硅电容式差压传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅电容式差压传感器在国际上刚刚崭露头角,在国内尚属空白,此项目被国家列为“十五”攻关课题,以填补国内空白,适应市场的大量需求。
     本文介绍了几种硅电容式差压传感器的设计方案,并且考察了仪表所现有的工艺条件和技术水平,比较各种方案对该传感器产业化的难易程度,最终确定了符合现有的工艺条件、易于产品化以及与其它产品生产相兼容的最佳方案。
     硅电容式差压传感器是在沈阳仪器仪表工艺研究所研制的,利用了MEMS的各种工艺。文中详述了相关工艺的原理、流程、优缺点、及工艺条件对传感器性能的影响等。例如,KOH溶液对硅的各向异性腐蚀,磁控溅射台制作光亮的铝膜,超声打孔机制作导压孔,静电键合装置对硅岛膜与玻璃极板的阳极封接等等。对试制的前期样品性能进行了测试,发现它的重复性、回差性、滞后性基本达到设计要求,但稳定性不太理想,有时间漂移的现象。通过查阅资料和反复试验,最终找到了影响稳定性的根源,并在工艺上可以得到解决,稳定性能有所提高。可以说成功地研制出了硅电容式差压传感器。
     在研制过程中,本文积累了大量的数据,曲线,图片以及各种相应的照片,它们为该传感器的研制提供了可靠的依据。
     另外,本文还利用ANSYS软件对方形硅岛膜进行了力学分析,表明硅岛膜在一定压力下岛上各点的挠度。随着岛尺寸的变小,岛膜能够越来越好地平行移动。同时,岛的尺寸还要受到其它限制,例如电容相对面积的大小,硅岛膜总体尺寸的大小等等。这为力敏元件的研制提供了理论依据。
The silicon capacitance different pressure sensor has been developed successfully overseas and not at home. It is confirmed the nation "FIFTEEN" task in order to make it by ourselves and satisfy with the market demand.
    A few design projects on the silicon capacitance different pressure sensor are mentioned in the paper. After the existing processing and technology level are reviewed and that which of these design projects is easier to this sensor industrialization are considered, a optimal design project which can accord with the existing processing, is easier to industrialize and can be compatible with manufacture of other products is confirmed.
    The silicon capacitance different pressure sensor was developed in the Shenyang Institute of Instrumentation Technology with some kinds of the MEMS processing. The principle, virtue and defect, the effect of condition and flow of these MEMS processing are stated in detail in the paper. For example, the silicon is etched anisotropically in the KOH solution, the lucent Al film is made with the magnetron sputtering system, the pressure hole is drilled by the supersonic stiletto machine and the silicon and the glass are bonded with electrostatic bonding setup. Some samples were also tested there, and as a result their repetition, come-and-go difference and lag performance can satisfy with the demand, but the stabilization performance is a little bad and there exist the time excursion. After the mass information was refered to and the much experiment was performed, the root of the bad stabilization performance was found and it can be solved with the existing processing. Now the stabilization performance has been
    advanced and the silicon capacitance different pressure sensor has been developed successfully.
    There are a great deal of data, curve, picture and some correlative photographs in the paper, and these are reliable basis of the developed sensor.
    In addition, the software of ANSYS is used to analyze the square silicon island-diaphragm displacement under certain pressure. As a result, littler the size of silicon island-diaphragm is, better the island can move in parallel. But the size of silicon island-diaphragm is affected with
    
    
    
    other sizes such as the capacitance relative area and the gross size of sensor and so on. These are academic basis of the developed sensor.
引文
[1] 李和太,魏永广,揣荣岩.半导体敏感元件与传感器.沈阳:东北大学出版社,2000.
    [2] 蔡中.电容式压力传感器的研制:学位论文.北京:清华大学,1988.
    [3] 陈志刚.高灵敏度硅电容式压力传感器的研制:学位论文.西安:西安交通大学,1988.
    [4] 黄长艺,严普强.机械工程测试技术基础.第2版.北京:机械工业出版社,1999.
    [5] 鲍敏杭,李昕欣.实现线性输出的单面推挽式硅电容压力传感器.复旦学报(自科版),1996-035(001):31-38
    [6] 刘鸿文.材料力学(上册).北京:高等教育出版社,1996.
    [7] 牛德芳.半导体传感器原理及其应用.大连:大连理工大学出版社,1993.
    [8] 李昕欣,鲍敏杭.对称岛膜结构硅电容压力传感器的研究.第四届全国敏感元件与传感器学术会议论文集,1995.52~53页
    [9] Kevin A. Shaw, Z. Lisa Zhang, Noel C. MacDonald. SCREAM Ⅰ: A SINGLE MASK, SINGLE-CRYSTAL SILICON PROCESS FOR MICRO ELECTRO MECHANICAL STRUCTURES. Micro Electro Mechanical Systems, 1993: 155-160
    [10] G. Thornell, H. Bengtsson, R. Spohr, et al. DEEP MICROMACHINING OF INSULATING MATERIALS BY ETCHING OF LATERALLY CONSTRAINED DISTRIBUTIONS OF ION TRACKS. Micro Electro Mechanical Systems, 1998: 211-217
    [11] Y. X. Li, P. J. French, P. M. Sarro. FABRICATION OF A SINGLE CRYSTALLINE SILICON CAPACITIVE LATERAL ACCELEROMETER USING MICROMACHINING BASED ON SINGLE STEP PLASMA ETCHING. Micro Electro Mechanical Systems, 1995: 398-403
    [12] Klas Hjort, Greger Thornell, Reimar Spohr. Heavy Ion Induced Etch Anisotropy in Single Crystalline Quartz. Micro Electro Mechanical Systems, 1996: 267-271
    [13] 黄庆安.硅微机械加工技术.北京:科学出版社,1996.
    
    
    [14] B. Nikpour, L. M. Landsberger, T. J. Hubbard. Concave corner compensation between vertical (010)-(001) planes anisotropically etched in Si(100). Sensors and Actuators, A66. 1998: 299-307
    [15] 孙以材,刘玉岭,孟庆浩.压力传感器的设计、制造与应用.北京:冶金工业出版社,2000.
    [16] Kirt R. Williams, Richard S. Muller. Etch Rates for Micromachining Processing. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL.5. NO.4. 1996: 256-269
    [17] Gwiy-Sang Chung. Anisotropic Etching Characteristics of Silicon in TMAH: IPA: Pyrazine Solutions. Sensors and Materials, Vol.12. No.3.2000: 133-142
    [18] Gwiy-Sang Chung, Won-Jae Lee, Jae-Sung Song. Electrochemical Etch-Stop Characteristics of TMAH: IPA: Pyrazine Solutions. Sensors and Materials, Vol.12. No.4. 2000: 221-230
    [19] 孙承松.薄膜技术及应用.沈阳:东北大学出版社,1998.
    [20] 李云奇.真空镀膜技术与设备.沈阳:东北工学院出版社,1989.
    [21] 李乃平.微电子器件工艺.武汉:华中理工大学出版社,1995.
    [22] 田民波,刘德令编译.薄膜科学与技术手册.北京:机械工业出版社,1991.
    [23] G.Wallis, et al. Field assisted glass-metal sealing. J.Appl. Phys. Vol.40. No.10. 1969.
    [24] Esashi M, Nakano A, Shuji S, et al. Low-Temperature Silicon-to-Silicon Anodic Bonding with Intermediate. Sensors and Actuators, 1990, A21~23: 931
    [25] 卢伟泉.静电封接技术及应用.半导体杂志,1992,017(003):1-4
    [26] 罗鸣等.静电封接过程与机理研究.半导体学报,1992,Vol.13.No.8:507
    [27] 王蔚,刘晓为,刘玉强等.静电键合在高温压力传感器中的应用.传感器技术,1999,Vol.18.No.1:42
    [28] 黄庆安,童勤义.SiO_2钝化膜对硅/玻璃静电键合的影响.半导体学报,1995,Vol.16.No.5
    
    
    [29] J.B.Lasky, et al. Silicon-on-insulator by bonding and etch back. Proc.Int.Electron Device Meeting. USE. 1985: 684~687
    [30] W.P.Maszara. Proc. of the 4th International Symposium on Silicon-On-Insulator Technology and Devices. Ed. by D.Schmidt the Electrochemical Society, Vol.90-6. 1990: 199
    [31] 童勤义等.硅片直接键合机理及快速热键合工艺.电子学报,1991,Vol.19.No.2:27
    [32] 蔡跃明,吕世骥.硅片直接键合技术的氧等离子体表面处理.微电子学与计算机,1990,Vol.7.No.6:46-48
    [33] 赵策洲,高勇.半导体硅基材料及其光波导.北京:电子工业出版社,1997.
    [34] 詹娟.直接键合硅片的亲水处理.半导体技术,1994,No.6:54-56
    [35] 付兴华,黄庆安.硅直接键合工艺对晶片平整度的要求.电子科学学刊,1994,016(003):290-295
    [36] 陈军宁,黄庆安,张会珍等.硅/硅直接键合的界面杂质.固体电子学研究与进展,1993,Vol.13.No.1:35-40
    [37] K.Mitani, et al. Causes and prevention of temperature-dependent bubbles in silicon wafer bonding. Jpn.J.Appl.Phys, Vol.30.NO.4. 1991: 615
    [38] [美]A.S.格罗夫著.半导体器件物理与工艺.北京:科学出版社,1976.
    [39] 刘恩科,朱秉升,罗晋生.半导体物理学.北京:国防工业出版社,1995.
    [40] 梁鹿亭.半导体器件表面钝化技术.北京:科学出版社,1979.
    [41] 陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南.北京:中国铁道出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700