基于智能技术与作业成本法的产品配置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产品配置是一种特殊的产品设计行为,该行为基于给定构件集与构件间的约束关系,根据客户需求,从构件集中选择出一组构件形成满足客户需求的产品。产品配置问题源于20世纪80年代初的人工智能研究,经过20多年的理论研究,产品配置在表达形式与求解方法上形成了扎实的理论基础。在90年代初,产品配置被学者们引入大规模定制研究中,成为大规模定制个性化订单实现的核心技术。
     虽然产品配置具有成熟的理论研究基础,但企业的产品配置实践却一直困难重重。进入21世纪后,为了缓解产品配置实施过程中遇到的困难,学者们深入企业实践对产品配置管理问题进行了提炼与分析,并逐渐将产品配置研究的重心由传统的配置表达与求解研究转向针对具体管理问题的配置管理研究。
     依托于前人的研究基础,本文基于产品配置系统视角,针对性地选取了产品配置实施过程中遇到的若干显著的配置管理问题作为研究目标,进行了如下的研究工作:
     在产品配置实践中,企业虽然提供了定制化服务,却一直忽视了配置活动的个性化特征,使客户在配置过程中承担着显著的感知困扰风险。为了缓解配置活动个性化的缺失,本文提出企业需要通过个性化的配置规则为客户提供经过提炼的配置选项空间。但个性化配置规则的实施对配置规则的获取方法提出了很高的要求。为了实现个性化配置规则,本文提出了基于LCNN网络与RULEX算法的双型个性化配置规则构造方法。该方法通过对历史数据的有效训练与解释,实现了个性化配置规则的智能获取、表达与演绎。
     在传统产品配置研究中,学者们往往忽略了动态配置环境对产品配置活动的影响。在大规模定制环境下,产品配置环境(客户群体需求与产品实现技术)存在较为显著的动态性,因此如何让支持配置活动的配置知识保持良好的环境适应性困扰着企业的产品配置实施。为了缓解此问题,本文提出了基于LCNN网络与RULEX算法的双型配置规则联合实施与更新方法。该方法通过将配置规则的获取、表达、演绎与进化整合入由LCNN网络与RULEX算法联合形成的智能方法中,减少了规则形态转化过程耗用的企业资源与时间,提高了配置规则的实施与更新效率。
     在当前产品配置研究中,学者们对配置活动的认识逐渐由传统的单向配置转向更接近实际的双向的、交互式的配置活动。在双向交互配置研究中,如何保证由客户需求映射而来的配置方案能够满足所有配置约束(又称为一致性矫正)是交互配置研究的核心问题。但由于客户需求的不确定性与柔性,现有基于CSP求解方法的产品配置一致性矫正方法存在计算复杂度问题,并且忽视了客户偏好对一致性矫正的影响。为了缓解上述问题,本文提出了基于Content-addresable Memory(CAM)的产品配置一致性矫正技术。通过将基于CSP描述的一致性矫正问题转化为基于CAM机制的记忆唤醒问题,本文用Hopfield神经网络以合理的计算复杂度模拟了一致性矫正过程,同时通过将客户偏好引入CAM模型,实现了客户偏好对一致性矫正过程的引导。
     在产品配置活动中,客户需要的不是一个孤立的产品配置方案,配置方案所体现的成本信息将有助于企业对产品满足客户需求的程度进行综合的评价,并为后续的配置优化问题的构建与求解提供准确的定量信息。在配置实践中,多数企业采用了以产量为基础的传统成本计算逻辑。但在大规模定制环境下,传统成本计算逻辑忽视对间接成本要素的分析,往往导致成本估算的失真。为了缓解此问题,本文将作业成本法引入产品配置研究中,通过建立面向作业成本的产品模型、作业模型与作业组织体系,实现了对多样化作业成本信息的有效管理,并形成了基于作业成本法的产品配置成本估算方法。
     本文通过将多种人工智能技术与作业成本法引入产品配置研究中,一定程度上缓解了产品配置实施中遇到的若干难题。本文的研究成果虽然不能涵盖所有产品配置难题,却为产品配置的研究与应用提供了若干具有创新性的方法与实施框架,有助于缩短产品配置理论研究与企业实践之间的差距。
Product configuration is a special design process of selecting and arranging combinations of predefined parts to satisfy given specifications. Although product configuration has been recognized as a key enabler for individualized order realization in mass customization and related research has established a sound theoretical foundation, the practices of product configuration in industries still face great challenges. To leverage the difficulties in configuration implementation, in the 21th century, several research literatures concentrated on the survey and analysis of management problems of product configuration and the research focus of product configuration gradually moved from technical issues to management issues. Based on the foundation of existing research, this dissertation selects four critical management problems of product configuration as research issues. The main contents include:
     Although companies are able to deliver customized products, most of them neglect the personalization in configuration activities. The lack of personalization probably results in the perceived risk of custom confusion and hinders the effectiveness of product configuration. To leverage the problem, this research introduces customers’personal characteristics into the modeling of configuration rules. A methodology which combines Local Cluster Neural Network (LCNN) and RULEX algorithm is proposed to efficiently acquire and apply personalized configuration rules by data learning and network explaining.
     In mass customization, product configuration is probably carried out in dynamic environment. However, existing configuration research mostly neglects the dynamics of configuration implementation. Therefore, the crucial issue about how to efficiently implement and update configuration knowledge to fit for dynamic environment is still unaddressed. To solve this problem, a framework combining LCNN and RULEX is developed to coordinate the implementation and update of configuration rules. In the framework, rule acquisition, representation, application and evolution are incorporated into the same intelligent methodology, by which the transfers between different rule formulations are accelerated.
     In current research, product configuration is gradually considered as bidirectional design interactions. In interactive configuration, maintaining the configuration assignment satisfies all configuration constraints (termed as consistency restoration, CR) is one of the primary issues which should be addressed. However, because of the uncertainty and flexibility of customer needs, existing CSP-based CR approaches mostly face the challenge from computational complexity. Besides, most approaches neglect the impact of customer preferences on CR. To address the problems, this research proposes a responsive CR technique based on content-addressable memory (CAM). The CSP-based CR problem is compiled into a CAM recalling process. Then Hopfield network is adopted to automatically correct the inconsistent assignment. Meanwhile, to introduce customer preference into the CAM model, specific orientation mechanisms are developed.
     Product costing is a process of estimating the cost of a product at design stage. The cost information helps companies to comprehensively evaluate how the configuration satisfies customers. However, traditional costing methods suffer the drawbacks of poor accuracy, low agility and undesirable degree of detail. To leverage the drawbacks, this research introduces activity-based costing (ABC) into product configuration. By developing generic and ABC- based product model, activity model and activity organization architecture, companies are able to provide detailed process-oriented cost information to support product configuration.
引文
[1] Mittal, S. and Frayman, F., 1989, Towards a generic model of configuration Task, Proceedings of the International Joint Conference of Artificial Intelligence, 1395-1401.
    [2] Sabin, D. and Weigel, R., 1998, Product configuration frameworks-a survey, IEEE Intelligent Systems & Their Applications, 13(4), 42-49.
    [3] McDermott, J. 1982. A rule-based configurater of computer systems. Artificial Intelligence, 19(1), 39-88.
    [4] Stefik, M. 1995. Introducing to Knowledge Systems. Morgan Kaufmann.
    [5] Bachant, J. and Soloway, E. 1989. The engineering of XCON. Comm. ACM, 32(3), 311-317.
    [6] Bachant J. and McDermott J. 1984. R1 Revisited: Four Years in the Trenches. AI Magazine, Vol. 5, No. 3, pp. 21-32.
    [7] McDermott J. 1981. R1: The Formative Years. AI Magazine, Vol. 2, No. 2 , pp. 21-29.
    [8] Barker V., O'Connor D. 1989. Expert systems for configuration at Digital: XCON and beyond. Communications of the ACM, v.32 n.3, p.298-318.
    [9] Golden M., Siemens R., Ferguson J. 1986. What's Wrong with Rules? Proc. WESTEX-86, IEEE Computer Society Press, Los Alamitos, Calif., pp162-165.
    [10] Hamscher W. 1992. Model-Based Reasoning in Financial Domains. Tech. Report TR-27, Price Waterhouse Technology Center, Menlo Park, Calif.
    [11] Hamscher W. 1994. Explaining Financial Results. Int'l J. Intelligent Systems in Accounting, Finance and Management, Vol. 3, No. 1, pp.1-19.
    [12] Wright J., Weixelbaum E., Brown K.E., Vesonder G.T., Palmer S.R., Berman J.I., Moore H.H. 1993. A Knowledge-Based Configurator that Supports Sales, Engineering, and Manufacturing at AT&T Network Systems, Proceedings of the The Fifth Conference on Innovative Applications of Artificial Intelligence, p.183-193.
    [13] Searls D.B., Norton L.M., 1990. Logic-based configuration with a semantic network. Journal of Logic Programming, v.8 n.1-2, p.53-73.
    [14] Klein R. 1996. A Logic-Based Description of Configuration: The Constructive Problem Solving Approach. Configuration-Papers from the 1996 Fall Symp. Tech. Report FS-96-03, AAAI Press, pp.1-10.
    [15] Heinrich M. and Jungst E. 1991. A Resource-Based Paradigm for the Configuring of Technical Systems from Modular Components. Proc. Seventh IEEE Conf. Artificial Intelligence Applications, IEEE Press, Piscataway, N.J., pp. 257-264.
    [16] Tsang E. 1993. Foundations of Constraint Satisfaction. Academic Press, London, 1993.
    [17] Wright J. et al. 1995. Conceptual Modeling Using Knowledge Representation: Configurator Applications. Proc. Artificial Intelligence in Distributed Information Networks Workshop, IJCAI-95.
    [18] McGuinness D. and Borgida A. 1995. Explaining Subsumption in Description Logics. Proc. 14th Int'l Joint Conf. Artificial Intelligence, Morgan Kaufmann, pp. 816-821.
    [19] Mittal S. and Falkenhainer B. 1990. Dynamic Constraint Satisfaction Problems. Proc. Eighth Nat'l Conf. Artificial Intelligence, AAAI Press, pp. 25-32.
    [20] Bowen J. and Bahler D. 1991. Conditional Existence of Variables in Generalized ConstraintNetworks. Proc. Ninth Nat'l Conf. Artificial Intelligence, AAAI Press, pp. 215-220.
    [21] Haselbock A. 1993. Knowledge-Based Configuration and Advanced Constraint Technologies, doctoral thesis, Institut für Informationssysteme, Technische Universit?t Wien, Vienna.
    [22] Freuder E. and Sabin D. 1997. Interchangeability Supports Abstraction and Reformulation for Multi-Dimensional Constraint Satisfaction, Proc. 14th Nat'l Conf. Artificial Intelligence, AAAI Press, pp.191-196.
    [23] Sabin D. and Freuder E. 1996. Configuration as Composite Constraint Satisfaction. Configuration Papers from the 1996 Fall Symp. Tech. Report FS-96-03, AAAI, pp. 28-36.
    [24] Sabin D and Freuder E. 1997(a). Understanding and Improving the MAC Algorithm. Proc. Third Int'l Conf. Principles and Practice of Constraint Programming, Springer-Verlag, Heidelberg, Germany, pp. 167-181.
    [25] Sabin D and Freuder E. 1997(b). Modeling and Solving Configuration Tasks with ILOG Solver. Proc. Third Int'l Users Meeting, ILOG Optimization Suite, ILOG, Mountain View, Calif.
    [26] Rahmer J. and Voss A. 1996. Case-Based Reasoning in the Configuration of Telecooperation Systems. Configuration Papers from the Fall 1996 Symp. Tech. Report FS-96-03, AAAI Press, pp. 93-98.
    [27] Ketler, K., 1993, Case-Based Reasoning: An Introduction, in: Expert System with Application, 6, 3-8.
    [28] B. Joseph Pine,大规模定制-企业竞争的新前沿.中国人民大学出版社,2000.
    [29]周晓东,邹国胜,谢洁飞,张双杰.大规模定制研究综述.计算机集成制造系统-CIMS, 2003, 9(12): 1045-1052.
    [30] Meyer, M., Utterback, J., 1993, The product family and the dynamics of core capability, Sloan Management Review, Spring 1993, pp.29-47.
    [31] Meyer, M., Lehnerd, A.P., 1997, The Power of Product Platform– Building Value and Cost Leadship, Free Press, New York.
    [32] Agard, B., Kusiak, A., 2004, Data-mining-based methodology for the design of product families, International Journal of Production Research, 42(15), 2955-2969.
    [33] Simpson, T.W., 2004, Product platform design and customization: Status and promise, AIEDAM, 18(1): 3-20.
    [34] De Lit, P.G., Delchambre, A., 2003, Integrated Design of a Product Family and its Assembly System, Kluwer Academic Publishers, Massachusetts.
    [35] Erens, F., Verhulst, K., 1997, Architectures for product families, Computers in Industry, 33(2-3): 165-78.
    [36] Robertson, D., Ulrich, K., 1998, Planning product platforms, Sloan Management Review, 39(4): 19-31.
    [37] Wilhelm, B., 1997, Platform and modular concepts at Volkswagen– their effects on the assembly process, Transforming Automobile Assembly, Shimokawa, K., Jürgens, U., Fujimoto, T. (Eds.), Springer - Verlag, Berlin Heidelberg.
    [38] Moore, W.L., Louviere, J.J., Verma, R., 1999, Using conjoint analysis to help design product platforms, Journal of Product Innovation Management, 16(1): 27-39.
    [39] McGrath, M., 1995, Product Strategy for High-Technology Companies, Irwin Professional Publishing, New York.
    [40] Zamirowski, E.J., Otto, K.N., 1999, Identifying product portfolio architecture modularity using function and variety heuristics, ASME Design Engineering Technical Conferences, DETC99/DTM-876, Las Vegas, NV.
    [41] Martin, M.V., Ishii, K., 2002, Design for variety: developing standardized and modularized product platform architectures, Research in Engineering Design, 13(4): 213-235.
    [42] Rothwell, R., Gardiner, P., 1990, Robustness and product design families, Design Management: A Handbook of Issues and Methods, Oakley, M. (Ed.), pp. 279-292, Basil Blackwell, Cambridge, MA.
    [43]孙伟,刘晓冰,徐中.大规模客户化生产模式的实施策略及产品设计技术研究.大连理工大学学报, 2000, 40(02): 203-206.
    [44]王新,谭建荣,孙卫红.基于实例的需求产品配置技术研究.中国机械工程, 2006, 17(2): 146-151.
    [45] Suh, N.P. (1990). The Principles of Design. Oxford University Press, New York, NY.
    [46] Jiao J.X. Simpson T.W. Siddique Z. 2006. Product Family Design and Platform-based Product Development: A State-of-the-Art Review. Journal of Intelligent Manufacturing, 17(1).
    [47] Du X.H., Jiao J.X., Tseng M.M. 2001. Architecture of product family: Fundamentals and Methodology. Current Engineering: Research and Application, 9(4), pp.309-325.
    [48] Baldwin, C.Y., Clark, K.B., 2000, Design rules: The Power of Modularity, MIT Press, Cambridge, MA.
    [49] Felfernig, A., Friedrich, G., Jannach, D., 2001, Conceptual modeling for configuration of mass customizable products, Artificial Intelligence in Engineering, 15(2): 165-176.
    [50] Wortmann, J.C., Muntslag, D.R., Timmermans, P.J.M., 1997, Customer Driven Manufacturing, Chapman & Hall, London.
    [51] McKay, A., Erens, F., Bloor, M.S., 1996, Relating product definition and product variety, Research in Engineering Design, 8(2): 63-80.
    [52] Siddique, Z., Rosen, D.W., 1999, Product platform design: a graph grammar approach, ASME Design Engineering Technical Conferences, DETC99/DTM-8762, Las Vegas, NV.
    [53] Du, X., Jiao, J., Tseng, M.M., 2002a, Graph grammar based product family modeling, Concurrent Engineering: Research and Application, 10(2): 113-128.
    [54] Du, X., Jiao, J., Tseng, M.M., 2002b, Product family modeling and design support: an approach based on graph rewriting systems, AIEDAM, 16(2): 103-119.
    [55] Finch, W., 1999, Set-based models of product platform design and manufacturing processes, ASME Design Engineering Technical Conferences, DETC99/DTM-8763, Las Vegas, NV.
    [56] Van Wie, M.J., Rajan, P., Campbell, M.I., Stone, R.B., Wood, K.L., 2003, Representing product architecture, ASME Design Engineering Technical Conferences, DETC2003/DTM-48668, Chicago, Illinois.
    [57] Zhang, J., Wang, Q., Wan, L., Zhong, Y., 2005, Configuration-oriented product modeling and knowledge management for made-to-order manufacturing enterprises, International Journal of Advanced Manufacturing Technology, 25(1-2): 41-52.
    [58] Costa, C.A., Young, R.I.M., 2001, Product range models supporting design knowledge reuse, Proceedings of IMechE, Part B, Journal of Engineering Manufacture, 215(3): 323-337.
    [59] Tiihonen, J., Lehtonen, T., Soininen, T., Pulkkinen, A., Sulonen, R., Riitahuhta, A., 1998, Modeling configurable product families, The 4th WDK Workshop on Product Structuring, Delft University of Technology, Delft, The Netherlands.
    [60] Jiao, J., Tseng, M.M., Duffy, V.G., Lin, F., 1998, Product family modeling for mass customization, Computers and Industrial Engineering, 35(3-4): 495-498.
    [61] Shooter, S.B., Simpson, T.W., Kumara, S.R.T., Stone, R.B., Terpenny, J.P., 2005, Toward a
    [41] Martin, M.V., Ishii, K., 2002, Design for variety: developing standardized and modularized product platform architectures, Research in Engineering Design, 13(4): 213-235.
    [42] Rothwell, R., Gardiner, P., 1990, Robustness and product design families, Design Management: A Handbook of Issues and Methods, Oakley, M. (Ed.), pp. 279-292, Basil Blackwell, Cambridge, MA.
    [43]孙伟,刘晓冰,徐中.大规模客户化生产模式的实施策略及产品设计技术研究.大连理工大学学报, 2000, 40(02): 203-206.
    [44]王新,谭建荣,孙卫红.基于实例的需求产品配置技术研究.中国机械工程, 2006, 17(2): 146-151.
    [45] Suh, N.P. (1990). The Principles of Design. Oxford University Press, New York, NY.
    [46] Jiao J.X. Simpson T.W. Siddique Z. 2006. Product Family Design and Platform-based Product Development: A State-of-the-Art Review. Journal of Intelligent Manufacturing, 17(1).
    [47] Du X.H., Jiao J.X., Tseng M.M. 2001. Architecture of product family: Fundamentals and Methodology. Current Engineering: Research and Application, 9(4), pp.309-325.
    [48] Baldwin, C.Y., Clark, K.B., 2000, Design rules: The Power of Modularity, MIT Press, Cambridge, MA.
    [49] Felfernig, A., Friedrich, G., Jannach, D., 2001, Conceptual modeling for configuration of mass customizable products, Artificial Intelligence in Engineering, 15(2): 165-176.
    [50] Wortmann, J.C., Muntslag, D.R., Timmermans, P.J.M., 1997, Customer Driven Manufacturing, Chapman & Hall, London.
    [51] McKay, A., Erens, F., Bloor, M.S., 1996, Relating product definition and product variety, Research in Engineering Design, 8(2): 63-80.
    [52] Siddique, Z., Rosen, D.W., 1999, Product platform design: a graph grammar approach, ASME Design Engineering Technical Conferences, DETC99/DTM-8762, Las Vegas, NV.
    [53] Du, X., Jiao, J., Tseng, M.M., 2002a, Graph grammar based product family modeling, Concurrent Engineering: Research and Application, 10(2): 113-128.
    [54] Du, X., Jiao, J., Tseng, M.M., 2002b, Product family modeling and design support: an approach based on graph rewriting systems, AIEDAM, 16(2): 103-119.
    [55] Finch, W., 1999, Set-based models of product platform design and manufacturing processes, ASME Design Engineering Technical Conferences, DETC99/DTM-8763, Las Vegas, NV.
    [56] Van Wie, M.J., Rajan, P., Campbell, M.I., Stone, R.B., Wood, K.L., 2003, Representing product architecture, ASME Design Engineering Technical Conferences, DETC2003/DTM-48668, Chicago, Illinois.
    [57] Zhang, J., Wang, Q., Wan, L., Zhong, Y., 2005, Configuration-oriented product modeling and knowledge management for made-to-order manufacturing enterprises, International Journal of Advanced Manufacturing Technology, 25(1-2): 41-52.
    [58] Costa, C.A., Young, R.I.M., 2001, Product range models supporting design knowledge reuse, Proceedings of IMechE, Part B, Journal of Engineering Manufacture, 215(3): 323-337.
    [59] Tiihonen, J., Lehtonen, T., Soininen, T., Pulkkinen, A., Sulonen, R., Riitahuhta, A., 1998, Modeling configurable product families, The 4th WDK Workshop on Product Structuring, Delft University of Technology, Delft, The Netherlands.
    [60] Jiao, J., Tseng, M.M., Duffy, V.G., Lin, F., 1998, Product family modeling for mass customization, Computers and Industrial Engineering, 35(3-4): 495-498.
    [61] Shooter, S.B., Simpson, T.W., Kumara, S.R.T., Stone, R.B., Terpenny, J.P., 2005, Toward a
    [83] Fung RYK, Tang J, Tu Y, Wang D. Product design resources optimization using a non-linear fuzzy quality function deployment model. Int J Prod Res 2002;40(3):585–99.
    [84] Jiao, J., Zhang, Y. Product portfolio identification based on association rule mining. Computer-Aided Design 37 (2005) 149-172.
    [85] Romanowski, C.J. and Nagi, R., A data mining approach to forming generic bills of materials in support of variant design activities. ASME J. Comp. Inf. Sci. Engng, 2004, 4(4), 316–328.
    [86] Kusiak, A., Rough set theory: a data mining tool for semiconductor manufacturing. IEEE Trans. Electr. Pack. Manuf., 2001a, 24(1), 44–49.
    [87] Kusiak, A., Decomposition in data mining: an industrial case study. IEEE Trans. Electr. Pack. Manuf., 2000, 23(4), 345–353.
    [88] Kusiak, A., Feature transformation methods in data mining. IEEE Trans. Electr. Pack. Manuf., 2001b, 24(3), 214–221.
    [89] Huang, C.-C., A multi-agent approach to collaborative design of modular products. Con. Engng: Res. Appl., 2004, 12(1), 39–47.
    [90] Agard, B., and Kusiak, A., Standardization of components, products and processes with data mining. In Proceedings of International Conference on Production Research Americas 2004, Santiago, Chile, 2004b, August 1–4.
    [91] Romanowski, C.J., Nagi, R. and Sudit, M., Data mining in an engineering design environment: applications from graph matching. Comp. & Oper. Res., 2006, 33, 3150–3160.
    [92]何陈棋,谭建荣,张树有等.基于本体论和知识规则的大批量定制配置设计技术研究.中国机械工程, 2004, 15(9): 783-788.
    [93]王世伟,谭建荣,张树有等.基于GBOM的产品配置研究.计算机辅助设计与图形学学报, 2004, 16(5): 655-659.
    [94] Mannisto T., Peltonen H., Sulonen R., View to Product Configuration Knowledge Modeling and Evolution, Technical Report FS-96-03,Workshop on configuration, AAAIPress, 1996, pp. 111–118.
    [95] Schiex T., Fargier H., Verfaillie G., Valued Constraint Satisfaction Problems: Hard and Easy Problems, International Joint Conference on Artificial Intelligence IJCAI, Montreal, Canada, 1995, pp. 631–637.
    [96] Darlington, M.J. and Culley, S.J. (2002). Current Research in the Engineering Design Requirement. Proceedings of the Institution of Mechanical Engineers, 216/3: 375-388.
    [97] Dahan, E. and Hauser, J. (2002). Product Development: Managing a Dispersed Process. In Weitz, B. A. and Wensley R. (Ed.), Handbook of Marketing (pp.179-223), London, Thousand Oaks: SAGE.
    [98] Chen, S. L. and Tseng M. M. (2005). Defining specifications for custom products: A multi-attribute negotiation approach. CIRP Annals-Manufacturing Technology, 54 (1), 159-162.
    [99] Sabin M., Freuder E., Detecting and Resolving Inconsistency and Redundancy in Conditional Constraint Satisfaction Problems, AAAI Workshop on Configuration, Orlando, Florida, 1999, pp. 90–94.
    [100] Keirouz W., Kramer G., PabonJ., Principles and Practice of constraint programming Chapter: Exploiting Constraint Dependency Information for Debugging and Explanation, MIT press, 1995, pp. 183–196.
    [101] Amilhastre J., Fargier H., Marquis P., Consistency restorations and explanations in dynamic CSP– Application to configuration, ECAIWorkshop on Modeling and Solving Problems with Constraints, Berlin, Germany, 2000.
    [102] Chen, S. L. and Tseng, M.M. (2006). Turning a Configurator into a Bargaining Table. Proceedings of the ECAI 2006, Workshop on Configuration, affiliated with the 17th European Conference onArtificial Intelligence.
    [103] Alexander, L., Erik, T.B., Fred, V.H., Hubert, K. and Siegmar, H. (2002),“Recent and future trends in cost estimation”, International Journal of Computer Integrated Manufacturing, Vol.15 No.6, pp.499-510.
    [104] Jahan, S. H., Shayan, E. and Masood, S. (1999),“Cost estimation in flat plate processing using fuzzy sets”, Computers and Industrial Engineering, Vol.37, pp.485-488.
    [105] Smith, A. E. and Mason, A. K. (1997),“Cost Estimation Predictive Modeling: Regression Versus Neural Network”, The Engineering Economist, Vol.42 No.2, pp137-161.
    [106] Jung, J. Y. (2002),“Manufacturing cost estimation for machined parts based on manufacturing features”, Journal of Intelligent Manufacturing, Vol.13, pp.227-238.
    [107] Zhang, Y. F. and Fuh, J. Y. H. (1998),“A neural network approach for early cost estimation of packaging products”, Computers and Industrial Engineering, Vol.34 No.2, pp.433-450.
    [108] Bode, J. (2000),“Neural networks for cost estimation: simulations and pilot application”, International Journal of Production Research, Vol.38 No.6, pp.1231-1254.
    [109] Koonce, D., Judd, R., Sormaz, D. and Masel, D.T. (2003),“A hierarchical cost estimation tool”, Computers in Industry, Vol.50 No.3, pp.293-302.
    [110] Eversheim, W., Neuhausen, J. and Sesterhenn, M. (1998),“Design-to-Cost for Production Systems”, Annals of CIRP, Vol.47, pp.357-360.
    [111] Jiao, J. X., Tseng, M. M., Ma, Q. H. and Zou, Y. ( 2000 ) ,“Generic Bill-of-Materials-and-Operations for high-variety production management”, Concurrent Engineering: Research and Application, Vol.8 No.4, pp. 297-320.
    [112] Cooper, R. (1993), Handbook of Cost Management, Warren Gorham and Lamont, New York.
    [113] Ozbayrak, M., Akgun, M. and Turker, A. K. (2004),“Activity-based cost estimation in a push/pull advanced manufacturing system”, International Journal of Production Economics Vol.87, pp.49-65.
    [114] Sheryl, S. F., Martin, F., John, K. and Boyd, P. (2003),“A generic feature-driven activity-based cost estimation process”, Advanced Engineering Informatics, Vol.17, pp.23-29.
    [115] Locascio, A. (2000),“Manufacturing Cost Modeling for Product Design”, The International Journal of Flexible Manufacturing Systems, Vol.12, pp.207-217.
    [116] Jiao, J.X. and Tseng, M.M. (1999a),“A pragmatic approach to product costing based on standard time estimation”, International Journal of Operations & Production Management, Vol.19 No.7, pp.738-755.
    [117] Aldanondo M. Hadj-Hamou K., Moynard G., Lamothe J. Mass customization and configuration: Requirement analysis and constraint based modeling propositions. Integrated Computer-Aided Engineering, 10 (2003) 177–189.
    [118] Meyer A.D., Nakane J., Miller J.G. and Ferdows K. 1989. Flexibility: The Next Competitive Battle”, Strategy Management Journal, 10, 135-144.
    [119] McCutcheon D. M., Raturi A. S., Meredith J. R. 1994. The Customization-Responsiveness Squeeze. Sloan Management Review, 35(2), 89-99.
    [120] Forza, C. and Salvador, F., 2002a, Managing for variety in the order acquisition and fulfillment process: The contribution of product configuration systems, International Journal of Production Economics, 76(1), 87-98.
    [121] Forza, C. and Salvador, F., 2002b, Product configuration and inter-firm co-ordination: an innovative solution from a small manufacturing enterprise, Computers in Industry, 49, 37-64.
    [122] Salvadora, F. and Forzab, C., 2004, Configuring products to address the customizationresponsiveness squeeze: A survey of management issues and opportunities, International Journal of Production Economics, 91, 273–291.
    [123]蔡自兴,徐光祐,人工智能及其应用,清华大学出版社,2004.
    [124]董聪,郭晓华.智能计算中的热点问题.计算机科学,1999,26(4):5-9.
    [125] A. Schere, "Reuse of CAD design by a neural-network approach," Engineering Applications of Artificial Intelligence, Vol.9, No.4, 1996, pp.413-421.
    [126] V. Venugopal and T.T. Narendran, "Neural network model for design retrieval in manufacturing system," Computers in Industry, Vol.20, No.1, 1992, pp.11-23.
    [127] C.A. Chang and C.Y. Tsai, "Using ART1 neural networks with destructive solid geometry for design retrieving," Computers in Industry, Vol.34, No.1, 1997, pp.27-41.
    [128] J. Sun, D.K. Kalenchuk, D. Xue, and P. Gu, "Design candidate identification using neural network-based fuzzy reasoning," Robotics and Computer Integrated Manufacturing Vol.16, 2000, pp.383-396.
    [129] Tomaso P. and Federico G. 1990. Networks for approximation and learning. Proceedings of The IEEE, 78(9), 1481-1497.
    [130]赵汝嘉,耦合ANN基于CBR的产品设计方案决策系统,江苏技术师范学院学报,Vol.10,No.4,2004.
    [131]孙伟,袁长峰,高天一,马沁怡.基于ANN支持产品设计过程的知识获取方法研究.大连理工大学学报, Vol. 47, No. 2, 2007.
    [132]王忠浩,邵新宇,张国军,冯常学.基于粗糙集神经网络的产品族配置性能预测方法.机械工程学报, Vol.43, No.5, 2007.
    [133]赵亮,胡旭晓,潘双夏,常艳,冯培恩.基于动态模糊神经网络的产品成本估算,浙江大学学报(工学版), Vol.40, No.2, 2006.
    [134]刘跃军,刘顶文,池宏勋,范淑红,基于神经网络技术的机械产品设计专家系统的研究,机械设计与研究,Vol.17,No.4,2001.
    [135] Minsky M. 1991. Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Magazine, 12(2),35-51.
    [136] Gallant S. I. Connectionist expert systems. Communications of the ACM, 1988,21(2).
    [137] Saito K, Nakano R. Rule extraction from facts and neural networks. In: Proceedings of the International Neural Network Conference, Paris, France, 1990, 379-382.
    [138] Fu L. Rule learning by searching on adapted nets. In: Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, 1991, 590-595.
    [139] Carpenter G A, Tan A W. Rule extraction: from neural architecture to symbolic representation. Connection Science, 1995, 7(1): 3-27.
    [140] Andrews R, Diederich J, Tickle A B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 1995, 8(6): 373-389.
    [141] Tickle A B, Andrews R, Golea M, Diederich J. The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks, 1998, 9(6): 1057-1068.
    [142] Alexander J A, Mozer M C. Template-based procedures for neural network interpretation. Neural Networks, 1999, 12(3): 479-498.
    [143] Castro J L, Mantas C J, Benitez J M. Interpretation of artificial neural networks by means of fuzzy rules. IEEE Transactions on Neural Networks, 2002, 13(1): 101-116.
    [144] Krishnan R, Sivakumar G, Bhattacharya P. Extracting decision trees from trained neural networks.Pattern Recognition, 1999, 32(12): 1999-2009.
    [145] Hagan M T, Demuth H B, Beale M. (1996) Neural network design. USA:PWS Publishing Company.
    [146] Li, J. H., Michel, A. N., Porod, W. (1989). Analysis and synthesis of a class of neural networks: Linear systems operating on a closed hypercube. IEEE Transactions on Circuits and Systems, 36(11), 1405-1422.
    [147] Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of National Academy of Sciences of the United States of America, 79,2554-2558.
    [148] Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of National Academy of Sciences of the United States of America, 3088-3092.
    [149] Floreen, P. and Orponen, P. (1994). Complexity Issues in Discrete Hopfield Networks. Report A-1994-4, Univ. of Helsinki, Dept. of Computer Science. pp.54.
    [150] Huffman, C., & Kahn, B. (1998): Variety for sale: mass customization or mass confusion. Journal of Retailing, 74, 491-513.
    [151] Berger, C. & Piller, F. (2003). Customers as co-designers: the miAdidas mass customization strategy. IEE Manufacturing Engineer, 82 (4), 42-46.
    [152] Dellaert, B.G. & Stremersch, S. (2005). Marketing mass customized products: Striking the balance between utility and complexity, Journal of Marketing Research, 43 (2).
    [153] Khalid, H., and Helander, M. (2003). Web-based do-it-yourself product design. In M. Tseng & F. Piller (Eds): The Customer Centric Enterprise. New York/Berlin: Springer, 247-265.
    [154] Franke, N., & Piller, F. (2004). Toolkits for user innovation and design: an exploration of user interaction and value creation. Journal of Product Innovation Management, 21 (6), 401-415.
    [155] Piller F., Schubert P., Koch M., M?slein K. (2005) Overcoming Mass Confusion: Collaborative Customer Co-Design in Online Communities. Journal of Computer-Mediated Communication, Vol. 10, 4.
    [156] Geva, S., Malmstrom, K., Sitte, J., 1998, Local cluster neural net: Architecture, training and applications, Neurocomputing, 20(1-3), 35-56.
    [157] Andrews, R., Diederich, J., Tickle, A.B., 1995, A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based Systems, 8(6), 373-389.
    [158] Andrews, R. and Geva, S., 2002, Rule extraction from local cluster neural nets. Neurocomputing, 47, 1-20.
    [159] Silva, F.M. and Almeida, L.B., 1990, Speeding up backpropagation, in: Eckmiller, R., Advanced Neurocomputers, North-Holland, Amsterdam, 151-158.
    [160] Han, J. and Kamber, M., 2001, Data mining: Concepts and techniques, Morgan Kaufmann Publishers, San Francisco.
    [161] Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York.
    [162] Babloyantz, A. and Lourenco, C. (1996). Brain chaos and computation. International Journal of Neural System, 7 (4), 461–471.
    [163] Bersini, H. (1998). The frustrated and compositional nature of chaos in small Hopfield networks. Neural Networks, 11(6), 1017–1025.
    [164] Sheldon, D., Huang, G. Q. and Perks, R. (1991),“Design for cost: past experience and recent development”, Journal of Engineering Design, Vol.2 No.2, pp.127-139.
    [165] Whitney, D. E. (1987),“Manufacturing by design: a symbiosis”, IEEE Spectrum, Vol.24 No5, pp.47-54.
    [166] Hundal, M. S. (1997),“Product Costing: a comparison of conventional and activity-based costing methods”, Journal of Engineering Design, Vol.8, No.1, pp.91-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700