,软科学.2005,19(3):30-33.
    帅斌,孙朝苑.物流产业的非差异性定价模型研究,交通运输工程与信息学报.2006,2:6-10.
    宋华,胡左浩.现代物流与供应链管理,北京:经济管理出版社.2000.
    孙会君,高自友.考虑路线安排的物流配送中心选址双层规划模型及求解算法,中国公路学报.2003,16(2):115-119.
    孙会君.物流中心选址与库存控制的双层规划模型及求解算法研究,北京交通大学博十学位论文.2003.
    汪超,王俊丽.我国物流市场的博弈分析.公路交通科技,2004,21(10):130-133.
    王成恩.供应链中物流及信息流管理,中国管理科学.2001,4(3):16-23.
    王辉球,缪立新,乐奕平.物流中心最佳布局方案求解——基于遗传算法的双层规划模型基本
    思路,中国物流与采购.2005,11:62-65.
    王健.现代物流网络系统的构建,北京:科学出版社.2005.
    王凌.智能优化算法及其应用.北京:清华大学出版社,2001.
    王晓东,胡瑞娟等译.企业物流管理—供应链的规划、组织和控制.北京:机械工业出版社,2002.
    王玉琳.系统思维原则与领导者的战略思维,系统辩证学学报.2001,9(13):49-52.
    王玉琳,王诤诤.系统辩证学学报,现代物流管理系统的复杂性分析.2003,11(4):88-91.
    王之泰.现代物流学,中国物资出版社,1998.
    王之泰.现代物流管理,北京:中国工人出版社.2001.
    吴金椿.现代物流与管理信息化,南方经济.2001,9(7):69-71.
    吴清一.物流基础,北京:清华大学出版社.2000.
    夏守长,奚立峰.再制造物流网络的研究现状及发展趋势,工业工程与管理.2002,7(5):20-24.
    肖剑,陈义华.考虑费用函数约束的物流配送中心选址双层规划模型,物流技术.2004,11:89-90.
    谢识予.经济博弈论.上海:复旦大学出版社,1997.
    严作人,张戎.运输经济学,北京:人民交通出版社.2003.
    袁健,刘晋,卢厚清.随机需求情形VRP的退火网络解法,系统工程理论与应用.2002,22(3):109-113.
    张贝.可持续发展物流系统的相关问题研究,北京交通大学博士学位论文.2006.
    张金锁,康凯.区域经济学,天津:天津大学出版社,2003.
    张潜等.基于模糊优化的物流配送路径(MLRP)问题研究,控制与决策.2006,21(6):689-692.
    张涛,张玥杰,王梦光.不确定车辆数的车辆路径问题模型和混合算法,系统工程理论方法应用.2002,11(2):121-124.
    张永等.不确定条件下第三方物汉企业一体化物流网络设计,东南大学学报.2007,22(4):570-576.
    中国社会科学院语言研究所词典编辑室.现代汉语词典(2002年增补本),北京:商务印书馆.2002.
    周晶,徐晏.公共交通网络系统的广义Nash经营博弈模型,系统工程学报.2001,4:261-267.
    周涛等.复杂网络上传播动力学研究综述,自然科学进展.2005,15(5):513-518.
    朱道立等.物流和供应链管理.上海:复旦大学出版社,2001.
    曾剑,王景锋,邹敏.物流管理基础.北京:机械工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700