面阵传感圆柱度非接触测量方法及评定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆柱度误差是精密轴系零件重要的精度指标之一。精确地测量和评定圆柱度误差不仅为轴类零件的验收提供依据,而且为轴类零件加工精度和装配精度的提高提供可靠的保证。现有的圆柱度误差测量方法中存在随意性大、轴向采样不足、认证不规范等问题。因此,亟需研究高效的、高精度的、符合新一代产品几何技术规范(简称GPS)的测量方法和评定技术。
     本文利用面阵传感方式结合多孔径拼接技术实现圆柱度误差的非接触测量,并基于GPS操作技术实现圆柱度误差的规范化评定。构建相应的测量系统及开发数字化评定软件,为圆柱度误差的测量和评定提供了一个有效、可行的新方法。本文对相关技术进行了深入研究,在以下几个方面取得了有价值的研究成果。
     1、现行圆柱度误差测量方法分析及其问题
     在对ISO/GPS采样规范分析的基础上,通过采用典型圆柱度测量仪器对零件圆柱度进行实测,探讨了现行圆柱度测量方法中存在的局限性和问题。指出现行测量方案多采用圆周轮廓法进行采样,其实质是基于圆度误差测量原理的近似测量。由于受测量仪器自身接触式点位传感方式的限制,在实际测量中,截面个数过少导致轴向信息采样明显不足,从而引起评定结果的不可靠性和不确定性,易导致零件检验的误判。本文依据实测结果和对ISO/TS12180-2规范的深入研究,提出了圆柱度测量采样面密度和采样频率的概念,计算机模拟分析表明实现圆柱度精确测量和评定的关键是提高轴向采样频率。为此,需要探寻新的测量方法和应用技术以实现圆柱度的精密测量。
     2、提出面阵传感圆柱度测量新方法,构建新型圆柱度测量系统
     该圆柱度测量新方法采用多孔径重叠扫描原理,以数字光栅条纹投射技术作为面阵传感方式,获取各个单视角面形的精确数据,利用多孔径拼接信息融合技术,将各个单视角面形统一于同一坐标系下,从而实现完整柱面的面形测量。新的测量方法具有高精度、非接触、全场的优点。相对现有测量方法,新方法在很大程度上提高了测量的采样面密度和轴向采样频率,从而为圆柱度评定提供完整的、丰富的面形数据。本文选择DLP数字投影机作为光栅投射设备,面阵CCD作为数字图像记录设备,构建了以数字光栅条纹投射技术为原理的多视角测量装置,同时开发相应的配套测量软件,从而为圆柱度测量提供了一套较为完备的新型测量系统。
     3、提出系统标定新策略及误差校正新技术
     数字光栅条纹投射技术中,系统标定是实现精确测量的关键。本文深入分析了测量系统的结构及几何关系,建立了标定映射关系的精确表达式,通过对参考平面的测量,同时实现相位/深度的纵向标定和横向标定,从而获取系统标定特征参量。在标定过程中,本文提出了改进的Harris角点提取方法,以获取标定平板特征角点的亚像素级图像坐标值;针对CCD的成像畸变,本文提出采用基于BP神经网络的修正法对参考平面的横向坐标进行误差补偿。测量系统的误差分析是保证测量精度的前提。本文提出了一种投射系统非线性自适应校正方法,利用N阶多项式拟合代替传统的单一伽玛参数表示系统的非线性关系,实现了系统非线性影响的有效抑制。为进一步提高测量系统的精度,本文提出了标准平面实测法分析系统误差,并构建了系统误差校正数学模型,实现了系统误差的有效补偿。
     4、基于四元数法实现多孔径拼接技术
     多孔径拼接技术的基本思想是利用相邻视角重叠区域面形信息建立相对空间位置关系,并利用坐标变换将多视角面形统一于同一坐标系下。因此,坐标变换是实现拼接的关键环节。原有多孔径拼接算法在求解过程中采用传统矩阵法进行坐标变换,并且拼接模型和坐标变换操作分别建立在圆柱坐标系和笛卡尔坐标系下,导致计算较为繁琐。为改善原有拼接算法的可计算性以满足圆柱度测量精度和效率的要求,本文在原有拼接算法的基础上,提出了基于四元数法的拼接方法。该方法采用四元数法代替传统矩阵法进行坐标变换,并将拼接模型和坐标变换操作均统一在笛卡尔坐标系下。在此基础上,利用改进的迭代算法交替进行误差运动求解和坐标变换操作,从而在保证精确求解误差运动的前提下实现拼接。
     5、基于GPS规范提出面阵传感测量的圆柱度评定技术
     本文基于新一代GPS操作算子技术,结合面阵传感圆柱度拼接测量方法,构建了圆柱度检验算子的具体应用实施步骤,包括分离、提取、滤波、拟合和评估操作。其中,针对滤波操作,本文提出了一种基于三次曲面拟合的非均匀采样加权平均滤波器,可以在进行滤波操作的基础上实现数据的均匀提取。基于以上操作过程的规范和优化,有效地确保了圆柱度误差评定的精确性和可靠性。针对面阵传感测量的面形数据特点,本文提出了圆柱度评定的面形误差等高图C-map、PV值、RMS值三个新参量。新参量的提出和应用有助于分析和改善加工工艺,是对现有圆柱度评定指标的有益补充。同时,本文依据测量不确定度理论和GPS不确定度判定准则,推导出了圆柱度测量不确定度的估计公式,实例应用表明,提出的圆柱度测量不确定度估计,保证了圆柱度评定结果的完整性和有效性。
Cylindricity error is one of the important precision indexes of shaft parts. Accurate measurement and evaluation of cylindricity error can not only provide the basis for parts acceptance, but also guarantee the precision of parts processing and assembly. There exist some disadvantages in current cylindricity measurement methods, such as randomness, insufficient sampling and non-standard verification. Therefore, it needs urgently to research efficient and precision measurement method and evaluation technique which meet the requirement of GPS standard.
     Non-contact measurement of cylindricity error is carried out based on area-array sensing technique and multi-aperture connection technique. Moreover, standard evaluation is realized using GPS operator technique. A new measurement system and digital evaluation software are developed, and an efficient and feasible method is presented for cylindricity measurement & evaluation. We have paid more attention to the research of relative fields, and some results are shown as follows:
     1. Analysis of current cylindricity measurement methods and their problems
     Based on the analysis of the standard sampling specification of ISO/GPS, the experimental measurements of cylindricity with the existing instrument are carried out. Then, the disadvantages and problems of current methods are discussed. Circumferential section method is used as the main type of sampling in current measurement program. In fact, it is an approximate measurement based on the theory of roundness measurement. Because of the point-contact sensing type of the instrument, too few numbers of the measuring section will cause under-sampling of axial information, and will lead to the instability and unreliability of the evaluation results. The concepts of sampling density and frequency are proposed based on the analysis of the measured results and ISO/TS12180-2. Computer simulation results show that the axial sampling frequency is the key factor to realize precise evaluation of cylindricity. Therefore, we need to find new technique for precision measurement of cylindricity.
     2. Novel method and new system for cylindricity measurement
     The novel method is based on the theory of multi-aperture overlap scanning technique (MAOST), and digital grating projection technique is employed to capture the profile of part. Firstly each 3D profiles of part from different views can be measured, and then all profiles are transformed into the global coordinate by multi-aperture connection technique. The method has some advantages such as no-contact, high efficiency and whole-field information. Compared with current measurement method, the new method can significantly increase the sampling density and axial sampling frequency, and the abundant data of surface are obtained for cylindricity evaluation. A DLP projector is used to project digital fringe patterns onto the object; and a CCD camera is employed to capture the deformed fringe patterns. A multi-view measurement device is constructed based on digital grating projection technique, and attached software is developed. As a result, a complete system is established for cylindricity measurement.
     3. Novel strategy of system calibration and error-correction technique
     In digital grating projection technique, system calibration is a critical step to carry out precision measurement. After comprehensive analysis of the geometry of measurement system, the accurate mathematical expressions of the mapping relationship of calibration are set up. The reference plane is measured, and the phase-to-depth and pixel to lateral coordinate mapping relationship are simultaneously calibrated. Then, the characteristic parameters of system calibration are determined. In the calibration process, an improved Harris corner extracting method is proposed, and characteristic corners of the calibration gauge in the image can be extracted with sub-pixel accuracy. Moreover, the neural networks are built to correct the error terms of the lateral coordinates of the reference plane by considering the aberration of CCD. Error analysis is the precondition to ensure the measuring precision. A novel nonlinearity correction method is proposed for fringe projection profilometry. In order to describe the nonlinearity of system, polynomial fitting is introduced instead of the single gamma parameter. Using the suggested method, the influence of nonlinear system is suppressed. Next, in order to improve the precision of measurement, the system error is analyzed by use of standard plane measuring method. The mathematic model of error correction is founded, and the system error can be compensated effectively.
     4. Multi-aperture connection method based on quaternion
     The principle of multi-aperture overlap-scanning technique is to make the adjacent sub-apertures partially overlapped, and then their relative location and orientation can be obtained through the overlapped area. The sub-apertures can be transformed to a global coordinate system. Therefore, coordinate transformation is the key step to realize connection. In the computation process of the original connection algorithm, the traditional matrix method is used to realize coordinates transformation. In addition, connection model and coordinate transformation are established in cylindrical coordinates system and Cartesian coordinates system, respectively. In order to improve calculability of the connection algorithm for the precision requirement of cylindricity measurement, a new connection algorithm method using quaternion method is brought forward according to the original algorithm. The quaternion instead of the traditional matrix is used to realize coordinates transformation, and connection model and coordinate transformation are established in the same Cartesian coordinate system. On these bases, the error movement calculation and coordinates transformation are performed by the improved iterative algorithm. Then, the multi-aperture connection can be realized by means of the high precision error movement calculation.
     5. Cylindricity evaluation techniques of area-array sensor measurement based on GPS specification
     Based on the GPS operator technology and the new measurement method, a complete verification operator of cylindricity is constructed, which includes partition, extraction, filtration, association and verification. Because the filtration is the critical role of operator, a weighted average filter with nonuniform sampling is proposed on basis of cubic-fit filtering algorithm. The filter can realize filtering and extract uniform data. Based on the standard and optimal operation process, the accuracy and reliability of cylindricity evaluation can be ensured. According to the characteristic of tested data, three new parameters for form errors evaluation are presented, including C-map, PV, RMS. New parameters are useful for analysis and improvement of the processing technology, and they can also supplement the cylindricity evaluation indexes. Moreover, according to the theory of measurement uncertainty and the uncertainty judging principle of GPS, the equation of uncertainty estimation for cylindricity measurement is deduced. The practical application shows that the uncertainty estimation of cylindricity can guarantee the integrality and validity of evaluation results.
引文
[1]郑丹.超精密加工技术及其发展方向[J].新技术新工艺, 2006, (5): 4-6.
    [2] A.M.Shawky, M.A.Elbestawi. In-process evaluation of workpiece geometrical tolerances in bar turning [J]. International Journal of Machine Tools and Manufacture. 1996, 36(1):33-46.
    [3] S.S.Pande, S.Somasundaram. Effect of manufacturing errors on the performance of aerostatic [J]. Journal Bearing Wear, 1981, 66(2): 145-156.
    [4]崔凤喜,李晓沛.现代产品几何技术规范(GPS)研究与发展综述[J].中国标准化, 2004, (9): 21-25.
    [5] J. M. Huntley. Optical shape measurement technology: past, present and future[A]. Proceeding of SPIE, 2000, 4076: 162-173.
    [6] F. Chen, G. M. Brown, M. Song. Overview of three-dimensional shape measurement using optical methods [J], Opt. Eng., 2000, 39(1): 10-22.
    [7] M Y Chen ,W M Cheng, Wang C W. Multi-aperture overlap-scanning techniques for large-aperture test [A], Proceeding of SPIE, 1991, 1553: 626-635.
    [8]国标GB1958-2004《产品几何量技术规范(GPS)形状和位置公差检测规定》.
    [9] T. Tsukada, T. Kanada and S. Liu. Method for the evaluation of form errors of conical tapered parts [J]. Precis. Eng., 1988, 10(1): 8-12.
    [10] C. Kirsten and P. Ferreira. Verification of form tolerances part II: cylindricity and straightness of a median Line [J]. Precis. Eng., 1995, 17(2): 144-156.
    [11] G.M. Brown, F. Chen. Optical methods for shape measurement [J]. Opt. Eng., 2000, 39(1): 8-9.
    [12]缪铁夷,肖亦华. YZY-1型圆柱度测量仪[J],机床, 1984, (12): 31-33.
    [13]王殿龙,姚南荀.回转体测量软件系统的开发研究[J].大连理工大学学报, 1995, 35(5): 658-660.
    [14]张镭,张玉.回转体零件形位误差数据处理软件包[J].东北大学学报, 1995, 16(5): 504-507.
    [15]林玉池,刘治军等.轴类零件参数综合检测[J].中国机械工程, 2003, 11(3): 255-297.
    [16]赵丽娟,马和等.激光测量法在圆柱度误差检测中的应用[J].工具技术, 2003, 37(8): 44-45.
    [17]王卫东,翟超等.机床主轴回转精度的CCD测量系统[J].计量学报, 2006, 27(1): 18-21.
    [18]郭林,程洪等.轴类零件的高精度形状误差检测方法研究[J].机械与电子, 2006, (4): 47-49.
    [19]张玉,武国田.评定圆柱度误差的正交最小二乘法[J].东北大学学报, 1989, 10(2): 177-180 .
    [20]刘健,安立邦等.圆柱度误差评定的最小条件[J].计量技术, 1990, (10): 3-6.
    [21]刘健,钱名海等.圆柱度误差包容评定的投影图判断方法[J].计量技术, 1992, (2): 12-16.
    [22]何真,梁晋文.一种研究圆柱度目标函数单谷性的新方法[J].航空计测技术, 1997, 17(2): 3-6.
    [23]范裕健.外圆柱面圆度、圆柱度和作用尺寸综合测量的理论研究与数据处理[D].西安:西安交通大学, 1984.
    [24]赵则祥,赵卓贤.用均方逼近法评定圆柱面的形状误差[J].计量学报, 1989, 10(2): 138-143.
    [25]熊有伦.评定形状误差的理论与算法[J].华中工学院学报, 1987, 15(5): 83-88.
    [26]熊有伦.最小区域的统一判别准则和计算机仲裁[J].计量学报, 1987, (2): 126-133.
    [27]侯伯杰,熊有伦.一种快速、准确的圆度误差评定的计算机实现方法[J].计量技术, 1994, (4): 7-9.
    [28]钱名海,吴宏基,刘健.形位误差评定的统一算法研究[J].组合机床与自动化加工技术, 1993, (4): 46-47.
    [29]施展.基于遗传算法的回转体零件轮廓度误差评定方法[J].工具技术, 2002, 36(8): 58-60.
    [30]李郝林. DNA计算模型在圆柱度误差评定中的应用[J].计量学报, 2004, 25(2): 107-110.
    [31]崔长彩,黄富贵等.粒子群优化算法及其在圆柱度误差评定中的应用[J].光学精密工程, 2006, 14(2): 256-260.
    [32] http://www.taylor-hobson.com.
    [33] S. Y. Chou, C. W. Sun. Assessing cylindricity for oblique cylindrical features [J]. International Journal of Machine Tools and Manufacture, 2000, 40(3): 327-341.
    [34] U. Roy and Y. Xu. Form and orientation tolerance analysis for cylindrical surfaces in computer aided inspection. Computers in Industry, 1995, 26(2): 127-134.
    [35] T. S. R. Murthy, S. Y. Rao. A simple approach for evaluation of cylindrical surfaces[J]. Annals of the CIRP, 1981, 30(1): 441-444.
    [36] T. S. R. Murthy. A comparison of different algorithms for cylindricity evaluation [J], Int’l J.of Machine Tool Design and Research, 1982, 22(4): 283-292.
    [37] J. Lai, I.Chen. Minimum zone evaluation of circles and cylinders [J]. International Journal of Machine Tools and Manufacture, 1996, 36(4): 435-451.
    [38] U. Roy, X. Zhang. Establishment of a pair of concentric cicles with the minimum radial separation for assessing roundness error [J]. Computer-aided Design, 1992, 24(3): 16-18.
    [39] K. Carr, P. Ferreira.Verification of form tolerances PartⅡ: Basic issues, cylindricity and straightness of a median line [J]. Precis. Eng., 1995, 17(2): 144-156.
    [40] N.Venkaiah, M. S. Shunmugam. Evaluation of form data using computational geometric techniques-PartⅡ: Cylindricity error [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1237-1245.
    [41] J. H. Holland. Adaptation in natural and artificial system [M].Ann Arbor, MI: Unversity of Michigan Press, 1975.
    [42] H. Y. Lai, W. Y. Jywe, C. K. Chen, C. H. Liu. Precision modeling of form errors for cylindricity evaluation using genetic algorithms [J]. Precis. Eng., 2000, 24(4): 310-319.
    [43] C. C.Barcenas, P. M. Griffin, Parametric based determination of cylindrical variations in geometric tolerancing, Transactions of ASME, Journal of Manufacturing Science and Engineering, 2000, 122: 549-555.
    [44] N. Parthasarathy. Minimum zone cylindricity evaluation using Steepest descent method [D].University of Cincinnati, Master degree, 2004.
    [45] ISO/TR 14638:1995 Geometrical product specification (GPS)–Masterplan.
    [46] P. Bennich. Chains of Standards–A new concept in GPS standards, manufacturing review [J]. The American Society of Mechanical Engineers, 1994, 7(1): 29-38.
    [47] S.Bials, Z. Partyka. Form“jiont harm onisation group”to the new technical committee ISO/TC 213. Normalizacja, 1997, 151-162.
    [48] L. N. ZHANG, F. X. ZHAO, X. P. LI, et al. ISO/TC213 GPS standard system and its application analyses. Journal of Mechanical Strength, 2004, 29(4): 400-404.
    [49] ISO/TS 14750-2:2000(E) Geometrical product specifications (GPS)-General concepts-part2: Operators and uncertainties.
    [50] http://isotc312.ds.dk/.
    [51] L. M. Ma, X. Q. Jiang, Z. G. Xu, Z. Li. An investigation on the technical standard strategy for China’s manufacturing industry[C]. J.Phys.: Conf.Ser. 2005, 13: 389-393.
    [52]崔凤喜,李晓沛,张琳娜.现代产品几何规范GPS技术标准研究与制定[J].中国标准化,2006,(6): 14-17.
    [53]李惠芬.基于新一代GPS体系的表面稳健高斯滤波技术的研究[D].武汉:华中科技大学, 2004.
    [54]常永昌. GPS操作算子技术及其在几何公差中的应用研究[D].郑州:郑州大学, 2005.
    [55] F. Chen, G. M. Brown, M.Song. Overview of three-dimensional shape measurement using optical methods [J]. Opt. Eng., 2000, 39(1): 10-22.
    [56] G. C J, S Tang. Automated moirécontouring of diffuse surface [J]. Opt. Eng., 1989, 28(11): 1211-1215.
    [57] V. Srinivasan, H.C. Liu, M. Halioua. Automated phase measuring profilometry of 3-D diffuse objects [J]. Appl. Opt., 1984, 23(18): 3105-3108.
    [58] V. Srinivasan, H.C. Liu, M. Halioua. Automated phase measuring profilometry: a phase mapping approach [J]. Appl. Opt., 1985, 24(2): 185-188.
    [59] M.Takeda and K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Appl. Opt., 1983, 22(24): 3977-3982.
    [60] K. H. Womack. Interferometric phase measurement using spatial synchronous detection [J]. Opt. Eng., 1984, 23(4): 391-395.
    [61] S. Tang and Y. Y. Hung. Fast profilometer for the automatic measurement and 3-D object shape [J]. Appl. Opt., 1990, 29(20): 3012-3018.
    [62] M. Pirga, M. Kujawinska, Modified procedure for automatic surface topography [J]. Measurement, 1994, 13: 191-197.
    [63] J. F. Lin, X. Y. Su. Two-dimensitonal Fourier transform profilometry for the automatic measurement of three-dimentional object shapes [J]. Opt. Eng., 1995, 34(11): 3297-3302.
    [64] A. J. Moore, F.Mendoza-Santoyo. Phase demodulation in the space domain without a fringe carrier [J]. Optics and Lasers in Engineering, 1995, 23(5): 319-330.
    [65] J. Salvi, J. Pages, J. Batlle. Pattern codification strategies in structured light systems [J], Pattern Recognition. 2004, 37(4): 827-849.
    [66] C. Kim, J. Wyant. Subaperture test of a large flat or a fast aspheric surface [J], J. Opt. Soc. Am., 1981, 71: 1587.
    [67] T. W. Stuhlinger. Subaperture optical testing: experimental verification [A], Proc. SPIE 1986, 656: 118-127.
    [68] W M Cheng, M Y. Chen Transformation and connection of Subapertuers in the Multi-aperture overlap-scanning technique for large optics tests [J]. Opt. Eng., 1993, 32(8): 1947-1950.
    [69] S. Y.Chen, S. Y. Li, Y. F Dai, Z. W. Zheng. Iterative algorithm for subaperture stitching test with spherical interferometers [J]. J. Opt. Soc. Am, 2006, 23(5): 1219-26.
    [70] M. Bray. Stitching interferometer for large optics: recent developments of a system [A]. Proc. SPIE 1999, 3492: 946-955.
    [71] M. Sjoedahl, B. F. Oreb. Stitching interferometric measurement data for inspection of large optical components [J]. Opt. Eng., 2002, 41: 403-408.
    [72] L. Assoufid, M. Bray, J. Qian, D. M. Shu. 3-D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry [J]. Proc. SPIE 2002, 4782: 21-28.
    [73] P. Murphy, G. Forbes, J. Fleig, P. Dumas, M. Tricard. Stitching interferometry: A flexible solution for surface metrology [J], Opt. Photon. News 2003, 14: 38-43.
    [74] M. Otsubo, et al., Measurement of large plane surface shape with interferometric aperture synthesis [A], Proc. SPIE 1992, 1720: 444-447.
    [75] M. Otsubo, et al., Measurement of large plane surface shapes by connecting small-aperture interferograms [J]. Opt. Eng., 1994, 33: 608-613.
    [76] M. Bray, Stitching interferometer for large plano optics using a standard interferometer, Proc. SPIE, 1997, 3134: 39-50.
    [77] S. H. Tang, Stitching: high-spatial-resolution microsurface measurements over large areas, Proc. SPIE 1998, 3479: 43-49.
    [78] T. Haensel, A.Nickel, A. Schindler. Stitching interferometry of aspherical surfaces [A]. Proc. SPIE, 2001, 4449: 265-273.
    [79] P. Murphy, G. Forbes, et al., Stitching interferometry: a flexible solution for surface metrology [J], Opt. Photonics News, 2003, 14: 38-43.
    [80] J. Fleig, P. Dumas, P. E. Murphy, et .al. An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces [A]. Proc. SPIE, 2003, 5188: 296-307.
    [81] M. Y. Chen, D. Z. Wu. Multi-aperture overlap-scanning technique for moirémetrology [A]. Proc. SPIE 1996, 2861: 107-112.
    [82] M. Y. Chen, H. W. Guo, et al. Recent developments of multi-aperture overlap-scanning technique [A].Proc. SPIE 2003, 5180: 393-401.
    [83]郭红卫,陈明仪.圆柱坐标下多孔径扫描拼接技术的迭代方法[J].光学学报, 2000, 20(8): 1047-1052.
    [84] H. W. Guo, M. Y. Chen, Multiview connection technique for 360-deg three-dimensional measurement [J]. Opt. Eng., 2003, 42(4): 900-905.
    [85]张蓉竹,石琪凯,蔡邦维等.子孔径拼接干涉检测实验研究[J].光学技术, 2004, 30(2): 173-175.
    [86] M. A. Badar, S. Raman, P. S. Pulat. Experimental verification of manufacturing error pattern and its utilization in form tolerance sampling [J].Machine Tools & Manufacture, 2005, 45: 63-73.
    [87] W. Q. ZHAO, Z. XUE, J. B.TAN, Z. B. WANG. SSEST: A new approach to higher accuracy cylindricity measuring instrument [J]. Machine Tools & Manufacture, 2006, 46: 1869-1878.
    [88] S. H. Cheraghi, G. H. Jiang, J. S. Ahmad. Evaluating the geometric characteristics of cylindrical features [J]. Opt. Eng., 2003, 27: 195-204.
    [89] G. Udapa and B. K. A. Ngoi. Form error characterization by an optical profiler [J]. Advanced manufacturing technology, 2001, 17: 114-124.
    [90] B. Kilic, J. A. Aguirre-Cruz, S. Ramman, Inspection of the cylindrical surface feature after turning using coordinate metrology [J]. Machine Tools and Manufacture, 2007, 47: 1893-1903.
    [91]张琳娜.精度设计与质量控制基础[M].北京:中国计量出版社, 2007, 8.
    [92]熊有伦.精密测量的数学方法[M].北京:中国计量出版社, 1989.
    [93] ISO/TS 12180-1:2003 Geometrical product specifications (GPS)—Cylindricity—Part 1:Terms, definitions and parameters of cylindrical form [S].
    [94] ISO/TS 12180-2:2003. Geometrical product specifications (GPS)—Cylindricity Part 2: Specification operators [S].
    [95] ISO/TS 12181-2:2003. Geometrical product specifications (GPS)—Roundness Part 2: Specification operators [S].
    [96] ISO/DIS 12180-2:1998 Geometrical product specifications (GPS)—Cylindricity Part 2: Rules and procedures for the assessment of deviation from cylindrical form [S].
    [97] W. C. Tai, and M. Chang. Noncontact profilometric measurement of large-form parts [J]. Opt. Eng., 1996, 35(9): 2730-2735.
    [98] http://www.rsi.gmbh.de/.
    [99] C. Reich, R. Ritter, J. Thesing. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection [J]. Opt. Eng., 2000, 39(1): 224-230.
    [100] W. M. Cheng, M. Y. Chen. Surface measurement of optical cylinder using multiaperture overlap-scanning technique (MAOST). In Laser Interferometry VIII: Technique and Analysis, Ma?gorzata Kujawińska, Ryszard J. Prypntniewicz, and Mitsuo Takeda, eds. [C]. Proc. SPIE, 1996, 2860: 321-328.
    [101] M. Y. Chen, H. W. Guo, W. M. Cheng. Novel aperture connection method for measurement of surface with rotation axis. In Laser Interferometry X: Technique and Analysis, Ma?gorzata Kujawińska, Ryszard J. Prypntniewicz, and Mitsuo Takeda, eds. [C].Proc. SPIE, 2000, 4101: 193-202.
    [102]郭红卫,多孔径拼接技术实现3600面形测量. [博士学位论文].上海:上海大学, 2001.
    [103] H. T. He, M. Y. Chen, H. W. Guo, Y. J. Yu, Novel multiview connection method based on virtual cylinder for 3-D surface measurement[J], Opt. Eng., 2005,44(08): 083605.1-083605.8.
    [104] H.W. Guo et al., A least squares method for fringe projection profilometry [A]. Proc SPIE. 2004, 5531: 429-434.
    [105] H. W. Guo, H. T. He, Y. J. Yu, M. Y. Chen. Least-squares calibration method for fringe projection profilometry [J]. Opt. Eng., 2005, 44(3): 033603.
    [106] H. W. Guo, M. Y. Chen, Least-squares algorithm for phase-stepping interferometry with an unknown relative step [J]. Appl. Opt., 2005, 44(23): 4854-4859.
    [107] H. W. Guo, M. Y. Chen, P. Zheng, Least-squares fitting of carrier phase distribution by using a rational function in fringe projection profilometry [J]. Optics Letters, 2006, 31(24): 3588-3590.
    [108] M. Takeda, H. Ina, S. Kobayashi. Fourier-transform method of fringe-pattern analysis forcomputer-based topography and interferometry [J]. J.Opt.Soc.Am, 1982, 72(1): 156-160.
    [109] V. Srinivasan, H. C. Liu, M. Halioua. Automated phase-measuring profilometry of 3-D diffuse object [J]. Appl. Opt., 1984, 23(18): 3105-3108.
    [110] M. Kujawinska, J. Mojciak. Spatial phase-shifting techniques of fringe pattern analysis in photomechanics [A]. Proc, SPIE, 1991, 1225: 503-513.
    [111] J. C. Wyant, C. L. Koliopoilos, B. Bhishan, O. E. George. An optical profilometer for surface characterization of magnetic media [J]. ASLE Trans. 1984, 7: 101-113.
    [112] J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangccio. Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses [J]. Appl. Opt., 1974, 13(11): 2693-2703.
    [113] Y. Surrel. Phase stepping: a new self-calibrating algorithm [J]. Appl. Opt., 1993, 32(19): 3598-3600.
    [114] P. Carré.Installation et utilisation du comparateur photoélectrique et intertérentiel du Bureau International des Poids et Mesures [J]. Metrologia, 1966, 2: 13-23.
    [115] J. C. Wyant Interferometric optical metrology: basic systems and principles [J]. Laser Focus, 1982, 5: 65-71.
    [116] J. Schwider, R. Burow, K-E Elssner, J. Grzanna, R. Spolaczyk, K. Merkel. Digital wavefront measuring interferometry: some systematic error sources [J]. Appl. Opt. 1983, 22(21): 3421-3432.
    [117] P. Hariharan, B. F. Oreb, T. Eiju Digital phase-shifting intertferometry: a simple error-compensating phase calculations algorithm [J]. Appl. Opt., 1987, 26(3): 2504-2505.
    [118] J. Schwider, O.R Falkenst?rfer, H. Schreiber, A. Z?ller, N. Streibl. New compensating four-phase algorithm for phase-shift interferometry [J]. Opt. Eng., 1993, 32(8): 1883-1885.
    [119] B. Zhao, Y. Surrel, Phase shifting: six-sample self-calibrating algorithm insensitive to the second harmonic in the fringe signal [J]. Opt. Eng., 1995, 34(9): 2821-2822.
    [120] J. E. Greivenkamp. Generlized data reduction for heterodyne interferometry [J]. Opt. Eng., 1984, 23: 350-352.
    [121] K. Okada, A. Sato, J, Tsujiuchi. Simultaneous Calculation of Phasedistribution and scanning phase shifting interferometry [J]. Opt.Comm., 1991, 84(3,4): 118-124.
    [122] I. B. Kong, S. W. Kim. General algorithm of phase-shifting interferometry by iterative least-squares fitting [J]. Opt. Eng., 1995, 34(1): 183-187.
    [123] I. B. Kong, S. W. Kim. Portable inspection of precision surfaces by phase-shifting interferometry with automatic suppression of phase-shift errors [J]. Opt. Eng., 1995, 34(5): 1400-1404.
    [124] S. W. Kim, M. G. Kang, G. S. Han. Accelerated phase-measuring algorithm of least squares for phase-shifting interferometry [J]. Opt. Eng., 1997, 36(11): 3101-3105.
    [125] M. Y. Chen, H. W. Guo. Algorithm immune to tilt phase-shifting error for phase-shifting interferometers [J]. Appl. Opt. 2000, 39(22): 3894-3898.
    [126]郭红卫,陈明仪,韦春龙.基于一阶泰勒展开式的迭代最小二乘相移新算法[J].光学学报, 2001,21(1): 72-74.
    [127] M. Kujawinska. Spatial carrier phase shifting technique of fringe pattern analysis [A]. Proc.SPIE, 1991, 1508: 61-67.
    [128] K. Creath, J. Schmit. N-point spatial phase measurement techniques for nondestructive testing [J]. Opt. Lasers Eng., 1996, 24: 365-379.
    [129] M. Servin, F. J. Cuevas. A novel technique for spatial phase-shifting interferometry [J]. J. Mod. Opt. 1995, 42(9): 1853-1862.
    [130] P. H. Chan, P. J. Bryanston-Cross. Spatial phase stepping method of fringe-pattern analysis [J]. Opt. Lasers Eng. 1995, 23: 343-354.
    [131] M. Pirga, M. Kujawińska. Two directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns [J]. Opt. Eng., 1995, 34(8): 2459-2466.
    [132] Y. Ichioka, M. Inuiya. Direct Phase Detecting System [J]. Appl. Opt., 1972, 11(7): 1507-1514,.
    [133] S. Tang, Y. Y. Hung. Fast profilometer for the automatic measurement of 3-D object shapes [J]. Appl. Opt., 1990, 29(20): 3012-8.
    [134] K. A. Nugent. Interferogram analysis using an accurate fully automatic algorithm [J]. Appl. Opt.1985, 24(18): 3101-3105.
    [135] D. J. Bone, H. A. Bachor, R. J. Sandeman. Fringe-pattern analysis using a 2-D Fourier transform [J]. Appl. Opt. 1986, 25(10): 1653-1660.
    [136] J. F. Lin, X. Y. Su. Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes [J]. Opt. Eng., 1995, 34(11): 3297-302.
    [137] L.R.Watkins, S. M. Tan, T. H. Barnes. Interferometer profile extractions using continuous wavelet transform [J]. Electronics Letters, 1997, 33(25): 2116-2117.
    [138] M. Afifi, A. Fassi-Fihri, et al. Paul Wavelet-based Algorithm for Optical Phase Distribution Evaluation [J]. Opt.Comm., 2002, 211: 47-51.
    [139] A. Federico, G. H. Kaufmann. Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes [J]. Opt. Eng., 2001, 40(11): 2598-2604.
    [140] A. Dursun, S. ?zder, F. N. Ecevit. Continuous wavelet transform analysis of projected fringe patterns [J]. Meas. Sci. Technol., 2004, 15: 1768-72.
    [141] R. M. Goldstain, H. A. Zebkerr, C. L. Werner.Satellite radar interferometry: two-dimensional phase unwrapping [J].Radio Sci., 1988, 23(4): 713-720.
    [142] M. Herráez. Robust, simple, and fast algorithm for phase unwrapping [J]. Appl. Opt., 1996, 35(29):5847.
    [143] G. Fornaro, E.Sansosti. A two dimension region growing least squares phase unwrapping algorithm for interferometry SAR processing. IEEE Trans on Geoscience and Remote sensing [J], 1998, 37(11): 2215-2216.
    [144] G. H. Kaufmann, G. E. Galizzi Evaluation of a preconditional conjugated gradient algorithm for weighted least squares unwrapping of digital speckles pattern interferometry phase maps [J]. Appl. Opt., 1998, 37(14):3076-3084.
    [145] H. O. Saldner, J. M. Huntley. Temporal phase-unwrapping algorithm for automated interferogram analysis [J]. Appl. Opt., 1993, 32(17): 3047-52.
    [146]王勇,马立元,王忠强.四元数法在计算机图形学中的应用[J].军械工程学院学报, 2001, 13(2): 48-51.
    [147]李亚萍,黄崇超.参数曲线空间位置变换的实四元数方法[J].工程图学学报, 2007, 2: 124-128.
    [148] ISO/TR 16610-49 Geometrical Product Specifications (GPS)—Filtration—Part 49: Morphological profile filters: Scale space techniques[S].
    [149] ISO 16610-21. Geometrical product specification (GPS)—Filtration—Part 21:Linear profile filters: Gaussian filters [S].
    [150]姜会亮,郭阵民,胡学龙.数字图像处理中几种平滑技术的研究比较[J].现代电子技术, 2004, 8: 80-84.
    [151]冯文灏,李建松,闫利.基于二维直接线性变换的数字相机畸变模型的建立[J].武汉大学学报, 2004: 29(3): 551-554.
    [152] H. Asada ,M. Brady. The curvature primal sketch [A]. IEEE Transactions on AMI, 1986, 8(1): 2-14.
    [153] R. Espelid, I. jonassen. A comparison of splitting methods for the identification of corner-points [J]. Pattern Recognition Letters, 1991, 12(2): 79-83.
    [154] H. Nagel. Displacement cectors from the second order variations in image sequences [J]. Computer Vision, Graphics and Image Processing, 1983, 21: 85-117.
    [155] O.A. Zuniga, R. Haralick. Corner detection using the facet model [C].In Proceedings of IEEE Conference on Cpmputer Vision and Pattern Recognition, Washington DC, USA, 1983, 6: 30-37.
    [156] S. M. Smith, J. M. Brady. SUSAN-A new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 1(23): 45-78.
    [157] C. Harris, M. Stephens. A combined corner and edge detector [C]. In 4th Alvey Vision Conference, 1988, 147-151.
    [158] P. Tissainayagam, D. Suter. Assessing the performance of corner detectors for point feature tracking applications [J]. Image and Vision Computing, 2004, 22(8): 663-679.
    [159] X. Y. Su, G. V. Bally, D. Vukicevic. Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation. Opt.Comm., 1993, 98: 141-150.
    [160]黄文宇,龚建伟,陆际联.基于调制度分析的加权最小二乘位相展开方法[J].北京理工大学学报, 2001,21(2): 247-251.
    [161]章毓晋.图像分割[M].第一版.北京:科学出版社, 2001.
    [162] R .Y Tsai. An efficient and accurate camera calibration technique for 3D machine vision[C].In: Proceedings of IEEE Conference on ComPuter Vision and Pattern Recognition, Miami Beach, FL, 1986, 364-374.
    [163] H. A. Martins, J. R. Birk, R. B. Kelley. Camera models based on data from two calibration planes [J]. Computer Graphics and Image Processing, 1981, 17(2): 173-180.
    [164] J. Wen, G. Schweitzer. Hybrid calibration of CCD cameras using artificial neural nets [C]. Int. Joint Conf. Neural Networks, Piscataway: IEEE, 1991: 337-342.
    [165]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报, ,2000, 26(1): 43-49.
    [166]袁野,田中旭,欧宗瑛.应用BP神经网络进行成像误差修正[J].计算机应用, 2003, 23(6): 109-111.
    [167] G. H. Notni, G. Notni. Digital fringe projection in 3-D shape measurement an error analysis [A]. Proc. SPIE, 2006, 5144:372-380.
    [168] S. Kakunai, T. Sakamoto, Iwata K. Profile measurement taken with liquid-crystal grating. Appl. Opt., 1999, 38(13): 2824-2828.
    [169] H. Farid. Blind Inverse Gamma Correction [J]. IEEE Trans. Image Process, 2001, 10(10):1428-1433.
    [170]魏永毅,李海峰,刘旭.液晶投影机自动Gamma校正系统[J].浙江大学学报, 2005, 39(11):1727-1729.
    [171] H. W. Guo, H. T. He, M. Y. Chen. Gamma correction for digital fringe projection profilometry[J]. Appl. Opt., 2004, 43(14):2906-2914.
    [172] L. N. ZHANG, F X. ZHAO, X. P. LI, et al. Study on theoretic basis and key technique of new generation geometrical product specification and verification (GPS) [J]. Journal of Mechanical Strength, 2004, 26(5): 547-551.
    [173]张琳娜,常永昌,赵凤霞等.现代产品几何技术规范(GPS)中基于对偶性的操作技术及其应用[J].机械强度, 2005, 27(5): 656-660.
    [174] ISO/TS 17450-1:2000 (E) Geometrical product specifications (GPS)—General concepts—Part 1: Model for geometrical specification and verification[S].
    [175] ISO/TS 17450-2:2000 (E) Geometrical product specifications (GPS)—General concepts—Part 2: Operators and uncertainties[S]
    [176] International Organization for Standardization,“Guide to the Expression of Uncertainty in Measurement”(GUM). BIPM, IEC, IFCC, ISO, IUPAU, IUPAP, OIML, 1st edition,1993.
    [177] ISO14253-1:1998(E) Geometrical product specification (GPS)—Inspection by measurement of workpieces and measuring equipment—Part 1: Decision rules for proving conformance or nonconformance with specifications [S].
    [178] ISO14253-2:1998(E) Geometrical product specification (GPS)—Inspection by measurement of workpieces and measuring equipment—Part 2: Guide to the estimation of uncertainty in GPS measurement, in calibration of measuring equipment and in product verification[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700