莴笋渗透脱水传质动力学及渗后热风干燥特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗透脱水是将果蔬等多孔性物料浸入高渗溶液中,在高渗压引起的驱动力作用下水分自发向外转移的过程。采用渗透脱水预处理能减少后续干燥时间和对产品品质的热损害,但目前国内外的渗透脱水对象集中在水果类,所得结果对蔬菜的研究指导作用有限,且与渗透脱水相关的数学模型还可进一步探讨。因此本课题提出对莴笋渗透脱水的传质动力学及渗后热风干燥特性进行研究,希望为渗透脱水的理论研究和实际生产提供一定参考。
     本课题以莴笋为研究对象,以失水率、固形物增加率、有效扩散系数、湿基含水率、干燥速率为指标,试验采用回归正交旋转设计和均匀设计方法,同时使用SPSS、Matlab及SYSTAT软件作为统计分析、绘图和优化软件。
     首先,设计了一个五元(葡萄糖浓度、氯化钠浓度、温度、厚度和时间)二次回归正交旋转试验,研究了莴笋渗透脱水失水率和固形物增加率的传质回归方程,优化了工艺参数;其次,以葡萄糖浓度和温度为影响因素,根据均匀试验结果,建立了莴笋渗透脱水的动力学模型,拟合了有效扩散系数与因素间的回归方程;最后,研究了风温、风速、铺料密度对渗后莴笋热风干燥特性的影响,比较了渗后和未渗样品的干燥特性、产品外观品质及复水特性。结果表明:
     第一,葡萄糖浓度、渗透时间增加能显著提高失水率和固形物增加率;在葡萄糖+氯化钠组合溶液中,氯化钠浓度对失水率无明显影响但对固形物增加率有极显著促进作用;温度升高不利于失水但利于固形物增加;而厚度增加既不利于失水也不利于固形物渗入;莴笋渗透脱水的最优工艺为:葡萄糖浓度32.5%、氯化钠浓度2%、温度35℃、厚度5mm、时间139min;在此条件下,失水率的预测值及试验值分别为52.08%和53.54%、固形物增加率的预测值及试验值分别为9.83%和9.14%;失水率和固形物增加率的回归方程可用于莴笋渗透脱水的预测。
     第二,Azuara模型可计算平衡时刻的失水率和固形物增加率;两指数模型比Page模型更适于描述莴笋渗透脱水的动力学过程;根据曲面拟合方法得到的莴笋渗透脱水有效扩散系数与葡萄糖浓度和温度的回归方程拟合性高;水分、固形物有效扩散系数大小与平衡时刻的失水率和固形物增加率无直接关系,有效扩散系数表示的是失水率和固形物增加率达到平衡时刻的快慢程度。
     第三,风温、风速增加能减少莴笋渗后热风干燥时间,而铺料密度增加会延长干燥时间;莴笋经渗透脱水后,干燥速率虽有所降,但干燥时间大为减少;莴笋渗后样品在热风干燥或复水后,其外观品质均优于未渗样品;渗后样品在高温下复水较快而未渗样品适宜在室温状态下复水,渗后样品的复水能力好于未渗样品;莴笋渗后样品复水时间可控制在1h内。
Osmotic dehydration is based on the principle that a driving force for water removal sets up because of the high osmotic pressure of the hypertonic solution when porous material (such as fruits and vegetables) are immersed in a hypertonic aqueous solution. Osmotic dehydration could minimize the heat damage to quality and reduce total drying time. But the main research materials about osmotic dehydration are fruits. Because results from those studies could not be used in vegetables absolutely and models of osmotic dehydration could have a further study. So the object of this paper is to study the kinetics of mass transfer during osmotic dehydration of asparagus lettuce and following air-drying characteristic so as to provide references for research and actual processing.
     In this paper, asparagus lettuce was chosen to be experimental subject. And experimental indicators included water loss, solid gain, effective diffusion coefficients, wet basis and drying rate. Regression orthogonal rotatable design and uniform design were used in this study. Besides, SPSS, Matlab and SYSTAT were used to statistical analysis, drawing and optimization.
     First, a quadratic regression orthogonal rotatable design (factors including glucose concentration, sodium chloride concentration, temperature, thickness and dehydration time) was used to study the regression equations of water loss and solid gain on mass transfer of osmotic dehydration and processing parameters were optimized. Secondly, glucose concentration and temperature were decided to be factors. According to the results of uniform design, kinetics models of asparagus lettuce during osmotic dehydration were built and regression equations which were related to effective diffusion coefficients and factors were obtained. Last, effects of air temperature, air velocity and paving density on drying characteristics of asparagus lettuce treated with osmotic dehydration were studied. Also, drying characteristics, exterior quality of products and rehydration characteristics of samples with and without treated by osmotic dehydration were investigated.
     The results showes that, first, water loss and solid gain increase significantly by the increasing of glucose concentration and time. In the combined of glucose and sodium chloride solution, the increasing of sodium chloride concentration does not affect water loss apparently but increasing solid gain significantly. The increasing of temperature could decrease water loss but it increases solid gain. Thickness has negative effects on two indicators. And the optimum operating conditions for osmotic dehydration of asparagus lettuce are found to be glucose concentration of 32.5%, sodium chloride concentration of 2%, temperature of 35℃, thickness of 5mm and dehydration time of 139min. At this optimum point, predict and experimental values of water loss are 52.08% and 53.54% respectively and the values of solid gain are 9.83% and 9.14%. So regression equations of water loss and solid gain can predict the mass transfer of osmotic dehydration of asparagus lettuce.
     Secondly, Azuara model could calculate water loss and solid gain of equilibrium. The two-term exponential model is more suitable for the kinetics of osmotic dehydration than Page model in this research. Regression equations based on surface fitting represent the relationship between effective diffusion coefficients and factors (glucose concentration and temperature) well. And effective diffusion coefficient does not have direct relationship to water loss or solid gain of equilibrium, however, it represent the rate of water loss and solid gain reaching to the equilibrium.
     Thirdly, the increasing of temperature and air-velocity could reduce drying time, but paving density has a negative effect on it. Samples pre-treated with osmotic dehydration consume less drying time, but they have a lower drying rate comparing with untreated ones. And the exterior qualities of pre-treated samples after air-drying or rehydration are better than those untreated samples. The pre-treated samples rehydrate faster in water solution of high temperature, however, untreated samples are suitable for rehydrating under room temperature. In addition, pre-treated samples have a better rehydration capability than untreated samples. For samples which are treated by osmotic dehydration, the rehydration time can be controlled within 1h.
引文
[1]王小雄.脱水蔬菜浅谈[J].西南园艺,2004,32(4):53.
    [2]黄劲松,周裔彬,杜先锋,等.脱水蔬菜的研究进展[J].食品工业科技,2006,27(4):203-207.
    [3]田红萍,王剑平.胡萝卜渗透脱水传质试验研究[J].农业工程学报,2004,20(6):220-222.
    [4]程璐.莴笋渗透脱水及其复合干燥的试验研究[D].合肥:合肥工业大学.2007:9-23.
    [5]陈金日,冉旭,王利,等.圣女果渗透脱水实验研究[J].北方园艺,2010,(2):200-203.
    [6]庞韵华,崔政伟.苹果渗透脱水的响应面优化分析[J].农产品加工·学刊,2008,(4):25-30.
    [7]Ozdemir M, Ozen B F, Dock L L, et al. Optimization of osmotic dehydration of diced green peppers by response surface methodology[J]. Food Science and Tchnology,2008,41(10):2044-2050.
    [8]Abud-Archila M, Vazquez-Mandujano D G, Ruiz-Cabrera M A, et al. Optimization of osmotic dehydration of yam bean using a orthogonal experimental design[J].Journal of Food Engineering, 2008,84(3):413-419.
    [9]Saxena A, Bawa A S, Raju P S. Optimization of a multitarget preservation technique for jackfruit bulbs[J].Journal of Food Engneering,2009,91(1):18-28.
    [10]李汴生,刘伟涛,李丹丹,等.糖渍加应子的热风干燥特性及其表达模型[J].农业工程学报,2009,25(11):330-335.
    [11]Azoubel P M, Murr F E X. Mass transfer kinetics of osmotic dehydration of cherry tomato[J]. Journal of Food Engineering,2004,61(3):291-295.
    [12]Amami E, Vorobiev E, Kechaou N. Modeling of mass transfer during osmotic dehydration of apple tissue pre-treated by pulsed electric field[J].Food Science and Technology,2006,39(9):1014-1021.
    [13]Crank J. The mathematics of diffusion [M].New York:Oxford University Press,1975:45-68.
    [14]田红萍.胡萝卜渗透脱水和微波干燥组合试验研究[D].杭州:浙江大学.2003:14-21.
    [15]曹晖.高含水率脱水猕猴桃和菜心的加工与安全贮藏研究[D].无锡:江南大学.2007:49-61.
    [16]董全.蓝莓渗透脱水及流化床干燥研究[D].重庆:西南农业大学.2005:56-63.
    [17]Mayor L, Moreira R, Chenlo F, et al. Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions[J].Journal of Food Engineering,2006,74(2):253-262.
    [18]Monnerat S M, Pizzi T R M, Mauro M A, et al. Osmotic dehydration of apples in sugar/salt solutions:Concentration profiles and effective diffusion coefficients[J].Journal of Food Engineering, 2010,100(4):604-612.
    [19]Ruiz-Lopez I I, Castilo-Zamudio R I, Salgado-Cervantes M A, et al. Mass transfer modeling during osmotic dehydration of Hexahedral pineapple slices in limited volume solutions[J].Food Bioprocess Technology,2010,3(3):427-433.
    [20]Tonon R V, Baroni A F, Hubinger M D. Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids[J]. Journal of Food Engineering,2007,82(4):509-517.
    [21]董红星,相玉琳,王树盛,等.超声场强化胡萝卜渗透脱水质量传递的研究[J].农产品加工·学刊,2007,(5):35-38.
    [22]孙宝芝,姜任秋,淮秀兰,等.声空化对渗透脱水影响的实验研究[J].干燥技术与设备,2004,(1):23-27.
    [23]Fernandes F A N, Gallao M I, Rodrigues S. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration[J].Journal of Food Engineering,2009,90(2):186-190.
    [24]胡珂文,王剑平,盖玲,等.高压脉冲电场在食品加工中的应用前景[J].食品工业科技,2007,28(6):226-229.
    [25]赵瑾,杨瑞金,赵伟,等.高压脉冲电场对鲜榨梨汁的杀菌效果及其对产品品质的影响[J].农业工程学报,2008,24(6):239-244.
    [26]刘振宇,郭玉明.高压脉冲电场预处理对果蔬脱水特性的影响[J].农机化研究,2008,(12):9-12.
    [27]刘振宇,郭玉明,崔清良.高压矩形脉冲电场对果蔬干燥速率的影响[J].农机化研究,2010,(5):146-150.
    [28]刘卫华.芒果真空渗透脱水的研究[J].食品科技,2009,34(2):52-55.
    [29]董全,Marcotte,陈宗道.真空、脉冲真空和常压下蓝莓渗透脱水的研究[J].食品科学,2007,28(9):92-95.
    [30]Amami E, Fersi A, Khezami L. Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field[J].Journal of Food Science and Technology,2007,40(7): 1156-1166.
    [31]Rastogi N K, Raghavarao K S M S, Niranjan K, et al. Recent developments in osmotic dehydration: methods to enhance mass transfer[J].Trends in Food Science & Technology,2002,13(2):48-59.
    [32]胡吴磊,赵金红,孙亚松,等.果蔬渗透脱水动力学研究[J].干燥技术与设备,2007,5(4):190-191.
    [33]庞韵华.组合干燥法生产苹果片的研究[D].无锡:江南大学.2008:18-20.
    [34]Marcotte M, Le Maguer M. Mass transfer in cellular tissues part Ⅱ:computer simulation vs experimental data[J].Journal of Food Engineering,1992,17(3):177-199.
    [35]王妮,杨薇,黄小丽,等.果蔬渗透脱水研究进展[J].昆明理工大学学报(理工版),2009,34(增刊):203-207.
    [36]张慜,曹晖.食品渗透脱水研究进展[J].干燥技术与设备,2004,2(4):3-9.
    [37]赵彩青,汪政富,胡小松.超声波预处理对樱桃番茄渗透脱水影响研究[J].食品工业科技,2008,29(3):149-150.
    [38]董全,Marcotte M,陈宗道.蓝莓渗透脱水的研究[J].食品与发酵工业,2004,30(7):1-5.
    [39]Manivannan P, Rajasimman M. Osmotic dehydration of beetroot in salt solution:optimization of parameters through statistical experiment design[J].International Journal of Chemical and Biomolecular Engineering,2008,1 (4):215-222.
    [40]Derossi A, Pilli T D, McCarthy M J. Mass transfer during osmotic dehydration of apples[J]. Journal of Food Engneering,2008,86(4):519-528.
    [41]Kaymak-Ertekin F, Sultanoglu M. Modelling of mass transfer during osmotic dehydration of apples[J]. Journal of Food Engineering,2000,46(4):243-250.
    [42]张慜.生鲜食品联合干燥节能保质技术的研究进展[J].干燥技术与设备,2009,7(5):214-219.
    [43]黄建新,黄艳,郑宝东,等.银耳热风-微波真空联合干燥工艺优化的研究[J].中国农学通报,2009,25(22):88-91.
    [44]段续,张慜,朱文学.海参冻干-微波联合干燥技术研究[J].包装与食品机械,2009,27(5):36-41.
    [45]李瑞杰,张慜,孙金才.冷冻干燥与后续真空微波联合干燥开发草莓休闲食品[J].食品与生物技术学报,2009,28(4):456-461.
    [46]潘丽军,陈锦权.试验设计与数据处理[M].南京:东南大学出版社,2008:165-234.
    [47]卢纹岱SPSS for Windows统计分析[M].2版.北京:电子工业出版社,2002:124-240.
    [48]罗建军MATLAB教程[M].北京:电子工业出版社,2005:85-117.
    [49]戴国辉,孙忠栋,吴海军,等.莴笋的营养保健价值及其加工开发[J].农产品加工·学刊,2008,(11): 43-46.
    [50]李晓瑾,李艳娥,石明辉,等.阿尔泰莴苣的营养成分分析[J].中国食物与营养,2007,(8):52-54.
    [51]Fernandes F A N, Rodigues S, Gasparato O C P, et al. Optimization of osmotic dehydration of bananas followed by air-drying[J]. Journal of Food Engineering.2006,77(1):188-193.
    [52]El-Aouar A A, Azoubel P M, Jr J L B, et al. Influence of the osmotic agent on the osmotic dehydration of papaya[J]. Journal of Food Engineering,2006,75(2):267-274.
    [53]田红萍,王剑平.胡萝卜渗透脱水试验研究[J].浙江大学学报:农业与生命科学版,2003,29(2):169-174.
    [54]Pereira L M, Carmello-Guerreiro S M, Hubinger M D. Microscopic features, mechanical and thermal properties of osmotically dehydrated guavas[J].Food Science and Technology,2009, 42(1):378-384.
    [55]Moraga M J, Moraga G, Fito P J, et al.Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmodehydrated grapefruit[J].Journal of Food Engineering,2009,90(3):372-379.
    [56]GB/T5009.3-2010食品中水分的测定[S].北京:中国标准出版社,2010.
    [57]Eren I, Kaymak-Ertekin F. Optimization of osmotic dehydration of potato using response surface methodology[J]Journal of Food Engineering,2007,79(1):344-352.
    [58]程璐,潘丽军,宁伟城.莴笋渗透脱水的实验研究[J].农产品加工:学刊,2006,(10):136-139.
    [59]Collignan A, Raoult-Wack A L. Dewatering and salting of cod by immersion in concentrated sugar/ salt solutions:Preceedings of the ICEF6[C].Chiba:Dvelopments in Food Engineering,1994: 400-402.
    [60]Shi J, Le Maguer M. Osmotic dehydration of food:mass transfer and modeling aspects[J].Food Reviews International,2002,18(4):305-335.
    [61]葛哲学.精通MATLAB[M]北京:电子工业出版社,2008:236-238.
    [62]Falade K O, Igbeka J C, Ayanwuyi F A. Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon[J].Journal of Food Engineering,2007,80(3):979-985.
    [63]Panades G, Castro D, Chiralt A, et al. Mass transfer mechanisms occurring in osmotic dehydration of guava[J].Journal of Food Engineering,2008,87(3):386-390.
    [64]Park K J, Bin A, Brod F P R, et al. Osmotic dehydration of pear D'anjou[J].Journal of Food Engineering,2002,52(3):293-298.
    [65]Khin M M, Zhou W B, Perera C O. A study of the mass transfer in osmotic dehydration of coated potato cubes[J] Journal of Food Engineering,2006,77(1):84-95.
    [66]Azuara E, Beristain C I, Gutierrez G F. A method for continuous kinetic evaluation of osmotic dehydration[J].Food Science and Technology,1998,31(4):317-320.
    [67]Togrul I T, Ispir A. Equilibrium distribution coefficients during osmotic dehydration of apricot[J]. Food and Bioproducts Processing,2008,86(C4):254-267.
    [68]Garcia-Segovia P, Mognetti C, Andres-Bello A, et al. Osmotic dehydration of Aloe vera[J]. Journal of Food Engineering,2010,97(2):154-180.
    [69]Sutar P P, Gupta D K. Mathematical modeling of mass transfer in osmotic dehydration of onion slices[J].Journal of Food Engineering,2007,78(1):90-97.
    [70]Zenoozian M S, Feng H, Razavi S M A, et al. Image analysis and dynamic modeling of thin layer drying of osmotically dehydrated pumpkin:2007 ASABE Annual International Meeting, Minneapolis, June 17-20,2007[C]. St. Joseph:ASABE,2007.
    [71]Rastogi N K, Raghavarao K S M S. Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration[J]. Food Science and Technology,2004,37(1): 43-47.
    [72]Ispir A, Togrul I T. Osmotic dehydration of apricot:Kinetics and the effect of process parameters [J]. Chemical Engineering Research and Design,2009,87(2A):166-180.
    [73]张建军,王海霞,马永昌,等.辣椒热风干燥特性的研究[J].农业工程学报,2008,24(3):298-301.
    [74]郑严,陈建,谢守勇,等.花椒恒温与控温热风干燥的对比试验研究[J].农业工程学报,2008,24(3):277-280.
    [75]曾令彬,赵思明,熊善柏,等.风干白鲢的热风干燥模型及内部水分扩散特性[J].农业工程学报,2008,24(7):280-283.
    [76]熊永森,王俊,王金双.微波干燥胡萝卜片工艺试验[J].农业工程学报,2008,24(6):29]-294.
    [77]Cunningham S E, Mcminn W A M, Magee T R A, et al. Experimental study of rehydration kinetics of potato cylinders[J].Food and Bioproducts Processing,2008,86(1):15-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700