稻瘟菌粗毒素相关理化性质及致病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻稻瘟病(Magnaporthe grisea Sacc.)是水稻三大病害中流行情况最复杂、潜在威胁最大的病害,对稻谷产量和品质影响都非常大。目前认为最有效的的防治方法是培育抗病品种,但是由于其生理小种变异较快,运用传统的育种方法不能满足生产的需求,而利用稻瘟菌粗毒素作为选择压的突变体筛选法具有很好的发展前景。本文参照刘文萍等人的方法提取稻瘟菌粗毒素,测定粗毒素对水稻和大麦种子萌发和根系生长的影响,在此基础上对粗毒素理化性质及其对水稻叶片叶绿素含量和防御酶活性的影响进行初步研究,同时在室内测定了几种化学药剂对稻瘟菌的抑制效果。研究结果为了解稻瘟菌的致病机理及水稻抗病育种奠定基础。
     论文主要结果如下:
     1.稻瘟菌粗毒素相关理化特性研究表明:稻瘟菌粗毒素对水稻和大麦种子萌发和根系生长具有显著的抑制作用,并且浓度越高抑制作用越强。其中对种子萌发的抑制率达到83%以上,对根系生长的抑制率达到89%。进一步对其相关特性进行测定表明稻瘟菌粗毒素有效成分主要为蛋白质,蛋白质含量达68.35 ug/ml,且该粗毒素是一种酸碱稳定性较高,耐热性、紫外线稳定性较强的物质。
     2.不同培养条件对稻瘟菌产毒素能力的影响研究结果表明:培养7d、培养基pH6.5且在光照交替条件下最有利于稻瘟菌毒素的产生,而对毒素的产生最有利的C源为葡萄糖和蔗糖,最有利的N源为硝酸铵。
     3.稻瘟菌粗毒素对水稻叶绿素含量的影响研究结果表明:稻瘟菌粗毒素对水稻叶片叶绿素有很大破坏作用或对叶绿素的合成有明显抑制作用。将粗毒素稀释2倍,与水稻叶片共培养48 h后,叶片叶绿素含量比对照减少85%以上,并且毒素浓度越高,处理时间越长,水稻叶绿素含量越低。
     4.稻瘟菌粗毒素对几种防御酶活性的影响研究结果表明:稻瘟菌粗毒素对水稻叶片体内多酚氧化酶(PPO)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)和超歧氧化物酶(SOD)等寄主防御酶活性都有一定的促进作用。当粗毒素稀释2-4倍时,POD、PPO、PAL、SOD酶活性均明显高于对照;当稀释8倍时,这些酶的活性则变化很小,说明毒素含量比较低的时候对酶活性的影响也较小。防御酶的活性与毒素处理的时间密切相关,通常随着处理时间的延长,酶活性不断升高;毒素处理36-72 h后,酶活性达最高值,抗病品种中几种防御酶的活性均高于感病品种。
     5.室内测定不同化学药剂对稻瘟菌毒力的抑制效果表明:稻病一次清、春雷霉素的抑菌效果最好,对菌丝生长的相对抑制率为分别为14.07%-89.07%和17.99%-88.45%,其次为5%瘟枯病杀和稻病康,多菌灵抑菌效果最差。
Rice blast (Magnaporthe grisea Sacc) are the three major diseases of rice in the prevalence of the most complex, the biggest potential threat to the diseases, the impact on rice yield and quality are very great. At present, the most effective prevention method is cultivate disease-resistant varieties. However, due to its relatively rapid physiological variations, using traditional breeding methods can not meet the production requirements. The use of Magnaporthe grisea Crude toxins for the selection of mutants pressure screening applications has great potential and prospects for development. In this paper, reference method of Liu WenPing to extract the crude toxin of rice blast fungus, crude toxin was determined on rice and barley seed germination and root growth. On the basis, the physical and chemical properties of the crude toxin and its impact on Magnaporthe grisea crude toxin on the chlorophyll content of rice and rice defense enzyme activity for a preliminary study, simultaneous determination of several chemical agents on the virulence of pathogenic effects. The findings lay the foundation for understand the results of the pathogenicity of Magnaporthe grisea and rice breeding .The main findings are as follows:
     1.The relevant characteristics of Crude toxin showed that: the crude toxin of Magnaporthe grisea to rice and barley seed germination and root growth are significantly inhibited, and the higher the concentration, the stronger the inhibition. Which inhibit seed germination rate of more than 83% , and root growth inhibition reached 89%. Further determination of its relevant characteristics of the crude toxin of Magnaporthe grisea showed that the main active ingredient for the toxin is protein, and its content is 68.35 ug / ml. Further study of its physical and chemical properties .The results showed that the rice blast fungus toxin is a material of higher pH stability, thermal stability and strong ultraviolet stability.
     2. Different conditions on the rice blast fungus in the impact of crude toxin production results show that: the number of days training 7d, pH6.5, alternating light most favorable to rice blast fungus producing crude toxin. The most favorable C source is glucose and sucrose, the most favorable N source is the Ammonium nitrate.
     3. Magnaporthe grisea on rice chlorophyll crude toxin and the effects of several defense enzymes results show that: The crude toxin of Magnaporthe grisea have obvious damage to rice leaves. In addition, the crude toxin could significantly interfere with the chlorophyll synthesis. Dilutes 2 times the thick toxin, and the rice leaves 48 h after co-culture, the chlorophyll cotent in the rice plants was reduced by over 85%. The higher the toxin concentration was and the longer the treatment time was, the lower the chlorophyll cotent was.
     4 .After the treatment of Magnaporthe grisea crude toxin, the activity of defensive enzymes such as polyphenol oxidase (POD), peroxidase (POD), phenylalanie ammonialyase (PAL) and superoxide dismutase (SOD) in rice leaves was stimulated to some intension. When rice plants were treated with the crude toxin diluted 2 to 4 times, the activity of these enzymes were significantly increased, while treated with the crude toxin diluted 8 times, the enzyme activity was little changed. It noted when relatively low toxin content the impact of the activity are also less. Defense enzymes and toxins are closely related to the processing time . Also, the results showed that the higher the toxin concentration was and the longer the treatment time was, the higher the enzyme activity in rice plants was. When treated with the crude toxin for 36 to 60 hours, the enzyme activity reached the maximum, the resistant varieties enhance fast than Susceptible varieties.
     5 .Different chemicals on the rice blast fungus Toxicity results showed that: The inhibitory effect of daobingyiciqing and adriamycin is best. Average Inhibition of mycelial growth rate are 14.07%-89.07% and 17.99%-88.45%, Followed by are 5% wenkubisha and daobingkang, the worst inhibited effects is carbendazim.
引文
1.陈利锋,徐敬友.农业植物病理学.北京:中国农业出版社,2001
    2.董汉松.植物诱导抗性原理.科学技术出版社,1995
    3.徐敬友,张华东,张红,等.立枯丝核菌毒素的产生及与致病力的关系.扬州大学学报,2004,25(2):61-64
    4.罗孟军,朱天辉.植物病原真菌毒素.四川林业科技,2001,3(22):1-5
    5.刘树玲.稻瘟菌侵染过程中的信号传导.作物研究.2006,(2):194-198
    6.徐艳.水稻纹枯病军毒素的致病机理及对寄主防御酶的影响.[硕士学位论文].扬州:扬州大学图书馆,2006
    7.章元寿.植物病理生理学.江苏:江苏科学技术出版社,1996
    8.方中达编.植病研究方法.北京:农业出版社,1979
    9.董金皋,李数正.植物病原菌毒素研究进展.北京:中国科学科技出版社1997,10-11;32-49;158-163;210-213;222-226
    10.段双料.应用玉米小斑病T小种毒素粗提液快速测定T形细胞质玉米技术方法的研究.植物病理学报,1981,11(4):58-59
    11.朱明哲主编.田间试验及统计分析.北京:农业出版社,1995
    12.王国平,罗宽.稻瘟病菌产孢培养的筛选.湖南农学院学报,1989,15(2):58-62
    13.叶建仁,祁高富.松针褐斑病毒毒素的专化性研究.南京林业大学学报,1999,23(6):1-4
    14.李桦.稻瘟病菌培养技术的研究.植物保护,1986,12(4);45-47
    15.王裕中,米勒J D.中国小麦赤霉菌优势种—禾谷镰刀菌产毒能力的研究.真菌学报,1994,13(3):229-234.1998,28(3):233-236
    16.刘亚光,杨庆凯,李海英等.大豆灰斑病菌毒素产生条件的研究.菌物系统,2000,19(1):137-138
    17.欧阳丰,谢丙炎,欧阳本友等.辣椒炭疽病菌毒素.真菌学报,1993,12(4):289-296
    18.夏德术,余毓君.不同培养条件对赤霉病菌毒素产生的影响.植物病理学报, 1991,21:262
    19.董金皋,黄梧芳,康绍兰.玉米大斑病菌致病毒素的分离和硅胶TL层析.植物病理学报,1992,22(4):356
    20.朱宝成,梁伯瑶.周毓君,等.草莓灰斑病菌的培养、毒素的提取及生物测定.植物病理学报,1994,24(3):239-243
    21.石风梅.植物病原真菌毒素的研究进展.黑龙江农业科学,2006,(2):70-71
    22.祁高富,杨斌,叶建仁.植物病原真菌毒素研究进展.南京林业大学学报,2000,2(24):66-70
    23.吕金殿,甘莉,阎龙飞,等.棉花黄萎病菌毒素的纯化与特性研究.植物病理学报,1991,21(2):129-133.
    24.王裕中.中国南京三个禾谷镰刀菌株所产生的毒素.植物病理学报,1989,1(1):40
    25.何月秋,唐文华,水稻抗稻瘟病突遗传研究进展.云南农业大学学报,2002,15(4):121.
    26.吴畏,薛应龙,杨家书,等.小麦长蠕孢菌毒素.真菌学报,1989,8(1):70-79
    27.陈启峰,陈璋,王金陵.运用致病毒素筛选抗稻瘟病细胞突变体.遗传学报,1993,20(4):340-347.
    28.崔洋.玉米小斑病菌T小种毒素的分离、纯化及其植物病理反应.植物病理学报,1992,22(4):187-191
    29.董金皋,周宗山,李正平.玉米大斑病菌HT-毒素组分Ⅱ的化学结构.植物病理学报,2000,30(2):166-167
    30.周益军,白娟,程兆榜等.我国稻瘟病菌群体多样性研究.中国水稻科学,2004,18(3):277-280
    31.刘剔若,薛国兴,张匀华等.小麦品种对赤霉病的抗性.黑龙江八一农垦大学学报,1989,1:9-18
    32.董金皋,韩建民,闫淑娟,等.玉米大斑病菌HT-毒素对玉米细胞膜透性的影响.河北农业大学学报,2000,23(3):59-64
    33.左豫虎,康振生,吴学宏.雪腐格氏霉粗毒素对小麦膜透性和结构的影响.西北农业大学学报,1998,26(2):1-6
    34.王江柱,董金皋.寄主选择性植物病原真菌毒素致病机制研究现状.河北农业大学学报,1995,18(3):101-106
    35.高立宏,袁业琴,魏健.稻瘟病菌粗毒素对水稻幼胚愈伤组织的影响及抗性筛选.长春师范学院学报(自然科学版),2005,25(5):97-99
    36.秦引萍.侵染诱导性脂加氧酶鉴定、纯化及性状分析.[北京农业大学博士论文].北京:中国农业大学图书馆,1995
    37.孙漱沅,孙国昌.我国稻瘟病研究的现状和展望.植保技术与推广,1996,16(3):39-40
    38.《植保员手册》编绘组.植保员手册(第三版).上海:上海科学技术出版社,1998
    39.南京农学院主编.普通植物病理学(上、下).北京:中国农业出版社,1984
    40.Agrios G N著.植物病理学(第三版).北京:中国农业出版社,1997
    41.陈志强.稻瘟病抗性机制研究综述.华南农业大学学报,1989,10(3):82-91
    42.刘丹碧,陶家凤.稻瘟病菌(Pyricularia Oryzae Cav.)侵染初期的组织病理学.四川农业大学学报,1994,12(3):357-363
    43.王绍坤.水稻品种慢瘟性及其机制的研究.湖南农学院学报,1987,(3):47-55
    44.刘学群,李合生,胡耀星等.稻瘟病菌鉴别品种的生理生化研究.植物保护学报,1989,16(1):31-36
    45.黄新汉,黄厚哲.水稻抗瘟性研究(Ⅰ)抗瘟性的生化基础.厦门大学学报(自然科学版),1986,25(4):461-469
    46.马国华,王铨茂.水稻品种过氧化物酶活性和木质素含量与抗稻瘟病菌的关系(简报).植物生理学通讯,1992,28(4):264-267
    47.Ou S H.Rice Disease.Famham Royal UK:Commonwealth Agricultural Bureaux,1985
    48.Baker B.Zambryski P.Staskawicz B,et al.Signaling in plant-microbe interaction.Science,1997,276:726-733
    49. Scheffer R P, Pringle R B. A selective toxin produced by Periconic circinata . Nature, 1961(191): 912-913
    50. Yoder O C. A selective toxin produced by Phyllosticta maydis . Phytopathology, 1973,63: 1361-1366
    51. Miller J D, Greenhalgh R, Wang YZ . Mycologia. 1991, 83(2): 121-130
    52. Klotz M G. The action of tentoxin on membrane processes in plants. Physiol Plant, 1988,74:575
    53. Chil Ykwon, Rasmussen J B, Francl LJ, Meinhardt S W. Aquantitative bioassay for Necrosis toxin fromPyrenophora tritici-repentis based on electrolyte leakage. Phytopathol, 1996, 86: 1360-1363
    54. Tang Xiaoyan, Reid D Frederick, Zhou Jianmin. Initiation of plant disease resistance by physical interaction of Avr Pto and PtoKinase. Science, 1996, 274: 2060-2063
    55. Livingston R S, Scheffer R P. Isolation and characterization of host-selective toxin from Helminthospotium sacchari. Biol. Chem, 1981, 256: 1705-1710, 439: 276-288
    56. Kim K W, Cho-Ky. Identification of phytotoxins produced by Drechslera porturlacae, pathogen of purslane(Portulaca oleracea), Isolation of methyldihydroxy zearalenone and its herbicidal activity. Korean Jouranal of Weed Science, 1994, 14(3): 184-191
    57. Deacon J W. Introduction to Modern Mycology (Second edition) . Blackwell Scientific Pubilcations, 1984
    58. Yoder O C. Toxins In Pathogenesis. Ann.Rev. Phytopathol, 1980, 18: 103-129
    59. Gardner, H W. Recent investigations into the lipoxygenase pathway of plants. Biochimica et Biophysica Acta, 1991,1084: 221-239
    60. Gardner, H W. Biological roles and biochemistry of the lipoxygenase pathway. HortScience, 1995, 30: 197-205
    61. Ohta, H, Shida, K, Peng. A lipoxygenase pathway is activited in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiology, 1991, 97: 94-98
    
    62. Peng, Shishiyama L. Temporal sequence of cytological events in rice leaves infected with Pyricularia oryzae. Can. J.Bot, 1988, 66: 730-735
    63. Ohta, Shida HK, Peng. The occurrence of hydroperoxide -decomposing activities in rice and the relationship of such activities to the formation of antifungal substances. Plant Cell Physiol, 1990,31: 1117-1122
    64. Peng, Shishiyama L. Timing of a cellular reaction in rice cultivars associated with differing degrees of resistance to Pyricularia oryzae. Can. J. Bot., 1989, 67: 2704-2710
    65. Kato, Yamaguch T, Uyehara, Y T. Defense mechanism of the rice plant against rice blast disease. Nafurwissenschafren, 1983a, 70: 200-201
    66. Margaret M S, Beat M R. Sample preparation for two dimensional electrophoresis. Proteomics, 2003, 3: 1408-1417
    67. Emilio M, Elisa R, Francesca A. Numerical approaches for quantitative analysis of two-dimensional maps A review of commercial software and home-made systems. Proteomics, 2005, 5(3): 654-666
    68. Ou S H. Rice Disease. Famham Royal UK: Common-wealth Agricultural Bureaux, 1985
    69. Baker B, Zambryski P, Staskawicz B. Signaling in plant-microbe interaction. Science, 1997,276:726-733
    70. Jia Yulin, Sean A McAdams,Gregory T Bryan , et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19(15): 4004-4014
    71. MOHAMMADIM, KAZEMIH. Changes in peroxidase and polyphenol Oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance . PlantScience, 2002, 162: 491-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700