哈茨木霉(Trichoderma harzianum)菌株Th-30生防特性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在田间用哈茨木霉(Trichoderma harzianum)Th-30生防制剂处理土壤或植株,通过对蔬菜不同生育期的农艺性状、经济性状、产量和病害发展情况的考察,研究木霉的促生作用及生物防治效果。结果表明,哈茨木霉菌株Th-30对辣椒的促生、增产作用明显,对辣椒植株的促生率为17.1%,增产15.68%,且对辣椒疫霉(Phytophthora capsici)和尖镰孢(Fusarium oxysporum)引起的根腐病具有一定的防治作用。哈茨木霉菌株Th-30能提高黄瓜的地上部生物学产量,明显增大黄瓜藤蔓的节间距,有效增加黄瓜的坐果率,对黄瓜枯萎病和黄瓜白粉病也有很好的生物防治效果。试验表明,哈茨木霉菌株Th-30对白菜、芹菜、番茄幼苗均有显著的促生作用,能增加植株的株高、地茎、叶片数,提高蔬菜的品质和产量并能有效控制芹菜病毒病的发展,且对供试植株安全。
     用还原糖法测定木霉菌株Th-30的几丁质酶活性,采用单因素和正交试验设计,研究了碳源、氮源、温度、pH值等发酵条件对哈茨木霉菌株Th-30生产几丁质酶的影响,并初步探讨木霉几丁质酶粗提液对番茄灰霉病菌(Botrytis cinerea)的拮抗作用作。结果表明,哈茨木霉菌株Th-30以7.0g/L几丁质、2.0g/L蛋白胨、营养盐溶液50mL/L、微量元素1.0mL/L为培养基,在起始pH5.5、温度28℃、装瓶量50mL/250mL、接种量8%、诱导96h获得的几丁质酶活性最高。哈茨木霉菌株Th-30几丁质酶粗提液对番茄灰霉病菌有明显的拮抗作用,对番茄灰霉病菌生长的抑制率为67.61%~71.31%,对灰霉病菌孢子产生及萌发的抑制率分别为80.95%、81.43%,对病菌孢子致病性的抑制率为65.22%~70.51%。
     采用紫外线诱变与药剂驯化相结合的方法,以哈茨木霉菌株Th-30为出发菌株诱导得到4株能在含常用杀菌剂福美双(Thiram)2×10~5μg/L的培养基上正常生长的耐药性变异菌株。毒力测定表明,福美双对几株变异菌株的EC_(50)均相对于亲本菌株(EC_(50)为0.21×10~5μg/L)提高了近2×10~5μg/L。筛选出一株优秀的变异菌株UV-4,在高浓度农药环境下正常生长并产生具有生防功能的几丁质酶,其耐药性几丁质酶(福美双含量为1×10~3μg/L)对黄瓜炭疽病菌(Colletotrichum lagenarium)孢子繁殖能力的抑制率为85.43%,对黄瓜炭疽病菌孢子致病力的抑制率为68.88%,并对病原菌菌丝的细胞壁具有降解作用。试验表明人工诱导获得的突变木霉菌株UV-4的抗药性及对病原菌拮抗活性都得到改良,且具有遗传稳定性,与靶标农药混用能达到协同防治蔬菜上的真菌病害的目的。
The growth-promoting function and biological control effects of Trichoderma harzianum Th-30 on several vegetables were studied in our experiments.And agronomic characters,traits,theoretical yield and infection ratio of disease in different growth stage were examined.The result suggesting that the treatment of Trichoderma harzianum Th-30 has obvious growth-promoting effect on capsicum and could significantly increase yield of capsicum.It has a good control efficacy of Trichoderma harzianum Th-30 on capsicum root rot caused by Phytophthora capsici and Fusarium oxysporum.The results indicated that Trichoderma harzianum Th-30 has obvious growth-promoting effect on cucumber also. It could not only improve cucumber economic properties,but also increase plant height of cucumber and the quantity of leaves.And it could significantly improve several vegetables plant height,length of root,yield,and economic properties.All of the data showed a good control efficacy of Trichoderma harzianum Th-30 on cucumber fusarium wilt disease and powdery mildew.It also has obvious biocontrol effect and decreased the infection ratio of virus disease caused by CeMV on celery without any injury on vegetables.
     The activity of chitinase extracted from Trichoderma harzianum Th-30 was detected by the method of measuring reducing sugar.The medial components and culture conditions of Trichoderma harzianum Th-30,such as carbon source,nitrogen source, temperature,pH,were optimized by single factor and orthogonal tests.Antagonistic activity of chitinase against Botrytis cinerea was studied.The results indicates that the optimal medial components for inducing chitinase from T.hazrianum Th-30 were composed of 7.0g/L chitin,2.0g/L peptone,50mL/L nutrient salt,1.0mL/L trace element. The optimal culture conditions for producing chitinase were as follows:5mL medium filled in 250mL flask with 8%inoculum size of the culture,initial pH5.5,at 28℃, incubating for 4 days.And the results also showed that the chitinase extract from T. harzianum Th-30 has significantly effect on B.cinerea.The inhibitory efficiency on hypha growth of B.cinerea was 67.61%~71.31%.Inhibitory efficiency of chitinase to B.cinerea on propagating and germinating of spores were 80.95%and 81.43%.The efficiency against the pathogenic ability of B.cinerea was 65.22%~70.51%.
     4 mutant Trichoderma harzianum strains which were produced by Trichoderma harzianum Th-30 were obtained by UV-light and thiram stress on PDA medium.Thy are resistant to thiram and can grow normally on the medium mixed with thiram of 2×10~5μg/L.The result of toxicity test showed that EC_(50) of thiram to the mutant strains were 2×10~5μg/L higher than parent strain Th-30,to which EC_(50) of thiram is only 0.21×10~5μg/L. A mutant strain numbered UV-4 which can produce biocontrol functional chitinase in high thiram stress was screened.Its inhibitory efficiency of chitinase extracts from UV-4,which is tolerant to thiram,on the ability of Colletotrichum lagenarium for producing spore were 85.43%.The efficiency against the pathogenic ability of C.lagenarium was 68.88%.And it can degrade the cell wall of mycelium of Colletotrichum lagenarium also.The tests indicates that the mutant strain UV-4 was modified on properties of fungicide tolerance and efficiency against on pathogenic fungi.And it was stable on genetic.It has synergistic effect with target fungicide for disease controling on vegetables.
引文
[1]Wardle D.A.,Parkinson D.,Waller J.E.Inter specific competitive interactions between pairs of fungal Species in natural substrates[J].oecologia.1993,94(2):165.
    [2]Roiger D.J.,Jeeffrs S.N.,Caldwell R.W.Occurrence of Trichoderma species in a pple orchard and woodland soils[J].Biology and Biochemistry.1991,23(4):353-359.
    [3]Cook R.J.,K.F.Baker.The nature and Practice of biological control of Plant Pathogens [J].American Phytopathological Soeieyt.1983:374-382.
    [4]Samuels G.J Trichoderma review of biology systematic of the genus[M].Mycol Res.1996,100(8):923-935.
    [5]鲁素云.植物病害生物防治学[M].北京农业大学出版社.1993.
    [6]赵蕾.木霉的生物防治作用及其应用生态农业研究[M].1999,7(1:)66-68.。
    [7]Sivna A.,Elda.Y,Chet1.Biology control effects of an isolate of Trichoderma on[J].1996,74:498-501.
    [8]杨合同等.绿色木霉TLR-2对小麦纹枯病的作用机制[M].中国植物病理学会第六届代表大会暨学术年会论文选编.1998,251-252.
    [9]徐同等.木霉在植病生防中的地位[M].第二届全国真菌地衣学术讨论会论文及论文摘要汇编.北京:中国植物学会真菌学会.1990
    [10]LoritoM.,HmarnaG.E.,HyaesC.K.,etal.Chitinolytic enyzmes Produced by Trcihoderma hazrianmu:antifungal activity of Purified endoehitinese and ehitobinse.Phytopathology[J].1993,3:302-307
    [11]LoritoM.,Woo S.L.D,Ambrosio.Synergistic interaction between cell wall degrading enzymes and membrance affecting compounds[J].Mol.Plant Microbe Interact.1996,9:206-213.
    [12]Harman G.E,Hayes C.K.,Lorito M.,et al.Chitinolytic enzyme of Trichoderma harzianum:Purification of chitobiosidase and endochitinase[J].Phytopathology.1993,3:318-313.
    [13]Jones R.W.,Hancock J.G..Mechanism of gliotoxin action factors mediating gliotoxin sensitivity[J].Gen.Microbiol.1988,134:2067-2075.
    [14]Sentandreu R.Mormeneo S.,Ruiz-Hererra J.Biogenesis of the fungal cell wall [M].The Mycota.1994, 1: 111-124.
    [15] Thrane C., Tronsmo A., Jensen D. F. Endo-β-1, 3-glueanase and cellulae from Trichoderma harzianum: Purification and Partial characterization, induction of biocogical activity against Plant Pathogenic pythium spp.[J]. European Journal of Plant pathology. 1997, 103: 333-344.
    [16] Ramot O.,Cohen-KuPiec R,, Chet 1. Regulation ofβ-1,3-glucanase by carbon starvation in the mycoparasite Trichoderma harzianum[J]. Mycol. Rev. 2000, 104:415-420.
    [17] Cruz J. Pintor-Toro J.A., Benitez 1., et al.Anovel Endo-β-1, 3-glueanase byn 13.1, Involved In the mycoparasitism of Trichoderma harzianum[J].Gene. 1995, 177:6937-6945.
    [18] Vazquez-Garcduenase S. , Leal C. A., Herrera-Estrella A. Analysis of the ofβ-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum[J]Applied and environmental microbiology. 1998, 64: 1442-1446.
    [19] Sela-Buurlage M. B., Ponstein A. S., Brea-Vlogeli U., et al. Only specific tobacco chitinase and β-1, 3-glueanase exhibit antifungalfJ] .Plant Physiology. 1993 , 101:857-863.
    [20] Van den Elzen D. J, Jongedij, Mechers L. S., et al. Virus and fungal resistance: from laboratory to field[J]. Phil Trans. R. Soc. Lond. B. 1993, 342: 271-278.
    [21] Geremia R.A., Goldan G.H., Jacobs D.. Belgirate Italy4th International Trichoderma and Gliocladium workshop(Abstracts)[M]. latly, 1993,130-131.
    [22] Elda Y., Kapat A. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea[J]. European Journal of Plant pathology. 1999, 1105: 187-189.
    [23] Lorito M, Farkas V, Rebuffat S.et al. Cell-wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum [J].Bacterial, 1996, 1178: 6382-6385.
    [24] Ghisalberti E. L., Rowland C. Y., Sivasithaparam K. Montreal, Canada: 6th international congress of Plant pathology (Abstracts)[M].1993: 292.
    [25] Bertagonolli B. L., Daly S., Sinclair J. B.. Antimycotic compounds from the plant pathogen Rizoctonia Solani and its antgaonist Trichoderma harzianum [J] , Phytopathology,1998,146:131-135.
    [26]Sivasithamparam K.,Ghisalberti E.L..Secondary metabolism in Trichoderma and Glioclodium.London:Taylor and Francis.1998,11:139-191.
    [27]Dennis C.,Webster J.,Antagonistic properties of species- groups of Trcihoderma 1Production of non-voltaic antibiotics[J].Trans.Br.Mycol.Soc.1971,57:25-39.
    [28]朱天辉,邱德勋.Trichoderma harzianum对Rhizoctonic solani的抗生现象[J].四川农业大学学报.1994,12(1):11-15.
    [29]Horace G.C.,Richard H.C.,Fanist G.,et al.6-pentyl Pyron from Trichoderma harzianum Its Planter growth inhibitory and antimicrobial properties.Agric.Boil[J].Chem.1986,50(11):2943-2945.
    [30]Chet I.Trichoderma-application mode of action and potential as a biocontrol agent of soilborne plant pathogenic fungi[M].Innovative Approaches to Plant Disease Control.1987:137-160.
    [31]徐同,钟静萍.木霉对土传病原真菌的拮抗作用.植物病理学报,1993,23(1):63-67
    [32]Baker R..,Lifishitz R..Mechanism of biological control of reemergence damping-off of pea by sead treatment with Trichoderma spp.[J].Phytopathology.1986,76:720-725.
    [33]Di Pietro A.,Lorito M.,Hayes C.K.,et al.Endochitinase from gliocladium virens:Isolation Characterization and synergistic antifungal activity in combination with gliotoxin[J].Phytopathology.1993,83:308-313.
    [34]De La Cmz J.,Rey M.,Lora J.M.,et al.Carbon source control on glucanases,chiolobiase and chitinase from Trichoderrna harzianum.Arch[J].Micorbiol,1993,159:316-322.
    [35]焦踪,路炳声.康氏木霉试剂对棉花和菜豆幼苗几个生理生化指标的影响[J].中国生物防治.1995,11(1):30-32.
    [36]Altomare C.,Norvell W.A.,BjorkmanT.,et al.Solubilizadon of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22.APPI..Environ.Microbiol,1999,65:2926-2933.
    [37]李增智.菌物在害虫、植病和杂草治理中的现状和未来[]J.中国生物防治.1999,15(:)135-40
    [38]徐同.木霉分子生物学研究进展[J].真菌学报.1996,15(2):143-148.
    [39]徐同,钟静萍,李德葆.木霉对土传病原真菌的拮抗作用[]J.植物病理学报.1993,23(1:)63-67.
    [40]赵蕾.绿色木霉对灰霉病菌拮抗机制的初步研究[]J.植物保护.1998,24(2):36-37.
    [41]路炳声,焦踪.康氏木霉与立枯丝核菌的寄生关系]JI.中国生物防治.1997,13(4):182-183.
    [42]王革,周晓是,方敦煌.木霉拮抗烟草赤星病菌菌株的筛选及其生防机制[J].云南农业大学学报.2000,15(30):216-218.
    [43]Baker R.Diversity in biological control.Crop Protection,1991,10:85-94.
    [44]Lewis JA,Papavizas G C.Biocontrol of plant disease:the approach for tomorrow.Crop Protection,1991,10:1086-1105.
    [45]Harman G E.The genetic nature and biocontrol ability of progeny from protoplast fusion in Trichoderma.In:Chet I,ed.Biotechnology in Plant Disease Control[C].Wiley Liss Press,1993:237-255.
    [46]Papavizas G C.Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomylandenhanced capabilities.Phytopathology,1982,72:126-132.
    [47]Papavizas G C,Lewis J A.Physiological and biocontrol characteristics of stable mutants of Trichoderma viride resistant to MBC fungicides.Phytopathology,1983,73:407-411.
    [48]丁中,刘峰,慕立义.紫外光诱导哈茨木霉产生腐霉利抗性菌株的研究.中国生物防治,2002,18(2):75-78.
    [49]王芳,徐秉良,曹奎荣.深绿木霉紫外光诱导耐低温突变菌株的研究.甘肃农业大学学报,2005,40(4):507-511.
    [50]田连生,李贵香,高玉爽.紫外光诱导木霉产生对速克灵抗药性菌株的研究.中国植保导刊,2006,26,(6):18-21.
    [51]田连生,冯树波.耐药性木霉菌株的筛选及其对灰霉病的防治.生物技术,2005,15(5):26-28.
    [52]杨合同,唐文华,李纪顺,王加宁,肖斌.绿色木霉LTR-2菌株的紫外线改良.中国生物防治,2004,20(3):182-186.
    [53]Chet I.Trichoderma:application,mode of action,and potential as a biocontrol agent of soilborne plant pathogenic fungi.In:Chet I(ed).Innovative approaches to plant disease control.Wiley,New York,1987.
    [54]胡仕凤,高必达,陈捷.木霉几丁质酶及其基因的研究进展.中国生物防治,2008,24(4):369-375.
    [55]Seidl V,Huemer B,Seiboth B.FEBS J,2005:5923-5939.
    [56]柳良好,徐同.哈茨木霉几丁质酶诱导及其对水稻纹枯病菌的拮抗作用[J].植物病理学报,2003,33(4):359-363.
    [57]张友维,蒋立科,岳永德,花日茂,戴向荣.哈茨木霉H-13液体发酵产几丁质酶的条件[J].中国农学通报,2007,23(3):66-69.
    [58]陶刚,王革,刘杏忠,李世东,杨君.木霉几丁质酶的初步分离与鉴定[J].武汉大学学报(理学版),2007,50(S2):37-40.
    [59]Suzuki k,Mikami T.Anti tumor effect of hexa-N-acetylchitohexose and chitohexose [J].CarbohydrRes,1986,151:400-410.
    [60]Monreal J.,Reese E.T.The chitinase of Serratia marcescens[J].Can J Microbiol,1969,15:689-696.
    [61]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用[J].植物病理学报,2002,32(2):97-102.
    [62]Ahamad J S,Baker R.Competitive saprophyticability and cellulolytic activity of rhizosphere-competent mutants of Trichoderma harzianum.Phytopathology,1987,77:358-362.
    [63]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用[J].植物病理学报,2002,32(2):97-102.
    [64]彭仁旺,黄秀梨.球孢白僵菌胞内几丁质酶的分离纯化及性质[J].微生物学报,1995,35(6):427-432.
    [65]Jesus D C,Antonio H G,Jose M L.Purification and characterization of chitinase from Trichoderma harzianum[J].Eur J Biochem,1992,206:859-867.
    [66]Felse P A,Panda T.Production of microbial chitinasesA revisit[J].Bioprocess Engineering,2000(23):127-134.
    [67]肖湘,周樱,王风平.高效几丁质降解菌CB101的分离、鉴定及其几丁质酶系的研究[J].海洋学报,2003,25(1):138-42.
    [68]冯俊丽,朱旭芬.微生物几丁质酶的分子生物学研究[J].浙江大学学报(农业与生命科学版),2004,30(1):102-108.
    [69]Mauch F.Antifungal hydralases in pea tissue I.Inhibition of fungal growth by combination ofchitinase andβ-1,3 -glucanase[J].Plant Physiol,1988,88:936.
    [70]Sela-Buurlage M B.Only specific tobacco(Nicotiona tobocum) chitinase andβ-1,3-glucanases exhibition antifungal activity[J].Plant Physiol,1993,101:857.
    [71]Arlorio M,Ludwing A,Boller T,et al.Inhibition of fungal growth by plant chitinase andβ-1,3-elucanases[J].Protoplasma,1992,171:34.
    [72]郭玉莲.微生物几丁质酶及其在植物病害防治中的作用[J].中国农学通报,2005,21(1):283-286.
    [73]Meirav Bar Shimon,Hila Yehuda.Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila[J].Current Genetics,2004,45(3):1401-1408.
    [74]李华,刘开启,王革.微生物几丁质酶在植物病害防治中的应用[J].仲恺农业技术学院学报,2003,16(1):54-60.
    [75]李君,曾中文,欧阳石文.微生物几丁质酶的特性、基因表达调控及应用[J].微生物学通报,2001,28(4):84-87.
    [76]林丽,田世平,秦国政.两种拮抗酵母对桃果实贮藏期间的主要病害防治效果[J].中国农业科学,2003,36(12):1535-1539.
    [77]Lorito M,Woo S L,Fernandez I G.Gene from mycoparasitic fungi as a source for improve plant resistance to fungal pathogens[J].Proceedings of the National Academy of Science of the United States of America,1998,95(14):7860-7865.
    [78]Esposito S,Colucci M G,Frusciante L.Antifungal transgenes expression in Petunia hybrida.Proceedings of the Nineteenth International Symposium on Improvement of Ornamental Plants.Breeding ornamentals in the future:goals,genes,tools,Angers,France[J].Acts Horticulturae,2000,50(8):157-161.
    [79]Bxoglie K,Chet I,Holliday M,et al.Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani[J].Science,1991,254:1194-1197.
    [80]何迎春,贺思学,高必达.几丁质酶及其在植物遗传转化中的应用[J].生物学通报,2003,38(7):9-13.
    [81]马慧,徐正进,赵开军.植物遗传转化方法及其在水稻遗传改良上的应用[J].沈阳农业大学学报,2003,34(5):394-400.
    [82]Lorito M,Harman G E,Hayes C K,et al.Chitinolytic enzymes produced by Trichoderma harzianum:antifungal activity of purified endochitinase and chitobiosidase[J].Phytopathology,1993,83:302-307.
    [83]Carsolio C,Benhamou N,Haran S.Role of the Trichoderma harzianum endochitinase gene,ech42,in mycoparasitism[J].Applied and Environmental.Microbiology,1999,65(3):929-935.
    [84]郭润芳,李多川,王荣.疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究[J].微生物学报,2005,45(2):270-274.
    [85]范青,田世平,刘海波,等.两种拮抗菌β-1,3-葡聚糖酶和几丁酶的产生及其抑菌的可能机理[J].科学通报,2001,46(20):1713-1717.
    [86]陶刚,王革,刘杏忠,等.木霉几丁质酶的初步分离与鉴定[J].武汉大学学报(理学版),2007,50(S2):37-40
    [87]唐丽娟,纪兆林,徐敬友,等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中国生物防治,2005,21(3):203-205
    [88]董汉松,王智发.烟草赤星病菌致病力分化与弱毒株抗性诱导作用的研究[J].植物保护学报,1992,(1):87-91
    [89]Papavizas G C,Lewis J A,Moity T H.Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities[J].Phytopathology,1982,72:126-132.
    [90]Georgopoulos S G,Dekker J.Detection and measurement of fungicide resistance general principles[J].FAO.Pl Prot.Bull.1982,30:39-49.
    [91]叶钟音,周明国,刘经芬.紫外光诱导灰葡萄孢产生抗多菌灵菌株的研究[J].植物保护学报,1987,14(4):235-238.
    [92]张友维,蒋立科,岳永德,等.哈茨木霉H-13液体发酵产几丁质酶的条件[J].中国农学通报,2007,23(3):66-69.
    [93]Seidl V,Huemer B,Seiboth B,et al.FEBS J[J],2005,272(22):5923-5939.
    [94]唐丽娟,纪兆林,徐敬友等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中国生物防治,2005,21(3):203-205.
    [95]陈捷.木霉菌在植物病害生物防治中的作用机理研究进展[J].迈入二十一世纪的中国生物防治,2005,70-76.
    [96]朱双杰,高智谋.木霉对植物的促生作用及其机制[J].菌物研究,2006,4(3):107-111.
    [97]Altomare C,Novell W A,Bjorkman T,Harman G E.Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus trichoderma rifai 1295-22.Appl Environ Microbiol,1999,65,(7):2926-2933.
    [98]张旭东,刘云龙,张中义.木霉生防菌对植物生长的影响[J].云南农业大学学报,2001,16(4):300-304
    [99]张旭东,刘云龙,张中义.木霉生防菌对植物生长的影响[J].云南农业大学学报,2001,16(4):299-303.
    [100]王占斌,黄哲,祝长龙.木霉拮抗菌在植物病害生物防治上的应用[J].防护林科技,2007,4:104-107
    [101]Suzuki k,Mikami T.Anti tumor effect of hexa-N-acetylchitohexose and chitohexose [J].CarbohydrRes,1986,151:400-410.
    [102]Monreal J.,Reese E.T.The chitinase of Serratia marcescens[J].Can J Microbiol,1969,15:689-696
    [103]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用[J].植物病理学报,2002,32(2):97-102
    [104]柳良好,徐同.哈茨木霉几丁质酶诱导及其对水稻纹枯病菌的拮抗作用[J].植物病理学报,2003,33(4):359-363
    [105]吕淑霞,于晓丹,张彩霞,等.发酵条件对木霉菌株T23的菌丝生长及几丁质酶活性的影响[J].沈阳农业大学学报,2005,36(3):332-335
    [106]于平,励建荣.绿色木霉HZ012发酵生产几丁质酶的研究[J].中国食品学报,2006,6(3):26-30
    [107]刘霞,王燕,安磊,等.木霉几丁质酶应用研究进展[J].饲料工业.2008,29(14):58-60.
    [108]Bres.Vloemans S A.Only specific tobacco(Nicotiana tabacum) chitinase and β-1,3-glucanasesexhibit antifungal activity[J].Plant Physiol,1993,101(3):857-863
    [109]陶刚,王革,刘杏忠,等.木霉几丁质酶的初步分离与鉴定[J].武汉大学学报(理学 版),2007,50(S2):37-40
    [110]Ahamad J S,Baker R.Competitive saprophytic ability and cellulolytic activity of rhizosphere-competent mutants of Trichoderma harzianum[J].Phytopathology,1987,77:358-362.
    [111]Harman G E.The genetic nature and biocontrol ability of progeny from protoplast fusion in Trichoderrna.In:Chet I,ed.Biotechnology in Plant Disease Control[C].Wiley Liss Press,1993:237-255.
    [112]田连生,李贵香,高玉爽.紫外光诱导木霉产生对速克灵抗药性菌株的研究[J].中国植保导刊,2006,26,(6):18-21.
    [113]丁中,刘峰,慕立义.紫外光诱导哈茨木霉产生腐霉利抗性菌株的研究[J].中国生物防治,2002,18(2):75-78.
    [114]田连生,冯树波.耐药性木霉菌株的筛选及其对灰霉病的防治[J].生物技术,2005,15(5):26-28.
    [115]Papavizas G C.Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomylandenhanced capabilities[J].Phytopathology,1982,72:126-132.
    [116]Papavizas G C,Lewis J A.Physiological and biocontrol characteristics of stable mutants of Trichoderma viride resistant to MBC fungicides[J].Phytopathology,1983,73:407-411.
    [117]Gomes R C,Semedo L T,Soares R M..Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol[J].Letters in Applied Microbiology,2000,30(2):146-150.
    [118]Siimi K et al.The chitinase encoding to based chiA gene endows pseu domonas fluorescens with the capacity to control plant pathogens in soil[J].Gene,1994,147:81-83.
    [119]Haran S,Schickler H,Oppenheim A.New components of the chitinolytic system of Trichoderma harzianum[J].Mycol.Res.,1995,99:441-446.
    [120]Haran S,Schickler H.Differential expression of Trichoderma harzianurn chitinases during Myco-parasitism[J].Phytopathology,1996,86:980-985.
    [121]Harman G E,Hayes C K.Chitinolytic enzymes of Trichoderma harzianum:purification of chitobiosidase and endochitinase[J].Phytopathology,1993,83:313- 318.
    
    [122] Tronsmo A , Harman G E . Detection and quantification of N 2acetyl2B2D2gluco saminidase, chitobiosidase, and endochitinase in solutions and on gels[J]. A nal.Biochem., 1993, 208: 74-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700