主动再制造时间区域决择及调控方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再制造工程由于资源潜力巨大、经济效益显著、环保作用突出,近年来得到了快速的发展。实施再制造已成为新时期实现制造业节能、节材的重要途径。本文在国家自然科学基金重点项目的支持下,结合产品全生命周期思想,提出了主动再制造的理念,并对主动再制造时间区域决择、产品结构改进及其对主动再制造时间区域的影响等问题进行深入探讨,论文主要研究工作体现在以下儿方面:
     以质量屋为工具,进行再制造设计要素的分析与评定,建立再制造设计信息模型,为再制造设计提供基础支撑。
     首次提出了主动再制造的理念,创建了主动再制造时间区域决择方法模型。将主动再制造时间区域分为区域上限和区域下限分别加以讨论,从而在设计阶段就可以对主动再制造时间区域作预判。在确定区域上限过程中采用生命周期能耗和生命周期成本作为优化要素进行分析,并基于博弈方法,将能耗、成本要素之间的冲突问题转化为数学模型,进行冲突消解;在确定区域下限时,基于人工神经网络方法,提出表征零部件性能退化的特征量值指标,通过建立各项指标与服役时间的映射关系,对零部件丧失再制造价值的临界状态时刻进行预测。
     提出面向再制造的结构设计方法,并进一步研究具体结构改进对于主动再制造时间区域的影响。本文从面向再制造的产品模块化配置和零部件结构改进两方面开展结构设计方法研究,建立再制造模块划分准则,通过模块内/模块间关联度分析,实现模块优化,并基于TRIZ发明问题解决理论进行零部件结构改进。结构改进之后,通过建立结构特征参数,分析结构特征参数与主动再制造时间区域优化要素之间的量化关系,研究结构改进在设计参数层对于主动再制造时间区域的影响。
     开发了主动再制造时域决择及结构改进辅助系统。系统分为主动再制造时间区域确定、基于TRIZ的再制造结构设计冲突消解、再制造性评估等模块,通过辅助系统开发,促进研究方法的应用推广。
Recently, remanufacturing engineering has been rapidly developed because of its great resource potential, remarkable economic benefit and prominent environmental protection function. Remanufacturing has become an important way of manufacturing industry to save energy and materials in the new era. Supported by the National Natural Science Foundation of China, the concept of active remanufacturing was presented in this article, combined with the life cycle theory of products. What's more, the topics about the time interval decision-making, the product structure improvement design for active remanufacturing and its influence on the active remanufacturing time interval were thoroughly discussed. The research contents of this article are mainly represented in the following aspects:
     Using House of Quality (HOQ), factors of remanufacturing design are analyzed and evaluated, and then information model is built to support the design for remanufacturing.
     The concept of active remanufacturing is first presented, and the model of time interval decision-making method for active remanufacturing has been built. The time interval of active remanufacturing is divided into the upper limit and lower limit, and is discussed respectively to solve the timing choice problem for active remanufacturing at the design stage. Life cycle energy consumption and life cycle cost are used as optimization factors to be analyzed in the process of determining the high limit of the range. The conflict issues between the energy consumption and the cost factors are converted into mathematical model for conflict resolution based on the game theory. In the process of determining the low limit of the range, this article put forward features value index of parts deterioration and predicts the critical state moment for the parts lost remanufacturing value by establishing the mapping relationships between various indexes and service time based on the artificial neural networks.
     The structure improvement design method for remanufacturing is presented, and the influence of the specific structure design to the active remanufacturing time interval is revealed. This article carries out the study of structure improvement design from two aspects: product modularization configuration for remanufacturing and parts structure improvement. Module partition standards are established, and module optimization is achieved by correlation degree analysis in/between modules, and the structure of parts is improved based on TRIZ. After structure improvement is done, the quantitative relationship between structure character parameter and time interval optimization factors is analyzed to reveal the influence of structure improvement at design parameters layer on the active remanufacturing time interval.
     The Time Interval Decision-Making and Structure Improvement Aided System for Active Remanufacturing (TIDM) was developed. This system, which can promote the application of research methods, is consist of active remanufacturing time interval ascertaining module, structure conflict resolution based on TRIZ module and remanufacturing possibility evaluation module et al.
引文
[1]中华人民共和国国家统计局.中华人民共和国2010年国民经济和社会发展统计公报[R/OL].http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20110228_402705692.htm,2011-2-28.
    [2]中国超越日本成为全球第二大经济体[EB/OL].http://news.xinhuanet.com/fortune/2011-02/14/c_121074485.htm,2011-2-14.
    [3]徐志军.建立可持续发展GDP增长核算体系[J].国土资源通讯,2005,(17):41-42.
    [4]2010年我国能源消费总量32.5亿吨标准煤[EB/OL].http://www.xinhua08.com/news/zgcj/hgjj/201102/t20110228_340016.html,2011-2-28.
    [5]中国原油对外依存度去年创新高表观消费量首破4亿吨[EB/OL].http://www.in-en.com/article/html/energy_0745074519917571.html,2011-1-27.
    [6]我国承诺2020年单位GDP二氧化碳排放降40-45%[EB/OL].http://env.people.com.cn/GB/146189/175118/175138/10466670.html,2009-11-27.
    [7]授权发布:中华人民共和国国民经济和社会发展第十二个五年规划纲要[EB/OL].http://news.xinhuanet.com/politics/2011-03/16/c_121193916.htm,2077-3-16.
    [8]Dalquist Stephanie, Gutowski Timothy. Life cycle analysis of conventional manufacturing techniques:Sand casting[J]. American Society of Mechanical Engineers, Manufacturing Engineering Division,2004,15:631-641.
    [9]Mikiko Kainuma, Yuzuru Matsuoka, Tsuneyuki Morita. The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions[J]. European Journal of Operational Research,2000,122:416-425.
    [10]Karl Haapala, John Sutherland, Julio Rivera. Reducing environmental impacts of steel product manufacturing[J]. Transactions of NAMRI/SME,2009,37:419-426.
    [11]Loulou R., Goldstein G., Noble K.,2004 Documentation for the MARKAL[C]. An Implementing Agreement of the International Energy Agency (IEA), Paris,2004.
    [12]S. Tridech, K. Cheng. Low carbon manufacturing:characterization, theoretical models and implementation[C]. The 6th International Conference on Manufacturing Research (ICMR 2008):403-402.
    [13]S. Tridech, K. Cheng. An investigation on the framework for EREE-based low carbon manufacturing[C].5th InternationalConferenceon Responsive Manufacturing Green Manufacturing (ICRM 2010):257-267.
    [14]M. R. JOHNSON, M. H. WANG. Economical evaluation of disassembly operations for recycling remanufacturing and reuse[J]. International Journal of Production Research,1998, 36(12):3227-3252.
    [15]Jonathan D. Linton. DEA:A method for ranking the greenness of design decision[J]. Journal of Mechanical Design,2002,124(7):145-150.
    [16]Mattew Simon, Graham Bee, phlilips Moore. Modelling of life cycle of products with data acquisition features[J]. Computer in industry,2001,45:111-122.
    [17]Environmentally Benign Manufacturing.http://web.mit.edu/ebm/www/publications.htm.
    [18]F. Liu, H. Zhang, P. Wu, H.J. Cao. A model for analyzing the consumption situation of product material resources in manufacturing systems[J]. Journal of Materials Processing Technology,2002,122:201-207.
    [19]Kim H.G. Stress analysis and design strategy for lightweight car seat frame[J]. Key Engineering Materials,2004,261-263:597-602.
    [20]T. Virvalo, W. Sun. Improving energy-What it is all about[C].6th International Conference on Fluid Power Transmission and Control, Hangzhou,2005:55-65.
    [21]W. Sun, T. Virvalo. Accumulator-pump-motor as energy saving in hydraulic boom[C].8th Scandinavian Int-ernational Conference on Fluid Power, Tampere,2003:297-309.
    [22]W. Sun, T. Virvalo. Simulation study on a hydraulic-accumulator-balancing energy-saving system in hydraulic boom[C].50th National Conference on Fluid Power. Las Vegas, 2005:371-381.
    [23]Chalkley, A. M., Billett, E., Harrison, D., etc. Development of a method for calculating the environmentally optimum lifespan of electrical household products[J]. Proceedings of the Institution of Mechanical Engineers, Part B-Journal of Engineering Manufacture,2003, 217(11):1521-1531.
    [24]Atmadi A, Stephenson DA, Liang SY. Cutting fluid aerosol from splash in turning:Analysis for environmentally conscious machining[J]. International Journal of Advanced Manufacturing Technology,2001,(4):238-243.
    [25]Cheng C, Phipps D, Alkhaddar RM. Treatment of spent metalworking fluids[J]. Water Research,2005, (17):4051-4063.
    [26]Ramesh K, Yeo SH, Zhong ZW, Huang H. Ecological grinding with chilled air as coolant[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2003, (3):409-419.
    [27]Anselmo Eduardo Diniz, Ricardo Micaroni. Cutting conditions for finish turning process aining:The use of dry cutting[J]. International Journal of Machine Tools & Manufacturing, 2002, (42):899-904.
    [28]Jurisevic B, Kramar D, Junkar M. The versatility of abrasive water-jet machining in the toolmaking industry[J]. Strojniski Vestnik-Journal of Mechanical Engineering,2005, (3):160-171.
    [29]徐匡迪.工程师从物质财富的创造者到可持续发展的实践者[J].中国表面工程,2004,17(6):1-6.
    [30]敲开绿色之门再制造产业暗香浮动[EB/OL].http://page.lgmi.com/html/201005/19/9101 .htm,2010-5-19.
    [31]徐滨十.装备再制造工程的理论与技术[M].北京:国防工业出版,2007.
    [32]阳斌.变速箱再制造设计冲突解决方法研究[D].合肥:合肥工业大学,2010.
    [33]张少亭.变速箱齿轮剩余疲劳寿命预测及再制造可行性研究[D].合肥:合肥工业大学,2009.
    [34]钟骏杰,范世东,姚玉南.再制造与维修[J].机械,2003,30:276-278.
    [35]Gunther Seliger, Sebastian Kernbaum, Marco Zettl. Remanufacturing approaches contributing to sustainable engineering[J]. Gest. Prod,2006,13(3):106-123.
    [36]毕道坤.面向再制造的效费评估方法研究[D].合肥:合肥工业大学,2011.
    [37]中国:不到25亿元,美国:3200亿元汽车零部件再制造产值差距庞大[EB/OL]. http://ent.oeeee.com/a/20110919/489913_3.html,2011-9-19.
    [38]再制造产业发展概述[EB/OL]. http://www.hyqb.sh.cn/publish/porta10/tab1023/info7451. htm,2011-11-17.
    [39]徐滨士,李任涵,梁秀兵.绿色再制造工程的进展[J].中国表面工程,2001,51(2):1-6.
    [40]中国:不到25亿元,美国:3200亿元汽车零部件再制造产值差距庞大[EB/OL].http://gcontent.oeeee.com/9/f6/9f6992966d4c363e/Blog/9b8/9d626c.html,2011-9-19.
    [41]汽车零部件再制造试点范围扩大[N].经济日报,2010-6-1.
    [42]The Design Locks in 70% of Your Total Accounted Cost[EB/OL]. http://www.designprofit. com/design.aspx.
    [43]R. Lund, Remanufacturing[J]. Technology Review,1984,87(2):18-23.
    [44]Lund R, Denny W. Opportunities and implications of extending product life[C]. Symp on product durability and life, Gaithersburg, MD,1977:1-11.
    [45]Lund R, Skeels F. Guidelines for an original equipment manufacturer starting a remanufacturing operation[R]. Cambridge, MA:Massachusetts Institute of Technology, Center for Policy Alternatives,1983.
    [46]Donna M, Thurston D L. Incorporating component reuse, remanufacture, and recycle into product portfolio design[J]. IEEE Transactions on Engineering Management,2002, 4(49):479-489.
    [47]Eyal Z, Zhou Mengchu. Design and implementation of an adaptive process planner for disassembly processes[J]. IEEE Transactions on Robotics and Automation,2000, 2(16):171-178.
    [48]Reyes W, Moore M, Bartholomew C R M, etc. Reliability assessment of used parts:An enabler for asset recovery[J]. Electronics and the Environment,1995:89-94.
    [49]Susumu Okumura, Toshimitsu Morikuni, Norio Okino. Environmental effects of physical life span of a reusable unit following functional and physical failures in a remanufacturing system[J]. International Journal of Production Research,2003,41(16):3667-3687.
    [50]L.H.Shu. Reliability modeling in design for remanufacture [C]. Proceedings of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Irvine, California,1996.
    [51]Brown W, Davis R. Design for retrofit, rebuild and remanufacture[C]. Proc the 2nd Industrial Engineering Research Conf, Los Angeles, CA. Norcross,1996:6-21.
    [52]Robert L. Armacost, Deivanayak Balakrishnan, Yulia Pet-Armacost. Design for remanufac-turability using QFD[EB/OL].http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19. 6175&rep=repl&type=pdf,2012-1-2.
    [53]Nabil Nasr, Michael Thurston. Remanufacturing:A key enabler to sustainable product systems[C]. Proceedings of LCE,2006.
    [54]Timo Fleschutz, Azrul Azwan Abdul Rahman, etc. Assessment of life cycle impacts and integrated evaluation concept for equipment investment[C].17th CIRP International Conference on Life Cycle Engineering, CIRP,2010.
    [55]Jahau Lewis Chen, Jui-Hung Chang. A TRIZ based eco-innovative design method for energy saving products[C].17th CIRP International Conference on Life Cycle Engineering, CIRP.2010.
    [56]John W. Sutherland, Daniel P. Adler, Karl R. Haapala. A comparison of manufacturing and remanufacturing energy intensities with application to diesel engine production[J].CIRP Annals-Manufacturing Technology,2008,57:5-8.
    [57]Hua Li, Hong-chao Zhang, Carrell. Integrating energy-saving concept into general product design[C]. Electronic Manufacturing Technology Symposium. IEMT'07.32nd IEEE/CPMT International,2007.
    [58]Hiidai Kara. Carbon Impact of Remanufactured Products[R]. Centre for Remanufacturing & Reuse,2009.
    [59]Lily H. Shu, Woodie C. Application of a design-for-remanufacture framework to the selection of product life-cycle fastening and joining methods[J].Flowers Robotics and Computer Integrated Manufacturing,1999,15:179-190.
    [60]P. Gu, M. Hashemian, A.Y.C. Nee. Adaptable design[J]. Annals of the CIRP,2004, 53(2):539-557.
    [61]Tony Amezquita, Rick Hammond, Marc Salazar, etc. Characterizing the remanufacturability of engineering systems[C]. Proceedings 1995 ASME Advances in Design Automation Conference, Boston, Massachusetts,1995,82:271-278.
    [62]E. Hacco, L.H. Shu. Biomimetic concept generetion applied to design for remanufacture[C]. Proceedings of DETC'02 ASME 2002, Montreal, Canada,2002.
    [63]E. Sundin, M. Lindahl. Rethinking product design for remanufacturing to facilitate integrated product service offerings[C]. Proceeding of Electronics and the Environment, 2008.
    [64]David G, Mabee. Design charts for remanufacturing assessment[J]. Journal of Manufacturing Systems,1999,18(5):358-366.
    [65]Gershenson J K, Prasad G J, etc. Modular product design:A life-cycle view[J]. Journal of Integrated Design and Process Science,1999,3(4):1-9.
    [66]Victor B K, Tseng P L. Modular product design with grouping genetic algorithm:A case study computers and industrial engineering archive[J]. Computers and Industrial Engineering,2004,46(3):443-460.
    [67]Xing K, Belusko M, Luong L, etc. An evaluation model of product upgradeability for remanufacture[J]. The International Journal of Advanced Manufacturing Technology,2007, 35(1-2):1-14.
    [68]Xueqing Q, Hongchao Z. Design for environment:An environmentally conscious analysis model for modular design [J]. IEEE Transactions on Electronics Packaging Manufacturing, 2009,32(3):164-175.
    [69]Gunther Seliger, Nils Weinert, Marco Zettl. Module configurator for the development of products for ease of remanufacturing[C]. Proceedings of the 14th CIRP Confernence on life cycle engineering, Waseda University, Tokyo, Japan,2007.
    [70]徐滨十.装备绿色再制造工程及其发展前景[J].装备指挥技术学院学报,2003,14(1):1-4.
    [71]史佩京,徐滨土,刘世参,等.面向装备再制造工程的可拆卸性设计[J].装甲兵工程学院学报,2007,21(5):12-15.
    [72]徐滨士,马世宁,刘世参.21世纪的再制造工程[J].中国机械工程,2000,11(122):36-39.
    [73]徐滨土,马世宁,刘世参.绿色再制造工程设计基础及其关键技术[J].中国表面工程,2001,(2):12-15.
    [74]朱胜,徐滨士,姚巨坤.再制造设计基础及方法[J].中国表面工程,2003,(32):7-31.
    [75]徐滨士.装备绿色再制造工程及其发展前景[J].装备指挥技术学院学报,2003,14(1):1-4.
    [76]钟骏杰,范世东,姚玉南,等.再制造性综合评估研究[J].中国机械工程,2003,14(24):2110-2113.
    [77]张国庆,荆学东,浦耿强,等.汽车发动机可再制造性评价[J].中国机械工程,2005,16(8):739-742.
    [78]姚巨坤,朱胜,崔培枝.面向再制造全过程的再制造设计[J].机械工程师,2004,(1):27-29.
    [79]陈敏,刘晓叙.面向再制造的产品设计理论初探[J].机械设计,2005,22:25-26
    [80]William Hauser, Robert T. Lund. The remanufacturing industry:Anatomy of a giant[R]. Dept of Manufacturing Engineering, Boston University,2003.
    [81]Erik Sundin. Product and process design for successful remanufacturing[D]. Linkopings University,2004.
    [82]熊伟.质量机能展开[M].北京:化学工业出版社,2005.
    [83]P.P. Bonissone, K. S. Decker. Selecting uncertainly calculi and granularity:An experiment in training-off precision and complexity[C]. Uncertainly in Artificial Intelligence, North-Holland, Amsterdam,1986:217-247.
    [84]Tang Jia-fu, Richard Y K, XU Bao-dong, etc. A new approach to quality function deployment planning with financial consideration[J]. Computers Operation Research,2001, 29(11):1447-1463.
    [85]顾正朝,应道宁.机械产品信息模型建模[J].计算机辅助设计与制造,1995,(3):13-14.
    [86]Antoine Briere-Cote, Louis Rivest, Alain Desrochers. Adaptive generic product structure modeling for design reuse in engineer-to-order products[J]. Computers in Industry,2010, 61(1):53-65.
    [87]张雷,刘光复,刘志峰.大规模定制模式下绿色设计产品信息模型研究[J].计算机集成制造系统,2007,13(6):1054-1060.
    [88]张雷.大规模定制模式下产品绿色设计方法研究[D].合肥:合肥工业大学,2007.
    [89]Jahau Lewis Chen, Chia-Lun Yeh. A computation method of factor X indicator by using the life cycle concept[C].17 CIRP International Conference on Life Cycle Engineering,2010.
    [90]李兆坚.可再生材料生命周期能耗算法研究[J].应用基础与工程科学学报,2006,14(1):50-55.
    [91]刘飞,徐宗俊,但斌,等.机械加工系统能量特性及其应用[M].北京:北京机械工业出版社,1995.
    [92]周维廉著,陈崇祐,杨建本,等译.在产品设计中降低成本[M].北京:机械工业出版社,1984.
    [93]王中双.键合图理论及其在系统动力学中的应用[M].哈尔滨:哈尔滨工程大学出版社,2000.
    [94]John W. Sutherland, Daniel P. Adler, Karl R. Haapala, etc. A comparison of manufacturing and remanufacturing energy intensities with application to diesel engine production[J]. CIRP Annals-Manufacturing Technology,2008,57(1):5-8.
    [95]张也影.流体力学[M].北京:高等教育出版社,1999.
    [96]市田崇.维修性与维修后勤保障[M].北京:机械工业出版社,1988.
    [97]陈晓川,方明伦.制造业中产品全生命周期成本的研究概况综述[M].机械工程学报,2002,38(11):17-23.
    [98]邓超,王丽琴,吴军.基于工艺约束的生命周期评价与生命周期成本综合评价与优化[J].计算机集成制造系统,2008,14(8):1646-1651.
    [99]张旭梅,刘飞.产品生命周期成本概念及分析方法[J].工业工程与管理,2001(3):26-29.
    [100]徐滨士.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [101]Erik Sundin, Bert Bras. Making functional sales environmentally and economically beneficial through product remanufacturing [J]. Journal of Cleaner Production,2005, (13):913-925.
    [102]范如国,韩民春.博弈论[M].武汉:武汉大学出版社,2006.
    [103]黄涛.博弈论教程[M].北京:首都经济贸易大学山版社,2004.
    [104]奚立峰,黄润青,李兴林,等.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143.
    [105]黄丹,许平聪,郭乙木.金属疲劳剩余寿命预测模型的一种探索[J].实验力学,2003,18(1):113-117.
    [106]J.R. Mohanty, B.B. Verma, P.K. Ray. Prediction of fatigue crack growth and residual life using an exponential model:Part Ⅱ (mode-I overload induced retardation)[J]. International Journal of Fatigue,2009, (31):425-432.
    [107]乔新永,黄一斌,张小明,等.基于压力测量的发动机汽缸磨损寿命预测方法[J].装甲兵工程学院学报,2008,22(4):42-45.
    [108]张小南,刘安心,刘斌,等.基于优化灰色神经网络模型的内燃机汽缸套磨损量预测的研究[J].汽车工程,2011,33(9):814-817.
    [109]黄光球,贾颖峰,周静.基于贝叶斯-神经网络的动态回归建模与预测[J].系统仿真学报,2005,17(12):2904-2907.
    [110]刘昌奎,陶春虎,陈星,等.金属磁记忆检测技术定量评估构件疲劳损伤研究[J].材料工程,2009,8:33-37.
    [111]张定铨,何家文.材料中残余应力的X射线衍射分析和作用[M].陕西:西安交通大学出版社,1994.
    [112]J.F.Knott, P.A.Withey著.张运全,唐国翌译.断裂力学应用实例[M].北京:科学出版社,1995.
    [113]王仁智,张定铨,冉启芳,等.残余应力基本知识讲座[J].理化检验物理分册,2007,(4-12).
    [114]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2002.
    [115]吴大磊,林怡青,彭美春,等.利用小样本数据计算车辆年平均行驶里程的研究[J].交通运输系统工程与信息,2009,9(2):156-160.
    [116]叶义成,柯丽华,黄德育.系统综合评价技术及其应用[M].北京:冶金工业出版社,2006.
    [117]童时中.模块化原理设计方法及应用[M].北京:中国标准出版社,2000.
    [118]Yasushi U, Shinichi F, Keita T. Evaluation of scenario-based modularization for lifecycle design[J]. CIRP Annals-Manufacturing Technology,2009,58(1):1-4.
    [119]Casper G, Martin C. Remanufacturing and product design-designing for the 7th generation[R]. Farnham, UK:The Centre for Sustainable Design-University College for the Creative Arts,2008.
    [120]Gunther S, Nils W, Marco Z. Module configurator for the development of products for ease of remanufacturing[J]. Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses,2007,2(A2):47-52.
    [121]Ohiwa H, Kawai K, Koyama M. Idea processor and the KJ method[J]. Journal of Information Processing,1990,13(1):44-48.
    [122]Ashby M F. Material selection in mechanical design[M]. Oxford, United Kingdom:3rd ed. Elsevier Butterworth Heinemann,2005.
    [123]Myer Kutz著.李进杰,译.环境意识机械设计[M].北京:人民邮电出版社,2010.
    [124]刘志峰.汽车典型零部件回收率计算软件:中国,2011 SR007963[P].2010-10-11.
    [125]汪应洛.系统工程学[M].北京:高等教育出版社,2007.
    [126]高洋,胡迪,鲍红.洗碗机拆卸工艺手册[R].合肥:合肥工业大学绿色设计与制造工程研究所,2010.
    [127]关于印发《关于加强创新方法工作的若干意见》的通知[EB/OL].http://www.gdstc.gov.cn/HTML/zwgk/zcfg/zxzcfg/1225335072929177922601490858700 1.html,2008-10-30.
    [128]根里奇·阿奇舒勒[EB/OL]. http://baike.baidu.com/view/1562181.html?fromTaglist, 2011-10-27.
    [129]赵敏,史晓凌,段海波.TRIZ入门及实践[M].北京:科学出版社,2009.
    [130]Altshuller G.The innovation algorithm, TRIZ, Systematic innovation and technical creativity[J]. Technical Innovation Center, INC, Worcester,1999.
    [131]檀润华.发明问题解决理论[M].北京:科学出版社,2004.
    [132]宋守许,张少亭,阳斌.机械变速箱再制造技术开发项目总结报告[R].合肥:合肥工业大学绿色设计与制造工程研究所,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700