土石坝坝体、坝基和水库库区土工膜防渗体力学特性及渗透系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土石坝是世界上最古老的坝型之一,有着悠久的建造历史。据统计,全世界超过15m的土石坝共有29000余座,仅在中国就有15000余座。土石坝具有对地基要求较宽松,施工简单方便,适应性强,抗震性能良好,工作可靠、寿命长、管理简便等优点,是世界上应用最广的坝型。由于土石坝的筑坝材料绝大部分是当地土料、石料、砂砾料或土石混合料,其渗透系数都较大。因此,土石坝的防渗结构就成为工程设计和施工的重点,土石坝防渗措施的研究也就成为了重要的研究课题之一。
     土工膜作为一种新型的防渗体,和传统的土石坝防渗体(粘土心墙、混凝土面板、沥青混凝土防渗体等)比较,有其自身的优点。但是随着土工膜的不断推广应用,也出现了一些工程问题。这主要是我们对土工膜的一些工程特性还不是很清楚。为了更加深入地了解土工膜的工程特性,为土工膜的进一步推广应用提供理论依据。本文采用试验研究、数值计算和理论分析三种方法对土石坝坝体、坝基和水库库区土工膜防渗体力学特性和渗透系数进行了研究。
     试验研究包括两项内容:(1)采用TZY-1型土工合成材料综合测定仪测定了复合土工膜与粗粒料垫层结构面的摩擦角和粘聚力,复合土工膜与干燥的粗粒料、含水率3%、6%和8.5%的粗粒料垫层结构面之间的摩擦角平均值和粘聚力平均值为别为26.7°、15.9kPa;27.59°、16.76kPa;28.87°、23.95kPa;32.32°、26.14kPa;且摩擦角和粘聚力都随粗粒料含水量的增大而增大。(2)采用自行研制的非散粒体材料摩擦角测定仪测定复合土工膜与粗粒料垫层结构面之间的摩擦角,复合土工膜与干燥的、含水量3%、6%和8.5%的粗粒料的摩擦角分别为30.4°、31.5°、32.5°、34.3°。同样可以得到摩擦角随粗粒料含水量的增大而增大的规律。
     在工程应用中,当采用摩擦角和粘聚力进行计算时,根据粗粒料含水率的不同,摩擦角可以在26.5°-32°之间取值,粘聚力可以在15.9kPa-26.14kPa之间取值;当只采用摩擦角时,可在30.4°-34.3°之间取值。当然摩擦角和粘聚力的取值,需要根据复合土工膜的特性和粗粒料的性质、剪切条件等进行综合考虑,使试验方法尽可能与实际情况相符合。
     数值计算包括:(1)采用有限差分方法研究复合土工膜心墙土石坝的力学特性。为了探讨复合土工膜在坝体中的应力变形规律,结合新疆呼图壁河复合土工膜心墙堆石坝,采用三维土工格栅单元模拟复合土工膜与坝体结构面的相互作用,讨论了三维土工格栅单元的9大参数,选取其中必要的5大参数进行结构计算,得出了坝体和复合土工膜在施工完建期、蓄水期、蓄水期加8度地震工况下的应力变形规律。计算结果显示,复合土工膜在端部出现了应力集中现象。
     (2)采用有限元方法研究复合土工膜斜墙土石坝的力学特性。利用第三章的试验结果,选取合适的摩擦系数,采用库仑摩擦(coulomb friction)模型模拟复合土工膜与粗粒料垫层结构面的摩擦特性,然后结合一座复合土工膜防渗斜墙土石坝,采有限元计算方法,分析复合土工膜土石坝这种新型坝型的力学特性和变形规律。
     (3)采用有限元方法研究土石坝复合土工膜防渗斜墙的抗滑稳定性。在分析复合土工膜防渗体抗滑稳定机理的基础之上,结合实际工程,进行复合土工膜防渗体的抗滑稳定计算。在计算中讨论了渗流计算的三种边界条件,针对复合土工膜斜墙坝这种新型的坝体,给出了符合这种坝型的渗流边界条件,并计算了复合土工膜坝的孔隙水压力,最后分析计算了坝体复合土工膜防渗体的抗滑稳定。从计算结果可以得出,土石坝复合土工膜防渗体斜墙的临界滑动面近似为一个平面,该平面为坝体垫层与复合土工膜上界面的接触面。
     理论分析包括库区局部土工膜防渗体的抗裂研究和大面积土工膜防渗体的渗漏估算研究。对于库区局部土工膜防渗体的抗裂研究,首先分析了库区局部土工膜防渗体的抗裂机理,将土工膜的撕裂状态分为两种情况:土工膜未被架空状态的撕裂状态和土工膜被架空状态的撕裂状态。分析两种状态下土工膜的受力情况,分别推导出符合两种状态的微分控制方程,同时分析了两种状态下撕裂强度的影响因素,得出了两个最主要的影响因素:土工膜本身的强度和垫层料的特性。两种土工膜抗裂力学模型的提出,有利于工程人员评价库盘土工膜防渗体的抗裂性能。
     对于大面积土工膜防渗体渗透系数的研究,首先将土工膜防渗体的渗透量分为土工膜的渗透量和渗漏量,并分析了大面积土工膜防渗体的渗透机理,提出了大面积土工膜防渗体渗漏量和渗透系数的计算方法,即利用区域水量平衡原理计算渗漏量,然后采用达西定律计算渗透系数,并结合工程实例,计算了土工膜破损孔洞影响下的土工膜防渗体的渗漏量和渗透系数。由于破损孔洞的影响,土工膜的渗透系数从最初的10-12cm/s~10-13cm/s下降为10-7cm/s~10-8cm/s,相对而言(铺设土工膜防渗体之前库盘的渗透系数为5.41×10-3cm/s~1.16×10-2cm/s),土工膜防渗体大大改善了库盘的渗漏问题。
     在实际的工程计算中,库盘大面积土工膜防渗体的渗透系数可在10-8cm/s-10-7cm/s之间取值,来计算土工膜防渗体的渗漏量,评价库盘大面积土工膜防渗体的防渗效果。
Earth-rock dam is one of the most oldest dam types which is still current in the world, has a long historical source. According to statistics that there are 29000 earth-rockfill dam in the World,15000 earth-rockfill dam in China. Earth-rock dam has many advantages, such as dam body foundation codition is low, its construction process is simple, strong adaptability, the test behaved very well, reliable operation and long life, simple management. To become most widely used dam types which is still current in the world. Because dam Material of earth-rockfill dam is soil material, stone, sandy gravel, or soil-aggregate mixture, its permeability coefficient is relatively great. So anti-seepage of earth-rock dam become the key design of engineering design and engineering construction, the anti-seepage measures of earth-rock dam has been a important research topic.
     Geomembrane as a new type impervious body, compared with the traditional impervious body of earth-rock dam, impervious body of geomembrane has its own advantages. But with development and wide application of the impervious body of geomembrane, there emerge some engineering problems. This is mainly because it is not clear about engineering characteristics of geomembrane. So it is quite clear to know that engineering characteristics of geomembrane, this paper adopts experimental study, numerical calculation and theoretical analysis, three methods to study engineering characteristics of geomembrane.
     Experimental study includes two parts. First, friction characteristics between composite geomembrane and structural plane of coarse-grained materials by using of TZY-1 earthwork synthetic material detenninator. Through friction test, the friction angle and cohesion between composite geomembrane and structural plane of dry coarse-grained materials are 26.7°and 15.9kPa; when coarse-grained materials moisture content is 3%, the friction angle is 27.59°, cohesion is 16.76kPa; when coarse-grained materials moisture content is 6%, the friction angle is 28.87°, cohesion is 23.95kPa; when coarse-grained materials moisture content is 8.5%, the friction angle is 32.32°, cohesion is 26.14kPa; Secondly, friction angle between composite geomembrane and structural plane of coarse-grained materials by using of friction angle determinator of unbulk solid material. the friction angle between composite geomembrane and coarse-grained materials of different moisture contents(dry,3%,6%,8.5%). the friction angle is respectively 30.4°,31.5°,32.5°,34.3°. The friction angle is increased with coarse-grained materials of different moisture contents increase.
     Numerical calculation includes two parts. First, mechanical properties of core earth and rock dams with composite geomembrane by using of finite difference. Combined with practical work, discussed on structure design of core earth and rock dams with composite geomembrane, analysis and calculation the stress and strain of dam body and composite geomembrane in every case, and summarize in variation of the stress and strain of dam body and composite geomembrane. Secondly, mechanical properties and stability against sliding of slope-wall rock dam with composite geomembrane by using of finite element method. Discussed on structure design of slope-wall rock dam with composite geomembrane, calculation the stress and strain of dam body and composite geomembrane, through analysis calculation results, to get variation of the stress and strain of dam body and composite geomembrane. For analysis stability against sliding of slope-wall rock dam with geomembrane, still adopting finite element method. At first analysis stability against sliding mechanism of slope-wall rockfill dam with geomembrane, based on calculation, top interface of impervious body of geomembrane is weak of sliding surface, embodies a kind characteristics of soften interface. The calculation results consistent with experimental study results.
     Theoretical analysis includes two parts:anti-crack analysis of impervious body of geomembrane in partial of reservoir area, and seepage stability analysis of impervious body of geomembrane in large scale of reservoir area. For anti-crack analysis of impervious body of geomembrane, at first analysis of mechanism of crack resistance and divided into two aspects:mechanism of crack resistance of geomembrane in overhead state and mechanism of crack resistance of geomembrane in not overhead state. Analysis force condition of geomembrane in two aspects, and derived differential control equation of geomembrane in two aspects, at the same time, analysis influence factorst of ear strength.
     Through experimental study, numerical calculation and theoretical analysis, The change law of stress and strain and constitutive relation of friction between composite geomembrane and structural plane of coarse-grained materials were summarized. To get mechanical properties of core earth and rockfill dams with composite geomembrane and slope-wall rockfill dam with composite geomembrane. To get anti-cracking characteristicsget of impervious body of geomembrane in partial of reservoir area. To get seepage properties of impervious body of geomembrane in large scale of reservoir area. Study on Engineering Properties of impervious body of geomembrane, has established the important theoretical foundation to practical application of geomembrane.
     For percolation estimate analysis of impervious body of geomembrane in large scale of reservoir area, infiltration capacity of impervious body of geomembrane were divided into infiltration capacity and seepage amount, analysis permeation mechanism of impervious body of geomembrane in large scale of reservoir area. Combined with practical work, accordance with principle of water balance, estimation seepage amount of impervious body of geomembrane in large scale of reservoir area. Accordance with Darcy law, calculation permeability coefficient of impervious body of geomembranes, to get Seepage regulation of impervious body of geomembrane in large scale. Seepage amount of impervious body of geomembrane reduces to 10"7cm/s~10-cm/s from 10-12cm/s~10-13cm/s.
引文
[1]左东启,王世夏,林益才.水工建筑物(上册)[M].南京:河海大学出版社,1995:11-54.
    [2]蒋国澄.高土石坝筑坝关键技术问题的研究成果汇编(第二册)[G].北京:水利水电科学研究院,1986:202-235.
    [3]祁庆和.水工建筑物(第三版)[M].北京:中国水利水电出版社,1997:3-8.
    [4]张光斗,王光纶.水工建筑物[M].北京:北京水利水电出版社,1994:4-7.
    [5]HH罗扎诺夫主编.土石坝[M].水利电力部黄河水利委员会科技情报站译.北京:水利电力出版社,1968:31-67.
    [6]郭诚谦.土石坝的若干发展问题[J].水利水电技术,1998,29(10):25-30.
    [7]蒙成.土石坝设计若干问题浅析[J].广西水利水电,2005年(增刊):19-24.
    [8]顾淦臣.高土石坝的发展进程和发展趋势[J].河海大学科技情报,1989(3):35-42.
    [9]王柏乐,刘瑛珍,吴鹤鹤.中国土石坝工程建设新进展[J].水力发电(专题综述),2005,13(1):25-30.
    [10]花加凤.土石坝膜防渗结构问题探讨[D].南京:河海大学,2006:28-65.
    [11]王德军,李桂荣.面板堆石坝施工新技术概述[J].贵州水力发电,2005,19(4):25-30.
    [12]BharatSinghh, R.S.Varshney. Engineering for embankment Dam[M].India,1995:18-69.
    [13]顾淦臣.高土石坝的发展进程和发展趋势[J].河海大学科技情报,1989(3):38-71.
    [14]王晓松,李宝珠.世界高土石坝发展综述[J].黑龙江水力发电学报,1995(3):65-70.
    [15]W.D.盖斯勒.水工建筑物沥青混凝土防渗的最新发展[J].水利水电快报,1997,(16)145-152.
    [16]杜振坤,贾金生,陈肖蕾.我国水工沥青混凝土防渗技术发展及应用[J].水力发电,2004,30(1):35-39.
    [17]鲁一晖,郝巨涛,岳跃真,等.沥青混凝土面板防渗工程中的几个问题[J].水利水电技术,2005(36):132-136.
    [18]J.P.Grioud, M.H.Gleason, J.G.Zomberg.Design of geomembrane anchorage against wind action[J].Geosynthtics International, Vol.6,No.6.1999:167-173.
    [19]岑威钧.堤坝中防渗(复合)土工膜的布置型式及计算理论研究[J].红水河,1995,23(3):55-59.
    [20]Mizyal Izgin, Yildiz Wasti. Geomembrane-sand interface frictional properties as determined by inclined board and shear box tests[J].Geotextiles and Geomembranes 16,1998:207-219.
    [21]顾淦臣.国内外土工膜防渗土石坝的现状与发展[J].东北水利水电,1994(10):68-72.
    [22]Girard H. The French experience of geomembranes in fill dams[J].Proc,3rd Int.Conf.Geomembranes, Denver, Colo., 1984:145-152.
    [23]徐又建,李希宁,孟祥文,等.水利工程土工合成材料应用技术[M].河南:黄河水利出版社,2002:59-64.
    [24]顾淦臣.复合土工膜或土工膜堤坝实例述评[J].水利水电技术,2002,33(12):26-32.
    [25]顾淦臣.国内外土工膜防渗土石坝的现状与发展[J].东北水利水电,1994(10):53-56.
    [26]顾淦臣.复合土工膜或土工膜堤坝的实例评述(续)[J].水利规划设计,2011(3):65-68.
    [27]顾淦臣.土工薄膜在坝工建设中的应用[J].水力发电,1985(10):745-772.
    [28]徐建荣.土工膜用于坝面的防渗加固[J].大坝与安全,1994(2):745-772.
    [29]马杰,赵正玲,姚中英.复合土工膜特点及应用[J].塔里木大学学报,2005(1):51-56.
    [30]哈斯叶提.复合土工膜在水利工程的应用[J].新疆水利,2000(4):54-58.
    [31]李星.土石坝防渗复合土工膜设计方法及其工程应用[D].南京:河海大学,2001:18-47.
    [32]李文国,侍克斌,周峰.全库盘大面积土工膜防渗体机械化施工工艺研究[J].水力发电,2008(3):25-30.
    [33]田安建.复合土工薄膜防渗材料在土坝施工中的应用[J].广东水电科技,1995(4):35-39.
    [34]Giroud, J. P. Design of geotextiles associated with geomembranes[J].Proceeding of the Sceond International Conference on Geotextiles, Vol.1, Las Vegas, USA, August 1982:37-42.
    [35]Grossmann, S. F. Sanger. Experience with thermoplastic waterproofing systems in dam construction in the German Democratic republic[J]. Proceedings of the 16th Congress on Large Dams, Vol. Ⅱ, Q.61, R.15, San Francisco, USA,1988: 251-261.
    [36]Gross, B,A, R.Bonaparte, J.P.Grioud. Evaluation of flow from landfill leakage detecion Layers[J].Proceedings of the fourth International Conference on Geotextiles,Geomembranes and Relate Products, Vol.2, The Hague, The Netherlands, 1990:481-486.
    [37]Stone, J. Leakage monitoring of the geomembrane liner for the proton decay experiment[J]. Proceeding of the International Conference on Geomembrianes, Vol.2, Denver, USA,1984:475-480.
    [38]Giroud, J. P. Design of geotextiles associated with geomembranes[J].Proceeding of the Sceond International Conference on Geotextiles, Vol.1, Las Vegas, USA, August 1982:37-42.
    [39]Spencer E. Thrust line criterion in embankment stability analysis[J].Geotechnique, Vol.23 No.1,1973:235-241.
    [40]Giroud, J. P., C. Ah—Line. Design of earth and concrete covers for geomembranes[J]. Proceedings of the International Conference on Geomembranes, Vol. II, Dener, CO, June 1984:487-492.
    [41]R.M. Koerner, J. P. Welsh. Construction and geotechnical engineering using synthetic Fabrics[J].John Wiley and Sons, New York,1980:178-192.
    [42]Grossmann, S, F. Sanger. Experience with thermoplastic waterproofing systems in dam construction in the German Democratic republic[J]. Proceedings of the 16th Congress on Large Dams, Vol. II, Q.61, R.15, San Francisco, USA,1988: 251-261.
    [43]Grioud, J. P, N.Morel, J.F.Beech. Stability of Geosynthetics on Slopes[J].To published in Geotextiles and Geomembranes.1991:165-172.
    [44]任大春.复合土工膜的实验技术及作用机理研究[J].岩土工程学报,1998:245-249.
    [45]吴景海.含土工膜防渗层渗漏量的研究[D].天津:天津大学,1992:35-56.
    [46]侍克斌,李玉建,马英杰,等.土工膜全库盘防渗技术在胜利水库的应用及有关问题探讨[J]..水力发电,2005,36(11):143-147.
    [47]易太平,陈朋申.土工膜用于全库盘防渗设计与施工[J].防渗技术,1999,5(1)25-30.
    [48]易太平.南五宫水库库盘防渗方案比选[J].防渗技术,1999,5(1)31-33.
    [49]李文国,侍克斌,周峰,等.全库盘大面积土工膜防渗体机械化施工工艺研究[J].水力发电,2008(3):51-55.
    [50]王薇,崔化宇,李国伟.水平铺塑在新城水库库区防渗中的应用[J].人民黄河,2003,25(9):38-39.
    [51]刘凤茹.复合土工膜选型及缺陷渗漏量试验研究[D].南京:河海大学,2002:15-62.
    [52]叶乃虎.土工膜在土石坝工程中的应用研究[D].南京:河海大学,1999:25-71.
    [53]方光达.土工膜库盘防渗及混合坝技术应用的有关问题[J].水电站设计,2004(20):1-4.
    [54]徐阳,陈卫国.瀑河水库库区防渗处理设计方案论证[M].水利部河北水利水电勘测设计研究院,天津,1998:45-79.
    [55]胡利文,陈嘉鸥.土工膜微结构破损机理分析[J].岩土力学,2002,23(6):702-705.
    [56]顾淦臣,沈长松,朱晟,等.塘房庙复合土工膜心墙堆石坝的设计、施工和应力应变有限元分析[J].水力发电学报,2009,23(1):21-26.
    [57]王健,侍克斌,何建新,等.恰拉水库护坡复合防渗体的抗滑试验分析[J].中国农村水利水电,2007(5):121-124.
    [58]岑威钧,沈长松,童建文.深厚覆盖层上复合土工膜防渗堆石坝筑坝特性研究[J].岩土力学,2009,30(1):175-180.
    [59]徐光明,章为民,张金凯.土工膜防渗层稳定性的离心模型试验研究和极限分析[J].西部大开发科教先行与可持续发展—中国科协2000年学术年会文集,2000:145-151.
    [60]岑威钧,沈长松.复合土工膜防渗土坝坝坡的抗滑稳定性研究[J].水利规划与设计,2002(4):37-42.
    [61]王琦,臧光文.横山水库除险加固工程的安全论证—土工膜与结构面摩擦试验[J].岩土力学,2003,24(增):83-85.
    [62]何强,魏东,侍克斌,等.静冰压力很大时坝体土工膜防渗结构的稳定分析[J].水力发电,2008:51-56.
    [63]魏东,侍克斌,毛运辉.库水位骤降情况下坝体土工膜防渗结构的稳定分析[J].水力发电,2008:71-75.
    [64]魏东,孙晓林,侍克斌.库水位骤降情况下坝体土工膜防渗结构的稳定机理[J].水力发电,2008:67-72.
    [65]刘福臣,何建新,林世乐.土工膜防渗结构体稳定分析计算[J].人民黄河,2008,30(6):77-79.
    [66]张祥,王瑞骏,李炎隆.土工膜心墙围堰渗流及边坡稳定分析[J].水资源与水工程学报,2009,19(4):69-71.
    [67]岑威钧,沈长松,李星,等.堤坝中防渗(复合)土工膜的布置型式及计算理论研究[J].红水河,2004,22(3):70-74.
    [68]水利部,水利水电土工合成材料应用技术规范SL/T 225-98[S].北京:中国水利水电出版室,1998:15-79.
    [69]顾淦臣.土工薄膜在坝工建设中的应用[J].水力发电,1985(10):45-49.
    [70]]竺慧玲.聚合薄膜斜墙的型式和构造[J].华东水电技术,1980:54-62.
    [71]洪岳善.钟吕水库复合土工膜面板坝的设计与运行[J].水利与建筑工程学报,2003,11(3):20-24.
    [72]]张继武.复合土工膜在白云水库堆石坝防渗中的应用[J].红水河,2008,27(4):44-46.
    [73]张广发,卫婷.土工膜在黄栗树水库坝体防渗中的运用[J].安徽水利水电职业技术学院学报,2004,4(3):15-19.
    [74]梁汉洲.田村水库心墙堆石坝设计分析(土工织物和土工膜)[J].土工织物和土工膜在土石坝工程中的应用技术交流会资料汇编,1990:35-62.
    [75]昌吉州方汇水电建筑勘察设计有限公司.新疆·呼图壁河大型灌区续建配套与节水改造工程技施设计报告[R].2009:67-82.
    [76]顾淦臣,沈长松,朱晟,等.塘房庙复合土工膜心墙堆石坝的设计、施工和应力应变有限元分析[J].水力发电学报,2004,23(1):21-26.
    [77]李新才,李继兴.达开水电站复合土二膜心墉堆石硕议计[J].基础处理与防渗工程,2009,114(3):61-66.
    [78]王薇,崔化宇,李国伟.水平铺塑在新城水库库区防渗中的应用[J].人民黄河,2003,25(9):38-39.
    [79]方光达.土工膜库盘防渗及混合坝技术应用的有关问题[J].水电站设计,2004,20(1):1-4.
    [80]李文国,侍克斌,周峰.全库盘大面积土工膜防渗体机械化施工工艺研究[J].水力发电,2008(3):67-69.
    [81]姜成俊.复合土工膜在绵羊冲库区防渗中的应用[J].云南水力发电,2002(19):87-92.
    [82]《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册[M].北京:中国建筑工业出版社,1994:45-92.
    [83]岑威钧,沈长松,童建文.深厚覆盖层上复合土工膜防渗堆石坝筑坝特性研究[J].岩土力学,2009,30(1):175-180.
    [84]张广禹,李振灵.西霞院反调节水库复合土工膜摩擦系数研究[J].华北水利水电学院学报,2007,28(1):32-35.
    [85]Williams N. D, M. Houlihan. Evalution of friction coefficients between geomembrane, Geotexiles and Products[J].3rd International Conference on Geotextiles, Vienna, Austria,1986:4-72.
    [86]Labre Loudiere. D. Design of fill dams including a geomembrane[J]. Interna. Conf. on Geom. Denver. USA,1984: 155-172.
    [87]Saxena,S.K, Y. T. wong. Frictional characteristics of a geomembrane[J].Proceeding of the International Conference On Geomembranes, Vol.1, Denver, CO, Jun 1984:187-190.
    [88]Steffen, H. Report on two dimensional stress strain behavior of geomembrane with friction[J].Proceedings of the International Conference on Geomenbranes, Vol.1, Denver, CO, Jun 1984:181-185.
    [89]Williams, N. D, M. Houlihan, Evaluation of interface friction properties between geosynthetics and soils[J].Proeedings of Geosynthetics 87 Conference, Vol.2, New Orleans, LA, Feb 1987:616-827.
    [90]Koerner, R. M, J. P. Martin and G. R. Koerner. Shear strength parameters between geomembrane and cohesive soils[J].Geotextiles and Geomembranes, Vol.4, Elsevier, London,1986:21-30.
    [91]Martin, J. P, R. M. Koerner, and J. E. Whitty. Experimental friction ewaluation of slippage between geomembranes, geotextils, and soils[J].Proceedings of the International Conference of Geomembranes, Vol.1, Denver, CO, Jun,1984: 191-196.
    [92]Sembenelli, P. Behavior of synthetic membranes on granular support[J].Transactions of the Twelfth International Conference on Large Dams, Vol.5, Q.44, Mexico, Mar-Apr 1976:70-79.
    [93]Degoutte, G, G. Mathieu. Etude experimentale du grottement sol-membrances et sol-gcotcxtiles a aide dune boite de cassgrande[J].Proceedings of the Third International Conference on Geotexiles, Vol.3, Vuenna, Aistria, Apr 1986:791-796.
    [94]张军.土工膜、苯板与土的摩擦特性试验研究及相应边坡稳定分析[D].新疆:新疆农业大学,2009:25-42.
    [95]魏红卫,喻泽红,邹银生.土工合成材料加筋土抗剪作用的试验研究[J].水利学报,2005(5):555-562.
    [96]陶同康,张兆昌.水口水电站主围堰防渗复合土工薄膜试验报告[R].南京:南京水利科学研究院,1989:14-82.
    [97]陶同康,李定方.竹寿水库心墙堆石坝应用土工合成材料的试验研究[J].水力发电,1994(8):45-72.
    [98]陶同康.复合土工薄膜及其防渗设计[J].岩土工程学报,1993,15(2):145-152.
    [99]刘波,韩彦辉(美国)FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005:58-81.
    [100]中国水利水电科学研究院.水工建筑物抗震设计规范(DL507322000)[S].北京:中国电力出版社,2001:25-72.
    [101]岑威钧,沈长松,李星,等.堤坝中防渗(复合)土工膜的布置型式及计算理论研究[J].红水河,2004,22(3):70-74.
    [102]岑威钧,沈长松,童建文.深厚覆盖层上复合土工膜防渗堆石坝筑坝特性研究[J].岩土力学,2009,30(1):175-180.
    [103]ABAUUS.2002 ABAQUS User's Conference Paper (US) [C]. Hibbitte Karlsson & Sorenson INC,2002:115-126.
    [104]ABAQUS. Theory Manual[M]. Hibbitte Karlsson & Sorenson INC,2002:35-50.
    [105]顾淦臣.承压土工膜厚度计算的研究[A].全国第三届土工合成材料学术会议论文集[c].天津:天津大学出版社,1992:249-257.
    [106]沈长松,顾淦臣.复合土工膜厚度计算方法研究[J].河海大学学报(自然科学版),2004,32(4):395-398
    [107]束一鸣,,顾淦臣.土工薄膜中央防渗土石坝有限元计算[J].河海大学学报(自然科学版),1988,16(增刊):79-92.
    [108]顾淦臣,沈长松,朱晟,等.塘房庙复合土工膜心墙堆石坝的设计、施工和应力应变有限元分析[J].水力发电学报,2009,23(1):21-26.
    [109]岑威钧,沈长松,李星,等.堤坝中防渗(复合)土工膜的布置型式及计算理论研究[J].红水河,2004,22(3):70-74.
    [110]张光庆.可靠性分析在库岸滑坡稳定分析中的应用[D].四川:成都理工大学,2007:15-62.
    [111]岑威钧,沈长松.复合土工膜防渗土坝坝坡的抗滑稳定性研究[J].水利规划设计,2002,(4):54-56.
    [112]魏继红,吴继敏,孙少锐.FLAC3D在边坡稳定性分析中的应用[J].勘察科学技术,2005,(2):27-30.
    [113]努尔艾合买提,侍克斌,,魏东.库水位骤降情况下斜墙式土工膜防渗结构的稳定计算[J].水利科技与经济,2008,14(12):950-952.
    [114]Labre, Loudiere. D. Design of fill dams including a geomembrance[J].International Confenerce on Geomembrance. Denver. USA,1984:98-112.
    [115]Van Zanten. R. V. Geotextiles.and geomembrances geomembrances in civil engineering,1986:167-172.
    [116]Williams N. D, Houlihan M. Evaluation of friction coefficients between geomembrance[J].Geotextiles and Related Products,3rd International Confreence on Geotextiles, Vienna, Austria,1986:145-153.
    [117]尉永平(译).土工膜和土工织物界面剪切动态特性的研究[J].防渗技术,1994(1):67-71.
    [118]方永凯,周芝英.用土工膜做混凝土面板堆石坝垫层防护层的现场试验[J].岩土工程学报,1989,11(5):92-98.
    [119]Fayoux, D, Loudiere, D. The behavior of geomembrances in relation of the soil[J].Proc. of International Conference on Geomembrances,1978(1):175-180.
    [120]Folks, D. J, Hunter, J. S. Oil spill containment liners for Artificial drilling islands[J].Proc. of International Conference on geomembrances,1978(1):269-274.
    [121]徐超,廖星樾,叶观宝,等HDPE膜界面摩擦特性的斜板仪试验研究[J].岩土工程学报,2006,28(8):989-993.
    [122]吴景海,陈环,王玲娟,等.土工合成材料与土界面作用特性的研究[J].岩土工程学报,2001,23(1):89-93.
    [123]Ingold T S. Laboratory investigation of soil-geotextile friction[J].Ground Engineering,1984,17(8):21-28.
    [124]Richards E A, Scott J D. Soil geotextile friction properties[C]//Second Canadian Symposium on Geotextile and Geomembranes,1985:13-24.
    [125]Dembicki E, Alenowicz J. Determination of frictionalproperties of geotextile[J].Geotextiles and Geomembranes, 1987,6(4):307-314.
    [126]Stark T D, Williamson T A,Eid H T. HDPE geomembrane/geotextile interface shear strength[J].Journal of Geotechnical Engineering,1996,122(3):197-203.
    [127]Yidiz W, Bahadir Z,Gzduzgun O. Geomembrane and geotextile interface shear properties as determined by inclined board and direct shear box tests[J].Geotextiles and Geomembranes,2001,19(1):45-57.
    [128]Bove J. A. Direct shear friction testing for geosynthetics in waste containment[C]//Proceedings of Geosynthetic Testing for Waste Containment Applications.West Conshohocken PA:ASTM STP 1081,1990:241-256.
    [129]保华富,胡春风.土工膜的有关物理力学性试验研究[J].云南水力发电,2004,20(1):13-18.
    [130]李广信.高等土力学M].北京:清华大学出版社,2002:69-167.
    [131]杜延龄,许国安.渗流分析的有限元法和电网络法[M].北京:水利水电出版社,1992:78-117.
    [132]徐蔚.土石坝渗流监测资料分析方法的研究[D].浙江:浙江大学,2005:27-47.
    [133]毛昶熙.渗流计算分析与控制(第二版)[M].北京:中国水利水电出版社,2000:306-313.
    [134]柳青祥,罗碧玉.复合土工膜在大坝工程应用中的力学计算探究[J].水利与建筑工程学报,2003,1(3):43-46.
    [135]刘波,韩彦辉(美国)FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005:479-506.
    [136]《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册.北京:中国建筑工业出版社,1994:76-160.
    [137]易洪雷,丁辛,陈守辉.建筑膜材料撕裂强度的测试方法及撕破机理研究[J].东华大学学报,2009,32(4):119-123.
    [138]R.M. Koerner, J. P. Welsh. Construction and geotechnical engineering using synthetic fabrics[J].John Wiley and Sons, New York,1980:35-41.
    [139]胡利文,陈嘉鸥.土工膜微结构破损机理分析[J].岩土力学,2002,23(6):702-705.
    [140]黄时建,高琮,李仪婷.丙纶长丝土工布结构不匀与撕裂强度关系的研究[J].产业用纺织品,2007(7):25-29.
    [141]闫澍旺,王翠,于志强.加筋垫层土工织物中应力现场测试分析[J].岩土力学,2007,28(增刊):873-876.
    [142]陶同康.复合土工膜在土石坝工程应用的设计.土工织物和土工膜在土石坝中应用技术交流会资料汇编 [G].1990:75-80.
    [143]Eadie, H. S, I. R. McGregor. The application of a geomembrance at Nigeria's Isanlu Dam[J].Water Power&Dam Construction, June 1988:28-33.
    [144]《土工合成材料工程应用手册》.土工合成材料工程应用手册[M].(第二版).北京:中国建筑工业出版社,2000:131-163.
    [145]陶同康.复合土工薄膜及其防渗设计[J].岩土工程学报,1993,15(2):31-39.
    [146]顾淦臣.关于“复合土工薄膜及其防渗设计”一文的讨论[J].岩土工程学报,1994,16(5):97-100.
    [147]陶同康.对“复合土工薄膜及其防渗设计”讨论的答复[J].岩土工程学报,1994,16(5):101-102.
    [148]吴景海,陈环.土工膜防渗层渗漏流量的计算[J].岩土工程学报,1995,17(2):93-99.
    [149]程鲲,王党在.复合土工膜土石坝渗流分析[J].水利与建筑工程学报,2005,3(1):41-44.
    [150]Giroud, J. P. "Impermeability":The myth and a rational approach[J].Proceedings of the International Conference on Geomembrances, Vol.1, Denver, CO, Jun 1984a:157-162.
    [151]Giroud, J. P. Aging of PVC geomembrances in uranium mine tailing ponds[J].Proceedings of the International Conference on Geomembrances, Vol.2, Denver, CO, Jun 1984b:311-316.
    [152]Giroud J. P, Bonaparte, B. Leakage through liners constructed with geomembranes. Part I [M].Geomembranes. Geotextiles and Geomembranes, Vol 8. No. 1,1989:134-142.
    [153]Giroud J. P, Bonaparte, B. Leakage through liners constructed with geomembranes. Part Ⅱ [M].Composite liners. Geotextils and Geomembranes, Vol 8. No.2,1989:145-156.
    [154]Bonaparte, R, Giroud, J. P, Gross, B. A. Rates of leakage through landfill liners[M].Proceeding of Geosynthetics'89, Vol.1, San Diego, CA, February 1989:18-29.
    [155]Giroud, J. P., Impermeability:The myth and a rational approach[J].Proceeding of the International Conference on Geomembrances, Vol.1, Denver, USA, June 1984b:157-162.
    [156]Brown, K. W, Thomas, J. C., Lyhon, R. L., Jayawickrama, P., and Bahrt. S. C. Quantification of leak rates through holes in landfill liners[R].USEPA Report CR 810940, Cincinnati, USA,1987:147-149.
    [157]鄢俊.土石坝土工薄膜防渗结构优化设计研究及应用[D].南京:南京水利科学研究院,2000:15-52.
    [158]顾淦承,束一鸣,沈长松.土石坝工程经验与创新[M].北京:中国电力出版社,2004:75-102.
    [159]程鲲,王党在.复合土工膜土石坝渗流分析[J].水利与建筑工程学报,2005,3(1):4144.
    [160]Jayawickrama P. Leakage rate through flaws in geomembrane liners[J].Journal of Envriomental Engineering, ASCE, 1998,114(6):1401-1420.
    [161]洪嘉琏.水面蒸发试验研究[M].北京:气象出版社,1991:45-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700