PEBP在切割穹窿海马伞大鼠海马中的表达变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨切割穹窿海马伞大鼠海马与正常海马内磷脂酰乙醇胺结合蛋白(Phosphatidylethanolamine-binding protein, PEBP)的表达差异。方法:(1) Real-time PCR:42只SD大鼠随机分成7组,每组6只。1组为正常对照组,其余6组分别为切割双侧穹窿海马伞后1、3、7、14、21和28 d组。取各组大鼠的海马组织,提取总RNA并合成第一链cDNA,应用Real-time PCR的方法分析切割穹窿海马伞后大鼠海马内PEBP mRNA的表达变化。检测切割穹窿海马伞后各组及正常对照组PEBP和GAPDH基因表达的CT值,采用2-ΔΔCT法进行分析,所得的结果作为PEBP基因在不同时间点的相对表达量;(2)原位杂交:取6只SD大鼠,于切割右侧穹窿海马伞后第7d,灌注固定,制备海马部位冰冻切片,采用地高辛标记的PEBP RNA探针,在海马的前、中、后各取1张切片,进行原位杂交,观察两侧海马组织内PEBP mRNA的表达变化。分别对每张切片切割侧和正常侧锥体细胞层、齿状回颗粒层及门区、颗粒下层0.03mm2区域内的PEBP mRNA阳性细胞进行计数和平均灰度值检测;(3) Western Blot:42只SD大鼠随机分成7组,每组6只。1组为正常对照组,其余6组分为切割双侧穹窿海马伞后1、3、7、14、21和28 d组。取各组大鼠的海马组织,提取总蛋白并测定浓度,随后行SDS电泳并转膜,用兔抗PEBP抗体进行免疫印迹检测。对各时间点PEBP和β-actin阳性条带分别进行平均灰度值检测,二者比值的倒数作为PEBP蛋白不同时间点的相对表达量;(4)免疫组化:36只SD大鼠随机分成6组,每组6只。分为切割右侧穹窿海马伞后1、3、7、14、21和28d组。各组大鼠经心灌注固定后,取脑、冰冻切片,在海马的前、中、后各取1张切片行PEBP免疫组化染色,分别计数切割侧和正常侧大鼠海马锥体细胞层、齿状回颗粒细胞层及门区、颗粒下层0.06mm2区域内的PEBP阳性细胞的数目,并检测其灰度值;(5)用SPSS11.5统计学软件对各时间点数据进行方差分析和组间比较,对原位杂交和免疫组化切片数据进行配对t检验。结果:(1) Real-time PCR:海马内PEBP mRNA的相对表达量在正常组为1.16±0.10,在切割后第3d(1.51±0.08)开始升高,7d(1.64±0.07)达到最高水平,随后下降,21d(1.14±0.13)左右恢复至正常水平。各组PEBP mRNA相对表达量方差分析和两两比较结果表明,3d、7d组与其余各切割组之间存在显著性差异(P<0.05),3d、7d组之间及其余各组之间比较无显著性差异(P>0.05);(2)原位杂交:切割侧和正常侧海马CA1~CA3锥体细胞层和齿状回颗粒层细胞均有PEBP mRNA表达,PEBP mRNA阳性细胞数无显著差异,但切割侧PEBP mRNA阳性细胞的平均灰度值为78.47±4.45,正常侧为102.58±15.99,切割侧杂交信号明显强于正常侧(P<0.01)。在切割侧齿状回门区和颗粒下层中观察到较多的PEBP mRNA阳性细胞(60.67±6.71),平均灰度值为67.16±9.28;而正常侧阳性细胞较少(50.33±8.52),平均灰度值为99.62±13.44,两侧阳性细胞数和平均灰度值比较有显著性差异(P<0.05);(3) Western Blot: PEBP蛋白的相对表达量正常对照组为0.0551±0.0093,在切割后第3d(0.077±0.0083)开始升高,7d(0.0965±0.0089)达到最高水平,随后下降,28d(0.0505±±0.0066)左右恢复至正常水平。各组PEBP相对表达量方差分析和两两比较结果表明,各切割组与正常组比较,1d、28d组与正常组间无显著性差异(P>0.05),其余各切割组与正常组间均存在显著性差异(P<0.05);各切割组间比较,切割后7d组与其余各组均存在显著性差异(P<0.05),3d、14d、21d与1d、28d间存在显著性差异(P<0.05),而3d、14d、21d间无显著性差异(P>0.05),1d、28d间也无显著性差异(P>0.05);(4)免疫组化:PEBP免疫组化结果显示,PEBP主要表达于海马CA1~CA3区锥体细胞层、齿状回颗粒层及门区、颗粒下层的细胞胞浆中,各时间点切割侧海马锥体细胞层和齿状回颗粒层的PEBP阳性细胞数与正常侧相比无显著性差异(P>0.05),但切割侧PEBP阳性细胞染色加深,7d时最为明显,平均灰度值为68.41±10.53,而正常侧平均灰度值为91.52±7.77,两侧比较有显著性差异(P<0.01)。切割侧海马齿状回门区和颗粒下层中可见较多染色加深的PEBP阳性细胞,7d时最为明显,阳性细胞数为53.33±4.27,平均灰度值为65.34±15.84,而正常侧阳性细胞数为37.50±4.04,平均灰度值为97.16±11.62,切割侧细胞数及平均灰度值与正常侧相比均有显著性差异(P<0.05)。14d后锥体细胞层、齿状回颗粒层及门区、颗粒下层PEBP的表达开始下降,28d时接近正常侧。结论:(1)切割穹窿海马伞后海马组织中PEBP mRNA和蛋白的表达水平均明显上调,二者的表达水平均存在一个由低到高再到低的表达过程,且二者的升降趋势基本一致,切割后7d时达到最高峰;(2) PEBP mRNA和蛋白主要表达于海马CA1~CA3锥体细胞层、齿状回颗粒细胞层、门区及颗粒下层的细胞之中;(3)切割侧海马CA1~CA3锥体细胞层、齿状回颗粒细胞层与正常侧比较仅有染色加深;而齿状回门区及颗粒下层与正常侧相比,不仅染色加深,而且阳性细胞数增多。提示切割穹窿海马伞后海马中PEBP mRNA和蛋白的表达增高可能与海马中自体或植入的神经干细胞向神经元或胆碱能神经元的分化有关。
Objective:To observe the difference of PEBP expression in hippocampus between the fimbria-fornix-transected rats and normal ones. Methods:(1) Real-time PCR:Forty-two SD rats were randomly divided into 7 groups,6 rats in each group. One group served as normal control group and the others served as fimbria-fornix transected 1st,3rd,7th,14th,21st and 28th day group respectively. Then hippocampi were isolated and total RNA was extracted and then the first strand cDNA was synthesized, the method of Real-time PCR was used to observe the changes of PEBP mRNA expression in hippocampus on different time points. CT value of PEBP and GAPDH in normal group and transected groups were detected by the method of 2-△△CT T respectively. The relative expression level of PEBP mRNA was indicated by the result of the method of 2-△△CT. (2) In Situ Hybridization:Six SD rats'right fimbria-fornix were transected. On the 7th day after transection, the rats were perfused and fixed, then cryostat sections of hippocampus were prepared. DIG-labeled PEBP RNA probe was prepared and used in hybridization in order to observe the expression change of PEBP mRNA in hippocampus of both sides. One section was taken from anterior, middle and posterior location respectively of each rat. The number and the mean gray value of PEBP mRNA positive cells were measured in transected and normal sides of pyramidal layer, granular layer of dentate gyrus and on 0.03mm2 area of hilus, subgranular of dentate gyrus respectively. (3) Western Blot:Forty-two SD rats were randomly divided into 7 groups,6 rats in each group. One group served as normal control, and fimbria-fornix of the other groups rats were transected on the 1st,3rd,7th,14th,21st and 28th day respectively. Then hippocampi were isolated and the total protein was acquired from the fimbria-fornix transected and the normal hippocampus, then detected the concentration of each group, the protein sample was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto the membrane. The expression was detected by PEBP polyclonal antibody immunoblot. The mean gray value of PEBP and B-actin positive strips was then detected, the relative expression level of PEBP protein was indicated by the reciprocal of the mean gray value of PEBP to B-actin. (4) Immunohistochemistry:Thirty-six SD rats were randomly divided into 6 groups, 6 rats in each group, and served as right fimbria-fornix transected 1st,3rd,7th,14th,21st and 28th day group respectively. The rats were perfused and fixed, then cryostat sections of hippocampus were prepared for PEBP immunohistochemistry. One section was taken from anterior, middle and posterior location respectively of each rat. The number and gray value of PEBP positive cells in pyramidal layer and granular layer of dentate gyrus, in hilus of dentate gyrus and subgranular layer of 0.06mm2 area on both transected and normal sides were measured respectively. (5) Analysis of variance and mutual comparision of each group was analyzed by SPSS 11.5 software, and the both sides'results of in situ hybridization and immuohistochemisty were conducted by the method of paired t test. Results:(1) Real-time PCR:In normal group, the relative expression level of PEBP mRNA was 1.16±0.10. It started to increase on 3rd day (1.51±0.08) after transection, and the peak appeared on 7th day(1.64±0.07), then decreased slowly to pre-transection level on 21st (1.14±0.13). One-factor analysis of variance and comparison between each two groups of the PEBP mRNA relative expression manifested that there were significant difference between the fimbria-fornix transected 3rd,7th day groups and other groups (P<0.05). The difference was not significant between 3rd and 7th day group, and not significance existed among other groups (P>0.05). (2) In Situ Hybridization:PEBP mRNA was expressed in CA1~CA3 pyramidal layer of hippocampus and granular layer of dentate gyrus on both sides. The number of PEBP mRNA positive cells manifested no discrepancy between two sides. But the mean gray value of PEBP mRNA positive cells in transected side (78.47±4.45) was lower than that in normal side (102.58±15.99), the signal was higer in transected side than normal side. PEBP mRNA positive cells was also seen in hilus and subgranular layer of dentate gyrus, in transected side, the number of PEBP mRNA positive cells was 60.67±6.71, the mean gray value was 67.16±9.28. In normal side, there was less PEBP mRNA positive cells (50.33±8.52), and the mean gray value was 99.62±13.44. The positive cell numbers and mean gray value of two sides existed significant difference (P<0.05). (3) Western Blot:Western Blot showed that the expression of PEBP protein was 0.0551±0.0093 in control group. It started to increase on 3rd day (0.077±0.0083) and the peak appeared on 7th day (0.0965±0.0089), then decreased slowly to pre-transection level on 28th day (0.0505±0.0066). When transected groups compared with the normal group, statistic results showed no significant difference between the 1st,28th day group and the normal group (P<0.05), while significant difference existed between the normal group and the other five transected groups (P<0.05). When transected groups compared mutually, the difference between the 7th day and other transected groups was significant (P<0.05), the significant difference also existed between the 3rd,14th,21st day group and 1st、28th day groups, while the difference among 3rd,14th,21st day groups were not significant (P>0.05), the difference between the 1st and 28th day was not significan either. (P>0.05). (4) Immunohistochemistry:The result of PEBP immunohistochemistry showed that PEBP was majorly expressed in the kytoplasm of cells which located in the pyramidal layer of CA1~CA3 areas and granular layer, hilus, subgranular layer of dentate gyrus. The number of PEBP protein positive cells has no discrepancy between two sides in the pyramidal layer of CA1~CA3 areas and (P>0.05). But the stain of PEBP positive cells in transected side was deeper than normal side, especially on 7th day, the mean gray value was 68.41±10.53, while the mean gray value was only 91.52±7.77 in the normal side, the significant discrepancy existed between the two sides (P<0.01). More deeper stained PEBP positive cells could be seen in the hilus and subgranular of dentate gyrus, especially on the 7th day after transection, the number of positive cells was 53.33±4.27, the mean gray value was 65.34±15.84, while the number and mean gray value of positive cells in the normal side was 37.5±4.04 and 97.16±11.62 respectively, the significant discrepancy existed between the two sides (P<0.05). The expression of PEBP in pyramidal layer, hilus and subgranular of dentate gyrus was decreased on the 14th day after transection and reached pre-transection level on the 28th day. Conclusion:(1) The expression of PEBP mRNA and protein obviously increased after fimbria-fornix transection, the expression changed with time, it increased at first and then decreased to normal level, the ascending and descending tendency of PEBP mRNA and protein was generally coincident, it reached peak on the 7th day after transection. (2) The PEBP mRNA and protein majorly expressed in the kytoplasm which located in the CA1~CA3 areas of pyramidal layer, granular layer, hilus and subgranular layer of dentate gyrus. (3) Cells in the CA1~CA3 areas of pyramidal layer, granular layer of dentate gyrus were stained deeper in the transection side than the normal side. However, compared with the normal side, cells in the hilus and subgranular layer of dentate gyrus were not only stained deeper but also possessed more numbers of positive cells. The results indicated that the higher expression of PEBP mRNA and protein in the fimbria-fornix transection side hippocampus may involve the hippocampal neural regeneration which induce the neural stem cells differentiating into neurons or cholinergic neurons.
引文
[1]Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science,1992,255(5052):1707-1710.
    [2]Richards LJ, Kilpatrick TJ, Bartlett PF.De nove generation of neuronal cells from the adult mouse brain[J]. Proc Natl Acad Sci USA,1992,89(18):8591-8595.
    [3]Ourednik V, Ourednik J, Flax JD. Segregation of human neural stem cells in the developing primate forebrain[J]. Science,2001,293(5536):1820-1824.
    [4]Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells[J]. Mol Cell Neurosci,1997,8 (6):389-404.
    [5]Dutton R, Bartlett PF. Precursor cells in the subventricular zone of the adult mouse are actively inhibited from differentiating into neurons[J]. Dev Neuresci,2000,22(1-2):96-105.
    [6]Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem(progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum[J]. Exp Neurol,2000,164(1):209-214.
    [7]Fricker RA, Carpenter MK, Winkler C, et al. Site-specific migration and neural differentiation of human neural progenitor cells after transplantation in the adult rat brain[J]. J Neurosci,1999, 19(14):5990-6005.
    [8]Brewer GJ. Regeneration and proliferation of embryonic and adult rat hippocampal neurns in culture[J]. Exp Neurol,1999,159(1):237-247.
    [9]Vicario-Abejon C, Collin C, Tsoulfas P, et al. Hippocampal stem cells differentiate into excitatory and inhibitory neurons. Eur J Neurosci,2000,12(2):677-688.
    [10]Ling ZD, Potter ED, Lipton JW, et al. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol,1998,149(2):411-423.
    [11]金国华,张新化,田美玲,等.大鼠海马内移植神经干细胞的存活和迁移[J].神经解剖学杂志,2003,19(4):378-382.
    [12]张新化,金国华,秦建兵,等.穹隆海马伞切割侧海马对植入神经干细胞分化为神经元的影响[J].神经解剖学杂志,2004,40(2):141-145.
    [13]金国华,张新化,田美玲,等.穹隆海马伞切割侧海马提取液对神经干细胞分化为神经元的促进作用[J].解剖学报,2004,35(2):137-141.
    [14]邹琳清,金国华,秦建兵,等.穹窿海马伞切割后海马内NSCs的增殖和向神经元的分化[J].苏州大学学报(医学版),2007,27(5):681-683
    [15]金国华,陈蓉,田美玲,等.海马中56KD蛋白诱导神经干细胞向神经元分化的作用[J].神经解剖学杂志,2006,22(4):389-393.
    [16]朱蕙霞,秦建兵,田美玲,等.切割海马伞海马中56KD差异蛋白的质谱分析[J].南通大学学报,2006,26(6):408-413.
    [17]Maki M, Matsukawa N, Yuasa H, et al. Decreased expression of hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimer Disease[J]. J Neuropathol Exp Neurol,2002,61(2):176-185.
    [18]George AJ, Holsinger RM, McLean CA, et al. Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer's disease[J]. Neurobiology of Aging,2006,27(4):614-623.
    [19]Yuasa H, Ojika K, Mitake S, et al, Age-dependent changes in HCNP-related antigen expression in the human hippocampus[J]. Developmental Brain Research,2001,127(1):1-7.
    [20]Ojika K, Mitake S, Kamiya T, et al. Two different molecules, NGF and free-HCNP, stimulate cholinergic activity in septal nuclei in vitro in a different manner[J]. Developmental Brain Research,1994,79(1):1-9.
    [21]Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP[J]. Nature,1999,401(6749):173-177.
    [22]Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-lto GRK-2[J]. Nature,2003,426(6966):574-579.
    [23]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. METHODS,2001,25(4): 402-408.
    [24]王磊,金国华,秦建兵,等.穹窿海马伞切割大鼠海马内Brn-4 mRNA的表达变化[J].解剖学报,2006,37(4):387-390.
    [25]蒋媛媛,金国华,秦建兵,等.切割穹窿海马伞大鼠海马内Lhx8 mRNA的表达变化[J].解剖学杂志,2008,30(2):145-147.
    [26]Shimazaki T, Arsenijevic Y, Ryan AK, et al. A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation[J]. EMBO J,1999, 18(2):444-456.
    [27]Xinhua Zhang, Guohua Jin, Jianbing Qin, et al. Brn-4 is upregulated in the deafferented hippocampus and promotes neuronal differentiation of neural progenitors in vitro [J]. Hippocampus,2009,19(2):176-186.
    [28]董传明,金国华,秦建兵,等.神经生长因子对穹窿海马伞切割后海马自体神经干细胞增殖和向神经元分化的影响[J].解剖学报,2007,38(6):642-646.
    [29]Keller ET, Fu Z, Brennan M. The role of Raf kinase inhibitor protein (RKIP) in health and disease[J]. Biochem Pharmacol,2004,68(6):1049-1053.
    [30]Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads:the function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction[J]. Cell Signal, 2008,20(1):1-9.
    [31]Yamada K, Matsukawa N, Yuasa H, et al. Differential expression of HCNP-related antigens in hippocampus in senescence-accelerated mice[J]. Brain Res,2007,1158:169-175.
    [32]Ojika K, Mitake S, Tohdoh N, et al. Hippocampal cholinergic neurostimulating peptides(HCNP) [J]. Prog Neurobiol,2000(1),60:37-83.
    [33]Kim HG, Kim KL. Decreased hippocampal cholinergic neurostimulating peptide precursor protein associated with stress exposure in rat brain by proteomic analysis[J]. J Neurosci Res, 2007,85(13):2898-2908.
    [34]Bond RA, Ijzeman AP. Recent developments in constitutive receptor activity and inverse agonism, and their protential for GPCR drug discovery[J]. Trends Phamacol Sci,2006,27(2): 92-96.
    [35]Chang L, Karin M. Mammalian MAP kinase signaling cascades[J]. Nature,2001,410(6824): 37-41.
    [36]Pumiglia KM, Decker SJ. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathtyway[J]. Proc Natl Acad Sci USA,1998,94(2):448-452
    [1]Gogtay N, Nugent TF 3rd, Herman DH, et al. Dynamic mapping of normal human hippocampal development[J]. Hippocampus,2006,16 (8):664-672.
    [2]Altman J, Bayer SA. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells [J].J Comp Neurol,1990,301 (3):325-342.
    [3]Altman J, Bayer SA. Migration and distribution of two population of hippocampal granule cell precusors during the perinatal and postnatal periods[J]. J Comp Neurol,1990,301(3):365-381.
    [4]邓锦波,蔡琰,孙小江,等.人胚胎海马发育的形态学研究Ⅰ.一般结构的观察[J].神经解剖学杂志,1996,12(1):1-9.
    [5]Lacey DJ. The organization of the hippocampus of the fence lizard:a light microscopic study[J]. J Comp Neurol,1978,182 (2):247-263.
    [6]Ouardouz M, Lacaille JC. Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats[J]. J Neurophysilol,1997,77 (4): 1939-1949.
    [7]邓锦波,蔡琰,邱建勇,等.人胚胎海马发育的形态学研究Ⅱ:神经细胞与神经胶质细胞的分化[J].神经解剖学杂志,1996,12(2):115-120.
    [8]宿宝贵,石世庆,谭盛麟.人胎海马发育的研究[J].解剖学杂志,1992,15(4):263-266.
    [9]张祖信,张旭辉.人胎儿海马发育的初步观察[J].神经解剖学杂志,1987,3(1):113-117.
    [10]林玲,周明付,张化,等.人海马的胚胎发育研究[J].河南医科大学学报,1995,30(1):1-3.
    [11]邓锦波,蔡琰,邱建勇,等.人胚胎海马发育的形态学研究Ⅴ:室管膜的发生[J].神经解剖学杂志,1997,13(2):137-142.
    [12]Super H, Martinez A, Del Rio JA, et al. Involvement of distinct hippocampus[J]. J Neurosci, 1998,18 (12):4616-4626.
    [13]席刚明,汪华侨,唐延勇,等.出生后大鼠海马结构的发育[J].解剖学杂志,2000,23(1):64-68.
    [14]Altman J, Bayer SA. Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale[J]. J Comp Neurol, 1990,301(3):343-364.
    [15]Nagel BJ, Palmer SL, Reddick WE, et al. Abnormal hippocampal development in children with medulloblastoma treated with risk-adapted irradiation[J]. AJNR Am J Neuroradiol,2004, 25(9):1575-1582.
    [16]陈蔚娜,朱忠良,赵妍,等.产前应激对发育海马神经元及其超微结构的影响[J].中国病理生理杂志,2003,19(12):1614-1617.
    [17]Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J]. J Physiol,1973,232 (2):331-356.
    [18]Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus[J]. J Physiol,1983,334: 33-46.
    [19]Platenik J, Kuramoto N, Yoneda Y. Molecular mechanisms associated with long-term consolidation of the NMDA signals[J]. Life Sci,2000,67(4):335-364.
    [20]Hironaka N, Tanaka K, Izaki Y, et al. Memory-related acetylcholine efflux from rat prefrontal cortex and hippocampus:a microdialysis study[J]. Brain Res,2001,901 (1-2):143-150.
    [21]Mu JS, Li WP, ZB Yao, et al. Deprivation of endogenous brain-derived neurotrophic factors results in impairment of spatial learning and memory in adult rats[J]. Brain Res,1999,835 (2):259-265.
    [22]Black IB. Trophic regulation of synaptic plasticity[J]. J Neurobiol,1999,41(1):108-118.
    [23]Tang YP, Shimizu E, Tsien JZ, et al. Genetic enhancement of learning and memory in mice [J]. Nature,1999; 401 (6748):63-69.
    [24]Holscher C. Synaptic plasticity and learning and memory:LTP and beyond[J]. J Neurosci Res, 1999,58 (1):62-75.
    [25]杨晓梅,宿宝贵.学习记忆的理想模型-LTP研究的新进展[J].解剖学研究,2001,23(1):62-64.
    [26]Davidson RJ, Jakkson DC, Kalin NH. Emotion, plasticity, context, and regulations: perspectives from affective neuroscience[J].Psychol Bull,2000,126 (6):890-909.
    [27]Bremner JD, Elzinga B, Schmahl C, et al. Structural and functional plasticity of the human brain in posttraumatic stress disorder[J]. Prog Brain Res,2008,167:171-186.
    [28]刘梅,董蕾,朱文艺,等.大鼠海马区微量注射胃动素对十二指肠移动性复合肌电活动的影响[J].第一军医大学学报,2005,25(8):955-958.
    [29]刘朝巍,汤晓军,张涛,等.海马参与自主神经系统调控的研究进展[J].生理科学进展,2007,38(2):168-171.
    [30]Herman JP, Dolgas CM, Carlson SL. Ventral subiculum regulates hypothalamo-pituitary-adrenocortical and behavioral responses to cognitive stressors[J]. Neurdscience,1998,86 (2); 449-459.
    [31]杨权.下丘脑-垂体-肾上腺皮质轴应激反应的中枢控制[J].生理科学进展,2000,31(3):222-226.
    [32]刘祚周.海马结构在学习和痛觉调节机制中的功能-电生理及神经化学研究[J].第三军医大学学报,2003,25(3):185-186.
    [33]Wu X, Li HD, Li XC, et al. Effects of intra-hippocampal injection of interleukin-2 on pain threshold and formaldehyde-induced substance P-like immunoreactivity in periaqueductal gray and spinal cord[J]. Zhongguo Yao Li Xue Bao,1999,20(9):839-843.
    [34]de Leon MJ, Convit A, Rusinek H, et al. Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease[J]. Int Psychogeriatr,1997,9(1):183-190.
    [35]Mortimer JA, Gosche KM, Riley KP, et al. Delayed recall, hippocampal volume and Alzheimer neuropathology:findings from the Nun Study[J]. Neurology,2004,62 (3): 428-432.
    [36]Laakso MP, Frisoni GB, Kononen M, et al. Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease:a morpometric MRI'study[J]. Biol Psychiatry,2000,47 (12):1056-1063.
    [37]Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive inpairment[J]. Neurology,1999,52 (7):1397-1403.
    [38]Scher AI, Xu Y, Korf ES, et al. Hippocampal shape analysis in Alzheimer's disease:a population-based study[J]. Neuroimage,2007,36 (1):8-18.
    [39]Barnes J, Godbolt AK, Frost C, et al. Atropy rates of the cingulate gyrus and hippocampus in AD and FTLD[J]. Neurobiology Aging,2007,28 (1):20-28.
    [40]Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice over expressing V717F beta-amyloid precursor protein[J]. Nature,1995,373(6514):523-527.
    [41]Moran PM, Higgins LS, Cordell B, et al. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein[J]. Proc Natl Acad Sci USA,1995,92(12):5341-5345.
    [42]Morley JE, Kumar VB, Bernardo AE, et al. Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory[J]. Peptides,2000,21(12):1761-1767.
    [43]Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathal,1991,82 (4):239-259.
    [44]Schonheit B, Glockner F, Ohm TG. Apolipoprotein E polymorphism and dendritic shape in hippocampal interneurons[J]. Neurobiology Aging,2007,28 (5):677-686.
    [45]Hannesson DK, Mohapel P, Coreoran ME. Dorsal hipppocampal kindling selectively impairs spatial learning/short-term memory[J]. Hippocampus,2001,11(3):.275-286.
    [46]Janszky J, Jokeir H, Heinemann D, et al. Epileptic activity influences the speech organization in medial temporal lobe epilepsy[J]. Brain,2003,126 (9):2043-2051.
    [47]Knzniecky RI, Burgard S, Bilir E, et al. Qualitative MRI segmentation in mesial temporal sclerosis:clinical correlations [J]. Epilepsia,1996,37 (5):433-439.
    [48]Bronen RA, Fulbright RK, Kim JH, et al. Regional distribution of MR findings in hippocampal sclerosis[J]. AJNR Am J Neuroradiol,1995,16 (6):1193-1200.
    [49]Tien RD, Felsberg GJ, Campi de Castro C, et al. Complex partial seizures and mesial temporal sclerosis:evaluation with fast spin-echo MR imaging[J]. Radiology,1993,189 (3): 835-842.
    [50]Mula M, Trimble MR, Sander JW. The role of hippocampal sclerosis in topiramater-related depression and cognitive deficits in people with epilepsy[J]. Epilepsia,2003,44 (12): 1573-1577.
    [51]Wasterlain CG, Shirasaka Y, Mazarati AM, et al. Chronic epilepsy with damage restricted to the hippocampus:possible mechanisms [J]. Epilepsy Res,1996,26 (1):255-265.
    [52]周铨,周列民,朱丹.颞叶癫痫患者海马硬化神经元脱失的亚群特点[J].中华神经科学杂志,2005,4(7):677-679.
    [53]袁定新.海马硬化与癫痫[J].医学理论与实践,2007,20(5):525-527.
    [54]Buckmaster PS, Jongen-Relo AL. Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats[J]. J Neurosci,1999,19 (21): 9519-9529.
    [55]Zhu PJ, Krnjevic K. Persistent block of CA1 synaptic function by prolonged hypoxia[J]. Neuroscience,1999,90(3):759-770.
    [56]冯仰柏,花放,耿德勤,等.CGRP对大鼠全脑缺血再灌注ATP酶活性的影响[J].中西医结合心血管杂志,2004,2(1):585-587.
    [57]Angelucci F, Gruber SH, Mathe AA. A pilot study of rat brain regional distribution of calcitonin,katacalcin and calcitonin gene-related peptide before and after antipsychotic treatment[J]. Neuropeptides,2001,35 (5-6):285-291.
    [58]李勇,裴林,张光毅.脑缺血、再灌注对蒙古沙鼠海马突触体络氨酸磷酸化的影响[J].生理学报,2000,52(2):137-142.
    [59]桑楠,孟紫强.硫酸镁对大鼠海马CAl区神经元钠电流的抑制作用[J].生理学报,2002, 54 (6):539-543.
    [60]Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science,1992,255 (5052):1707-1710.
    [61]Richards LJ, Kilpatrick TJ, Bartlett PF.De nove generation of neuronal cells from the adult mouse brain[J]. Proc Natl Acad Sci USA,1992,89(18):8591-8595.
    [62]Ourednik V, Ourednik J, Flax JD. Segregation of human neural stem cells in the developing primate forebrain[J]. Science,2001,293 (5536):1820-1822.
    [63]Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells[J]. Mol Cell Neurosci,1997,8 (6):389-404.
    [64]Gould E, McEwen BS, Tanapat P, et al. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation[J]. J Neurosci,1997, 17 (7):2492-2498.
    [65]Fricker RA, Carpenter MK, Winkler C, et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain[J]. J Neurosci,1999,19 (14):5990-6005.
    [66]Seri B, Garcia-Verdugo JM, McEwen BS, et al. Astrocytes give rise to new neurons in the adult mammalian hippocampus [J]. J Neurosci,2001,21(18):7153-7160.
    [67]金国华,张新化,田美玲,等.大鼠海马内移植神经干细胞的存活和迁移[J].神经解剖学杂志,2003,19(4):378-382.
    [68]Friedman B, Kleinfeld, Ip NY, et al. BDNF and NT-4/5 exert neurotrophic in fluences on injured adult spinal motor neurons [J]. J Neurosci,1995,15 (2):1044-1056.
    [69]McAllister AK. Neurotrophins and neuronal differentiation in the central nervous system[J]. Cell Mol Life Sci,2001,58 (8):1054-1060.
    [70]李英平,郭瑞芳,李育臣,等.局灶性脑缺血大鼠海马区不同部分BDNF的表达及其意义[J].中国老年医学杂志,2004,24(12):1180-1182.
    [71]Tolwani RJ, Buckmaster PS, Varma S. BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus[J]. Neuroscience,2002,114(3):795-805.
    [72]Lee J, Duan W, Maltson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenisis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice[J]. J Neurochem,2002,82 (6):1367-1365.
    [73]Mufson EJ, Deecher DC, Basile M, et al. Galanin receptor plasticity within the nucleus basalis in early and late Alzheimer's disease:an in vitro autoradiographic analysis[J]. Neuropharmacology,2000,39 (8):1404-1412.
    [74]Frielingsdorf H, Simpson DR, Thal LJ, et al. Nerve growth factor promotes survival of new neurons in the adult hippocampus [J]. Neurobiol Dis,2007,26 (1):47-55.
    [75]Takeda A, Onodera H, Sugimoto A, et al. Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia[J]. Neuroscience,1993,55 (1):23-31.
    [76]Isackson PJ.Trophic factor response to neuronal stimuli or injury[J]. Curr Opin Neurobiol,1995,5 (3):350-357.
    [77]董传明,金国华,秦建兵,等.神经生长因子对穹窿海马伞切割后海马自体神经干细胞增殖和向神经元分化的影响[J].解剖学报,2007,38(6):642-646.
    [78]苏万东,吴承远,辛华,等.bFGF和EGF对体外培养新生大鼠海马神经元生长作用的研究[J].中华神经外科杂志,2000,16(2):104-106.
    [79]Wan H, An Y, Zhang Z, et al. Differentiation of rat embryonic neural stem cells promoted by co-cultured Schwann cells[J]. Chin Med J,2003,116 (3):428-431.
    [80]Ojika K, Mitake S, Tohdoh N, et al. Hippocampal cholinergic neurostimulating peptides(HCNP) [J]. Prog Neurobiol,2000,60 (1):37-83.
    [81]Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads:the function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction[J]. Cell Signal, 2008,20(1):1-9.
    [82]Mak GK, Enwere EK, Gregg C. Male pheromone-stimulated neurogenesis in the adult female brain:possible role in mating behavior[J]. Nat Neurosci,2007,10 (8):1003-1011.
    [83]Lie DC, Colamarino SA, Song HJ. Wnt signalling regulates adult hippocampal neurogenesis[J]. Nature,2005,437 (7063):1370-1375.
    [84]Akita J, Takahashi M, Hojo M, et al. Neuronal differentiation of adult rat hippocampus-derived neural stem cells transplanted into embryonic rat explanted retinas with retinoic acid pretreatment[J]. Brain Res,2002,954 (2):286-293.
    [85]Haydar TF, Wang F, Schwartz ML, et al. Differential modulation of proliferation in the neocortical ventricular and subventricular zones[J]. Neuroscience,2000,20 (15):5764-5774.
    [86]Poulsen FR, Blaabjerg M, Montero M, et al. Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures[J]. Brain Res,2005,27(1-2):35-49.
    [87]Park C, Kang M, Kim-Kwon Y, et al. Inhibition of neuronal nitric oxide synthase increases adrenalectomy-induced granule cell death in the rat dentate gyrus[J]. Brain Res,2002,933(1): 81-84.
    [88]Park C, Sohn Y, Shin KS, et al. The chronic inhibition of nitric oxide synthase enhances cell proliferation in the adult rat hippocampus[J]. Neurosci Lett,2003,339 (1):9-12.
    [89]Patel AB, Rothman DL, Cline GW, et al. Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition[J]. Brain Res,2001,919(2):207-220.
    [90]de Graaf RA, Patel AB, Rothman DL, et al. Acute regulation of steady-state GABA levels following GABA-transaminase inhibition in rat cerebral cortex[J]. Neurochem Int,2006,48 (6-7):508-514.
    [91]Heidmets LT, Zharkovsky T, Jurgenson M, et al. Early post-natal, low-level lead exposure increases the number of PSA-NCAM expressing cells in the dentate gyrus of adult rat hippocampus [J]. Neurotoxicology,2006,27 (1):39-43.
    [92]Borrell V, Pujadas L, Simo S, et al. Reelin and mDabl regulate the development of hippocampal connections [J]. Mol Cell Neurosci,2007,36(2):158-173
    [93]Wu P, Li MS, Yu DM, et al. Reelin, a guidance signal for the regeneration of the entorhino-hippocampal path[J]. Brain Res,2008,1208:1-7.
    [94]Gates MA, Laywell ED, Fillmore H, et al. Astrocytes and extracellular matrix following intracerebral transplantation of embryonic ventral mesencephalon or lateral ganglionic eminence[J]. Neuroscience,1996,74 (2):579-597.
    [95]Levision SW, Rothstein RP, Romanko MJ, et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells[J]. Dev Neurosci, 2001,23 (3):234-247.
    [96]Sheng HZ, Bertuzzi S, Chiang C, et al. Expression of murine Lhx5 sugests a role in specifying the forebrain[J]. Dev Dyn,1997,208 (2):266-277.
    [97]Zhao Y, Sheng HZ, Amini R, et al. Control of hippocampal morphogenesis and neuronao differentiation by the LIM Homeobox gene Lhx5[J]. Science,1999,284(5417):1155-1158.
    [98]Manabe T, Tatsumi K, Inoue M, et al. Knockdown of the L3/Lhx8 gene suppresses cholinergic differentiation of murine embryonic stem cell-derived spheres [J]. Int J Dev Neurosci,2008,26 (2):249-252
    [99]Manabe T, Tatsumi K, Inoue M, et al. L3/Lhx8 is a pivotal factor for cholinergic differentiation of murine embryonic stem cells[J]. Cell Death Differ,2007,14(6):1080-1085.
    [100]蒋媛媛,金国华,秦建兵,等.切割穹窿海马伞大鼠海马内Lhx8 mRNA表达的变化[J].解剖学杂志,2008,31(2):145-147
    [101]He X, Treacy MN, Simmons DM, et al. Expression of a large family of POU-domain regulatory genes in mammalian brain development[J]. Nature,1989,340(6228):35-41.
    [102]Josephson R, Muller T, Pickel J, et al. POU transcription factors control expression of CNS stem cell-specific genes[J]. Development,1998,125 (16):3087-3100.
    [103]Shimazaki T, Arsenijevic Y, Ryan AK, et al. A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation[J]. EMBO J,1999,18(2): 444-456.
    [104]王磊,金国华,秦建兵,等.切割穹窿海马伞大鼠内Brn-4 mRNA的表达变化—原位杂交法[J].解剖学报,2007,38(4):385-389.
    [105]董传明,秦建兵,金国华,等.RT-PCR/Southern杂交法检测穹窿海马伞切割大鼠海马Brn-4 mRNA的表达变化[J].南通大学学报(医学版),2007,27(6):465-467.
    [106]Wu R, Jurek M, Sundarababu S, et al. The POU gene Brn-5 induced by neuregulin and is restricted to myelinating Schwann cells[J]. Mol Cell Neurosci,2001,17 (4):683-695.
    [107]Morgan R, Whiting K. Differential expression of HOX genes upon activation of leukocyte sub-populations[J]. Int J Hematol,2008,87 (3):246-249.
    [108]Matsumoto Y, Osumi N. The role of Pax6 in the developing central nervous system[J]. Brain Nerve,2008,60(4):365-374.
    [109]Calza L, Fernandez M, Guliani A, et al. Stem cells and nervous tissue repair:from in vitro to in vivo[J]. Prog Brain Res,2004,146:75-91.
    [110]林志国,沈红,王晓峰,等.大鼠海马干细胞移植治疗颞叶癫痫的初步研究[J].立体定向和功能神经外科杂志,2004,,17(1):39-43.
    [111]Wu QY, Li J, Feng ZT, et al. Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer's disease rat model[J]. Neurosci Lett,2007,417(3): 281-285.
    [112]Dutton R, Bartlett PF. Precursor cells in the subventricular zone of the adult mouse are actively inhibited from differentiating into neurons[J]. Dev Neuresci,2000,22 (1-2):96-105.
    [113]张新化,金国华,秦建兵,等.穹隆海马伞切割侧海马对植入神经干细胞分化为神经元的影响[J].神经解剖学杂志,2004,40(2):141-145.
    [114]金国华,张新化,田美玲,等.穹隆海马伞切割侧海马提取液对神经干细胞分化为神经元的促进作用[J].解剖学报,2004,35(2):137-141.
    [115]金国华,陈蓉,田美玲,等.海马中56kD蛋白诱导神经干细胞向神经元分化的作用[J].神经解剖学杂志,2006,22(4):389-393.
    [116]朱蕙霞,秦建兵,金国华,等.切割海马伞海马中56 kD差异蛋白的质谱分析[J].南通大学学报(医学版),2006,26(6):408-413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700