富营养化水体微囊藻分子生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊富营养化和蓝藻水华暴发已经成为世界性的环境难题,蓝藻水华的大规模持续暴发不仅严重破坏了水体水生生态系统的结构,影响和降低其生态功能,同时产生大量蓝藻毒素,给公共安全带来重大威胁。当前,我国湖泊的富营养化问题异常突出,三大淡水湖泊常年暴发以微囊藻属为主的蓝藻水华,弄清水华暴发过程,尤其是产毒微囊藻水华的暴发以及在水体中的动态演化规律,为富营养化水体微囊藻的控制和治理提供理论依据。
     采用荧光定量PCR和微囊藻ITS基因克隆文库的构建等手段调查分析了太湖和秦淮河水系中微囊藻、产毒微囊藻的分子多样性,探讨了不同形态型和基因型微囊藻的动态演替过程,揭示了富营养化水体中微囊藻群落结构和数量的动态变化规律及其驱动因子,取得了以下主要成果:
     (1)在太湖水体中微囊藻生物量的年变化幅度较大,从1.18×105到2.90×109cells/L,年均值北部湖区最高,南部湖区最低。产毒微囊藻的生物量季节性变化较强,产毒微囊藻占总微囊藻群落生物量的峰值一般出现在水华暴发的前期和水华发生的中后期,最高比例达92%,其他时期的产毒微囊藻含量比例相对较低。统计分析表明影响太湖微囊藻和产毒微囊藻丰度的主要环境因子是温度和正磷酸盐。
     (2)太湖共存在8种不同形态型微囊藻,其中水华微囊藻、鱼害微囊藻、铜绿微囊藻和惠氏微囊藻是太湖的优势形态型微囊藻。这4种微囊藻的演替主要受温度的影响,在低水温的水华前期、初期和末期,微囊藻群落优势种为水华和鱼害微囊藻,随着水温的升高,水华中期以后铜绿微囊藻和惠氏微囊藻演替成为优势微囊藻形态型。同时发现,稳定的地理环境有助于微囊藻群落的演替,风浪较大的开阔水域则有利于维持水华微囊藻的优势地位。
     (3)共获得太湖微囊藻ITS基因序列4600条,划分为1260种不同的基因型。在全太湖不同点位和水华发生的不同时期,均存在高比例的基因型演替,表明太湖微囊藻群落具有很高的分子多样性和丰富的基因型构成。竺山湾的微囊藻基因型在进化聚类上较好聚为一支,表明相对稳定和封闭的环境有利于微囊藻基因型地域性的形成。太湖的优势微囊藻基因型T1在全太湖周年存在,时间序列上,在水华前期和初期占有较高比例,空间上,在强水动力的开阔水域比例相对较高,有可能是太湖微囊藻水华越冬和复苏的主要种源。
     (4)通过单藻株筛选比对,证实基因型T1的形态型属于水华微囊藻。通过对该藻株的研究发现,其最适生长温度为20℃以上,且在20℃的生长速率要高于太湖分离的其他株微囊藻。低温恢复实验表明,与其他微囊藻藻株相比,T1型藻株具有更快的生理恢复速率,可以从低温逆境中快速恢复生理活性,并在高的生长率下快速达到较高的生物量,从而为其在野外春季快速生长并形成优势奠定生理基础。
     与单一的强扰动型太湖相比,包含湖泊和众多支流的秦淮河水系的系统取样研究结果表明:
     (1)秦淮河的微囊藻群落在不同水环境下(不同支流)显示了较高的遗传多样性,24个主要基因型可以划分为9个不同的基因型组。
     (2)低流速和低水力交换条件形成的稳定的地理环境差异可以影响和引导微囊藻群落的分子适应及进化选择,从而在分子进化关系上得到较好地理区分。
     (3)pH是影响不同基因型的地理分布及分子适应差异的显著环境因子。
     (4)云台山河、俞庄桥、七桥瓮和石臼湖4个样点可能是秦淮河水华大规模增殖和暴发的潜在种子库。
With the increasing development of economy and human activities, environmental problems caused by cyanobacterial blooms in various water bodies especially in freshwater lakes has become a concern all over the world. The characteristic of eutrophication in freshwater ecosystem is the annual cyanobacterial blooms during the high temperature season, which could not only break the structure and the balance of hydrophytic ecology in the water but also pose serious health threats due to the production of toxic compounds. Eutrophication has become a serious environmental problem in most lakes of China. As a prerequisite to the ecosystem management for the cyanobacterial bloom events, it is essential to determine the relationship between the biomass distribution of MC- and non MC-Microcystis and the related environmental factors during the development of the bloom in freshwater ecosystem. However, few systematic investigations in the community structure of Microcystis have been conducted on eutrophic lakes.
     To better understand the basic characteristics of Microcystis blooms in Lake Taihu, samples were collected from December 2008 to October 2010 and analyzed morphologically via the distribution and dynamics of different Microcystis morphotypes and genetically via sequencing the clone library of the internal transcribed spacer of the rRNA operon (ITS). We also conducted quantitative PCR to assess total Microcystis abundance and the proportion of microcystin-producing subpopulation. Marked succession of the Microcystis populations in both morphotypes and genotypes occurred during the course of the Microcystis bloom. The T1 genotype, characterized by strains of Microcystis flos-aquae, was the most dominant genotype in Lake Taihu during winter and spring around the whole lake and likely acted as the main inoculum for forming blooms the following year. The 4600 ITS sequences were obtained and were revealed to have 1260 Microcystis genotypes, the highest genetic diversity of Microcystis reported in Lake Taihu. Water temperature temporally affected the succession of both Microcystis genotypes and morphotypes, whereas wind-driven disturbance and the micro-environment influenced spatial distribution of Microcystis genotypes and morphotypes. High ratios of mcyD containing Microcystis subpopulations were detected during the onset and later phase of blooms. Redundancy analysis (RDA) indicated that water temperature and PO4-P were major factors controlling total Microcystis abundance and proportions of microcystin-producing Microcystis population at hyper-eutrophic waters.
     To determine the Microcystis population and its spatial distributions along the reaches in Qinhuai River, a convenient approach was applied genetically by sequencing the internal transcribed spacer of the rRNA operon (ITS). The TCS analysis showed that 9 groups were classified from the main 24 genotypes and each group was dominated by one highly represented root sequence. Marked changes in the composition and proportion of the Microcystis ITS genotype were detected from/along the upper to the lower reaches. The possible seed sources of the bloom were located in 4 different locations. Furthermore, it was found that pH was the primary factor affecting the spatial distribution of the main genotype group between samples.
引文
[1]Agrawal MK, Ghosh SK, Bagchi D, et al. Occurrence of microcystin-containing toxic water blooms in Central India[J]. J Microbiol. Biotechnol.,2006,16: 212-218.
    [2]Agusti S and Phlips EJ. Light absorption by cyanobacteria:Implications of the colonial growth form[J]. Limnol. Oceanogr.,1991,37:434-441.
    [3]Ame MV, Diaz MDP, Wunderlin DA. Occurrence of toxic cyanobacterial blooms in san roque reservoir (cordoba, Argentina):a field and chemometric study[J]. Environ. Toxicol.,2003,18:192-201.
    [4]Andersen JM. Influence of pH on release of phosphorus from lake sediments[J]. Arch. Hydrobiol.,1975,76:411-419.
    [5]Augspurger T, Keller AE, Black MC, et al. Waterquality guidance for protection of freshwater mussels (Unionidae) from ammonia exposure[J]. Environ. Toxicol. Chen.,2003,22:2569-2575.
    [6]Azevedo S, Carmichael WW, Jochimsen EM, et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil[J]. Toxicology, 2002,181:441-446.
    [7]Bio-Rad荧光定量PCR应用指南.2006.
    [8]Botes DP, Tuiman AA, Wessels PL. The Struture of cyanoginosins-LA, a cyclic peptide from the cyanobacterium Microcystis aeruginosa[J]. J. Chem. Soc. Perkin Trans,1984,1:2311-2318.
    [9]Bozarth CS, Schwartz AD, Shepardson JW, et al. Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in the season[J]. Appl. Environ. Microbiol.,2010,76:5207-5213.
    [10]Briand E, Escoffier N, Straub C, et al. Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (Cyanobacteria) population[J]. ISME J,2009,3:419-429.
    [11]Burket T, Seidler R, Smith H. Editorial. Molecular Ecology,1992,1:1.
    [12]Carmichael WW. Health effects of toxin producing cyanobacteria:the 'CyanoHABS'[J]. Hum Ecol Risk Assess 2001,7:1393-1407.
    [13]Chen J and Xie P. Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic Lake Taihu of subtropical China and the risk to human consumption[J]. Environ. Toxicol.,2005, 20:572-584.
    [14]Chen YW, Fan CX, Teubner K, et al. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China:an 8-year investigation[J]. Hydrobiologia,2003,506-509:273-279.
    [15]Chen YW, Qin BQ, Teubner K, et al. Long-term dynamics of phytoplankton assemblages:Microcystis-domination in Lake Taihu, a large shallow lake in China[J]. J Plankton Res.,2003,25:445-453.
    [16]Chen W, Li L, Gan NQ, et al. Optimization of an effective extraction procedure for the analysis of microcystins in soils and lake sediment[J]. Environ. Pollut., 2006,143:241-246.
    [17]Chen W, Peng L, Wan N, et al. Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu:Implications for water quality monitoring and assessments[J]. Chemosphere,2009,77: 1585-1593.
    [18]Chorus I and Bartram J. Toxic Cyanobacteria in Water:A guide to their public health consequences,monitoring and management.London:E&FN Spon.1999, p 41-111.
    [19]Chorus I. (ed.) Cyanotoxins:Occurrence, Causes, Consequences.2001, Berlin: Springer-Verlag.
    [20]Christen D, SchOnmann S, Jermini M, et al. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ. Exp. Bot.2007,60: 504-514.
    [21]Chu FS, Huang X, Wei RD. Enzyme-linked immunosorbent assay for microcystins in blue -green algal blooms[J]. J Asso. Anal. Chem.,1990,73: 451-456.
    [22]Chu Z, Jin X, Yang B, et al. Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth[J]. J Plankton Res.,2007, 29:739-745.
    [23]Clement M, Pasoda D, Crandall K. TCS:a computer program to estimate gene genealogies[J]. Mol. Ecol.,2000,9:1657-1660.
    [24]Codd GA, Bell SG, Kaya K, et al. Cyanobacterial toxins, exposure routes and human health[J]. Eur. J. Phycol.,1999,34:405-415.
    [25]Codd GA, Morrison LF, Metcalf JS. Cyanobacterial toxins:risk management for health protection[J]. Toxicol. Appl. Pharmacol.,2005,203:264-272.
    [26]Conley D. Controlling eutrophication by reducing both nitrogen and phosphorus[J]. Science,2009,323:1015-1016.
    [27]Davis TW, Berry DL, Boyer GL, et al. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strain of Microcystis during cyanobacteria blooms. Harmful Algae,2009,8:715-725.
    [28]Dionisi HM, Harms G, Layton AC, et al. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction[J]. Appl. Environ. Microb.,2003,69(11): 6597-6604.
    [29]Dokulil MT and Teubner K.. Cyanobacterial dominance in lakes[J]. Hydrobiologia,2000,438:1-12.
    [30]Downing TG and Sember CS. Medium N:P ratios and specific growth rate comodulate microcystin and protein content in Microcystis aerginosa PCC7806 and M-aeruginosa UV227[J]. Microb. Ecol.,2005,49(3):468-473.
    [31]Duan HT, Ma RH, Xu XF, et al. Two decade reconstruction of algal blooms in China's Lake Taihu[J]. Environ. Sci. Technol.,2009,43:3522-3528.
    [32]Duy TN, Lam PKS, Shaw GR, et al. Toxicology and risk assessment of freshwater cyanobacteria (blue-green algae) toxic in water[J]. Rev. Environ. Contam. Toxicon,2000,163:113-186.
    [33]Eiler A and Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes[J]. Environ. Microb., 2004,6(12):1228-1243.
    [34]Ekholm P and Krogerus K. Determining algal-available phosphorus of differing oringin:route phosphorus analyses versus algal assays[J]. Hydrobiologia,2003, 492(1-3):29-42.
    [35]Elliott JA, Jones ID, Thackeray SJ. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake[J]. Hydrobiologia,2006,559:401-411.
    [36]Excoffier L, Laval G, Schneider S. Arlequin ver.3.0:an integrated software package for population genetics data analysis[J]. Evol. Bioinfo. Online,2005,1: 7-50.
    [37]Fischer SG and Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory[J]. Proc. Natl. Acad. Sci. USA,1983,80:1579-1583.
    [38]Foulds IV, Granacki A, Xiao C, et al. Quantification of microcystin-producing cyanobacteria and E. coli in water by 5'nuclease PCR[J]. J. Appl. Microbiol., 2002,93:825-834.
    [39]Fujimoto N and Sudo R. Nutrient-limited growth of Microcystis aeruignosa and Phormidium tenueand competition under various N:P supply ratios and temperatures[J]. Limnol.Oceanogr.,1997,42:250-256.
    [40]Furukawa K, Nada N, Tsuneda S, et al. Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene[J]. J. Biosci. Bioeng.,2006,102:90-96.
    [41]Ganf GG and Oliver RL. Vertical separation of light and available nutrients as a factor causing replacement of green algae in the plankton of stratified lake[J]. J Ecol.,1982,70:829-844.
    [42]Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR[J]. Genome. Res.,1996,6:995-1001.
    [43]Gilbert W.1993. DNA sequencing and gene structure. In:Forsen S, ed. Nobel Lectures in Chemistry 1971-1980.1980. Singapore:World Scientific Publishing Co,408-426.
    [44]Giordano M, Berdall J, Raven JA. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution[J]. Annu. Rev. Plant Biol., 2005,56:99-131.
    [45]van Gremberghe I, Vanormelingen P, Van der Gucht K, et al. Priority effects in experimental populations of the cyanobacterium Microcystis[J]. Environ. Microbiol.,2009,11:2564-2573.
    [46]van Gremberghe I, Vanormelingen P, Vanelslander B, et al. Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing[J]. Oikos,2009,118:1647-1658.
    [47]Guo N and Xie P. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications[J]. Environ. Pollut.,2006, 143(3):513-518.
    [48]Guo L. Doing battle with the green monster of Taihu Lake[J]. Science,2007,317: 1166.
    [49]Ha J, Hidaka T, Tsuno H. Quantification of toxic Microcystis and Evaluation of its dominance ratio in blooms using real-time PCR[J]. Environ. Sci. Technol., 2009,43:812-818.
    [50]Haeckel E.1866. Generelle Morphologie der Organismen. Verlag von Georg Reimer, Berlin
    [51]Harada KI.1996. Chemistry and detection of Microcystins. In:Toxic Microcystis. Watanabe M F, et al. Boca Raton:CRC Press,117.
    [52]Hecky RE and Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of enrichment [J]. Limnol. Oceanogr.,1988,33:796-822.
    [53]Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR[J]. Genome Res., 1996,6:986-994.
    [54]Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions[J]. Biotechnology,1993,11: 1026-1030.
    [55]Hisbergues M, Christiansen G, Rouhiainen L, et al. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera[J]. Arch. Microbiol.,2003,180(6):402-410.
    [56]Hoelzel AR. Conservation genetics of whales and dolphins[J]. Molecular Ecology, 1992,1:119-125
    [57]Honma T and Park HD. Influences of nitrate and phosphate concentrations on Microcystis species composition and microcystin concentration in Lake Suwa[J]. J. Jpn. Soc. Water Environ.,2005,28:373-378 (in Japanese)
    [58]Hotto AM, Satchwell MF, Berry DL, et al. Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY[J]. Harmful Algae,2008,7:671-681.
    [59]Huisman JM, Matthijs HCP, Visser PM.2005. Harmful Cyanobacteria. Springer Aquatic Ecology Series 3. Dordrecht, the Netherlands:Springer.
    [60]Ibelings B.W., Vonk, M., Los, H.F.J., Van der Molen, D.T., and Mooij, W.M. (2003) Fuzzy modeling of cyanobacterial surface waterblooms:validation with NOAA-AVHRR satellite images[J]. Ecol Appl 13:1456-1472.
    [61]Imai H, Chang K, Kusaba M, et al. Temperature-dependent dominance of Microcystis (Cyanophyceae) species:M. aeruginosa and M. wesenbergii[J]. J Plankton Res.,2009,31:171-178.
    [62]Iteman I, Rippka R, Tandeau de Marsac N, et al. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria[J]. Microbiology,2005,146:1275-1286.
    [63]Izaguirre G and Taylor WD. A guide to geosminand MIB-producing cyanobacteria in the United States[J]. Water Sci. Technol.,2004,49:19-24.
    [64]Janse I, Kardinaal WEA, Meima M, et al. Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity[J]. Appl. Environ. Microbiol.,2004,70: 3979-3987.
    [65]Jochimsen EM, Carmichael WW, Cardo DM, et al. Liver failure and death after exposure to microcystins at a haemodialysis centre in Brazil[J]. N. Engl. J Med., 1998,338:873-878.
    [66]Johnk KD, Huisman J, Sharples J, et al. Summer heatwaves promote blooms of harmful cyanobacteria[J]. Glob. Change Biol.,2008,14:495-512.
    [67]Kaebernick M, Neilan BA, Borner T, et al. Light and the transcriptional response of the microcystin biosynthesis gene cluster[J]. Appl. Environ. Microbiol.,2000, 66:3387-3392.
    [68]Kahru M, Leppanen JM, Rud O. Cyanobacterial blooms cause heating of the sea surface[J]. Mar. Ecol. Prog. Ser.,1993,101:1-7.
    [69]Kardinaal WE, Janse I, Kamst-van Agterveld M, et al. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes[J]. Aquat. Microb. Ecol.,2007,48:1-12.
    [70]Kasai F, Kawachi M, Erata M, et al.2004. NIES-Collection, List of Strains,7th Edition. National Institute for Environmental Studies, Japan. Tsukuba.257 pp
    [71]Ke Z, Xie P, Guo L. Controlling factors of spring-summer phytoplankton succession in Lake Taihu (Meiliang Bay, China) [J]. Hydrobiologia,2008,607: 41-49.
    [72]Knoll AH.2003. Life on a Young Planet:The First Three Billion Years of Evolution on Earth. Princeton, NJ, USA:Princeton University Press.
    [73]Komarek J and Anagnostidis K.1999. Cyanoprokaryota. In:Ettl H., Gardner G., Heynig H., Mollenheuer D. (Eds.),1:Chroococcales. Susswasserflora von Mitteleurope. Gustav Fischer.164-190,225-236
    [74]Kotak BG, Lam AKY, Prepas EE, et al. Variability of the hepatotoxin, microcystin-LR, in hypereutrophic drinking water lakes[J]. J Limnol.,1995,31: 248-263.
    [75]Kotak BG, Lam AKY, Prepas EE, et al. Role of chemical and physical variables in regulating microcystin-LR concentration in phytoplankton of eutrophic lakes[J]. Can. J Fish. Aquat. Sci.,2000,57:1584-1593.
    [76]Kromkamp J, Van D, Heuvel A, et al. Phosphorus uptake and photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa[J]. Br. Phycol. J,1989,24:347-355.
    [77]Kurmayer R, Dittmann E, Fastner J, et al. Diversity of Microcystin gene within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany) [J]. Microbial. Ecol.,2002,43:107-118.
    [78]Kurmayer R and Kutzenberger T. Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp[J]. Appl. Environ. Microb.,2003,69:6723-6730.
    [79]Lande R. Statistics and partitioning of species diversity, and similarity among multiple communities[J]. Oikos,1996,76:5-13.
    [80]Liu WT, Marsh TL, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Appl. Environ. Microbiol.,1997,63:4516-4522.
    [81]Malbrouck C, Trausch G, Devos P, et al. Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L[J]. Comp. Biochem. Phys. C,2003,135(1):39-48.
    [82]Martins JC and Vasconcelos VM. Microcystin dynamics in aquatic organisms[J]. J. Toxicol. Environ. Health-Part B,2009,12:65-82.
    [83]Maxwell K and Johnson GN. Chlorophyll fluorescence—a practical guide[J]. J Exp. Bot.,2000,51:659-668.
    [84]McElhiney J, Lawton LA, Leifert C. Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure[J]. Toxicon,2001,39(9):1411-1420.
    [85]McCarthy MJ, Lavrentyev PL, Yang L, et al. Nitrogen dynamics relative to microbial food web structure in a subtropical, shallow, well-mixed, eutrophic lake (Taihu Lake, China) [J]. Hydrobiologia,2007,581:195-207.
    [86]McMaugh SJ and Lyon BR. Real-time PCR quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis [J]. Bio.Techniques,2003, 34:982-986.
    [87]Moe SJ, Stelzer RS, Forman MR, et al. Recent advances in ecological stoichiometry:insights for population and community ecology[J]. Oikos,2005, 109:29-39.
    [88]Muro-pastor MI and Florencio FJ. Regulation of ammonium assimilation in cyanobacteria [J]. Plant Physiol. Bioch..,2003,41:595-601.
    [89]Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl. Environ. Microbiol.,1993,59(3):695-700.
    [90]Nagata S, Soutome H, Yoshida F, et al. Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity[J]. Nat. Toxins,1995, 3 (2):78-86.
    [91]Neilan BA, Jacobs D, Del Dot T, et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis [J]. Inter. J. System. Bacteriol.,1997,47:693-697.
    [92]Nixon SW. Coastal marine eutrophication:A definition, social causes, and future concerns[J]. Ophelia 1995,41:199-219.
    [93]OECD.1982. Eutrophication of water, monitoring, assessment and control. Organization for economic cooperation and development, Paris, France.
    [94]Ohkubo N, Yagi O, Okada M. Studies on the succession of blue-green algae, Microcystis, Anabaena, Oscillatoria and Phormidium in Lake Kasumigaura[J]. Environ. Technol.,1993,14:433-442.
    [95]Okello W, Ostermaier V, Portmann C, et al. Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes[J]. Water Res.,2010,44:2803-2814.
    [96]Oliver RL and Ganf GG.2000. Freshwater blooms, In:Whitton, B. A. and M. Pottseds. The Ecology of Cyanobacteria, The Netherlands:Kluwer Academic Publishers,149-194.
    [97]Orr P. and Jones G. Relationship between Microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa Cultures. Limnol. Oceanogr.,1998,43(7):1604-1614.
    [98]Otsuka S, Suda S, Li R, et al. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence[J]. FEMS Microbiol. Lett.,1999,172:15-21.
    [99]Otsuka S, Suda S, Shibata S, et al. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the rules of the Bacteriological Code[J]. Int. J Syst. Evol. Microbiol.,2001,51: 873-879.
    [100]Ozawa K and Park HD. Accumulation and depuration of microcystin produced by cyanobacteria Microcystis in freshwater snail[J]. Limnology,2003,4: 131-138.
    [101]Paerl HW, Tucker J, Bland PT. Carotenoid enhancement and its role in maintaining blue-green(Microcystis aeruginosa) surface blooms[J]. Limnol. Oceanogr.,1983,28:847-857.
    [102]Paerl HW and Fulton RS.2006. Ecology of harmful cyanobacteria. In Ecology of Harmful Marine Algae. Graneli, E., and Turner, J. (eds). Berlin, Germany:Springer-Verlag, pp.95-107.
    [103]Paerl HW and Huisman J. Blooms like it hot[J]. Science,2008,320:57-58.
    [104]Paerl HW and Huisman J. Climate change:a catalyst for global expansion of harmful cyanobacterial blooms[J]. Environmental Microbiology Reports,2009,1: 27-37.
    [105]Paerl HW, Xu H, McCarthy MJ, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China):The need for a dual nutrient (N & P) management strategy[J]. Water Res.,2010,45:1973-1983
    [106]Pflugmacher S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR[J]. Aquat. Toxicol.,2004,70(3):169-178.
    [107]Philipp R, Rowland MGM, Baxter PJ, et al. Health risks from exposure to algae. CDR (London:England Rev),1991,1:R67-68
    [108]Poon GK, Griggs LJ, Edwards C, et al. Liquid chromatography-electrospray ionization-mass spectrometry of cyanobacterial toxins[J]. J Chromatogr.,1993, 628:215.
    [109]Qin BQ, Xu PZ, Wu QL, et al. Environmental issues of Lake Taihu, China. Hydrobiologia,2007,581:3-14.
    [110]Qin B, Zhu G, Gao G, et al. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management[J]. Environ. Manage.,2010, 45:105-112.
    [111]Rantala A, Fewer DP, Michael H, et al. Phylogenetic evidence for the early evolution of microcystin synthesis[J]. P. Natl. Acad. Sci. USA,2004,101: 568-573.
    [112]Rantala A, Rajaniemi-Wacklin P, Lyra C, et al. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors[J]. Appl. Environ. Microbiol.,2006,72:6101-6110.
    [113]Rapala J and Sivonen K. Assessment of environmental conditions that favor hepatotoxic and neurotoxie Anabaena spp. Strains cultured under light limitation at different temperature. Microbial. Ecol.,1998,36:181-192.
    [114]Rengefors K, Gustafsson S, Stahl-Delbanco A..Factors regulating the recruitment of cyanobacterial and eukaryotic phytoplankton from littoral and profundal sediments[J]. Aquat. Microb. Eco.,2004,36(3):213-226.
    [115]Reynolds CS.2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge, UK:Cambridge University Press.
    [116]Richards FA and Thompson TG. The estimation and characterization of plankton populations by pigment analyses. Ⅱ. A spectrophotometric method for the estimation of plankton pigments. J Marine Res.,1952,11:156-172.
    [117]Rinehart KL, Harada K, Namikoshi M, et al. Nodularin, microcystin, and the configuration of Adda[J]. J Am. Chem. Soc.,1988,110:8557-8558.
    [118]Rinta-kanto JM, Ouellette AJA, Boyer GL, et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 Blooms in western lake Erie using quantitative real-time PCR[J]. Environ. Sci. Technol.,2005,39:4198-4205.
    [119]Rinta-Kanto JM, Konopko EA, Debruyn JM, et al. Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake[J]. Harmful Algae,2009,8:665-673.
    [120]Robert E, Philip F, Maria T. Inhibition of nuclear protein phosphatase activity in mouse hepatocytes by the cyanobacteria toxin microcystin-LR[J]. Toxicon, 2003,41:773-781.
    [121]Rozas J, Sanchez-Delbarrio JC, Messeguer X, et al. DNASP, DNA polymorphism analyses by the coalescent and other methods[J]. Bio informatics, 2003,19:2496-2497.
    [122]Sabart M, Pobel D, Latour D, et al. Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa[J]. Environ. Microbiol. Reports,2009,1:263-272.
    [123]Sabart M, Pobel D, Briand E, et al. Spatiotemporal variations in Microcystin concentrations and in the proportions of Microcystin-producing cells in several Microcystis aeruginosa populations[J]. Appl. Environ. Microbiol.,2010,76: 4750-4759.
    [124]Sanger F and Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase[J]. J Mol. Biol.,1975,94: 441-448.
    [125]Sevilla E, Martin-Luna B, Vela L, et al. Microcystin-LR synthesis as response to nitrogen:transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806[J]. Ecotoxicology,2010,19:1167-1173.
    [126]Scheffer M.1998. Ecology of Shallow Lakes. London, UK:Chapman and Hall.
    [127]Schindler DW. Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37 year whole ecosystem experiment[J]. Proc. Natl. Acad. Sci. USA,2008,105:11:254-258.
    [128]Schippers A and Neretin LN. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR[J]. Environ. Microbiol.,2006,8(7):1251-1260.
    [129]Schopf JW.2000. The fossil record:tracing the roots of the cyanobacterial lineage. In The Ecology of Cyanobacteria. Whitton, B.A., and Potts, M. (eds). Dordrecht, the Netherlands:Kluwer Academic Publishers, pp.13-35.
    [130]Sheffer M, Rinaldi S, Gragnani A, et al. On the dominance of filamentous cyanobacteria in shallow, turbid lakes[J]. Ecology,1997,78(1):272-282.
    [131]Shi J and Zai S.1994. Eutrophication of Lake Taihu and its control. In Sund, H., Yu, X., Stabel, H., Yuan, K., Geller,W. and She, F. (eds), Environmental Protection and Lake Ecosystem. China Science and Technology Press, Beijing, pp. 207-215.
    [132]Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton[J]. Science,1983,221:669-671.
    [133]Smith H, Burke T, Seidler R. Editorial. Mol. Ecol.,1993,2:1-2.
    [134]Smith VH. Eutrophication of freshwater and coastal marine ecosystems:A global problem[J]. Environ. Sci. Pollut. Res.,2003,10:126-39.
    [135]Sommer U. Comparison between steady and non-steady state competition: experiments with natural phytoplankton[J]. Limnol. Oceanogr.,1985,30: 335-346.
    [136]Song L, Chen W, Peng L, et al. Distribution and bioaccumulation of microcystins in water columns:A systematic investigation into the environmental fate and the risks associated with microcystin in Meiliang Bay, Lake Taihu[J]. Water Res.,2007,41:2853-2864.
    [137]Song X, Liu Z, Yang G, et al. Effects of resuspension and eutrophication level on summer phytoplankton dynamics in two hypertrophic areas of lake Taihu, China[J]. Aquat. Ecol.,2010,44:41-54.
    [138]Svrcek C and Smith DW. Cyanobacteria toxins and the current state of knowledge on water treatment options:a review[J]. J Environ. Eng. Sci.,2004,3: 155-185.
    [139]Tan X, Kong F, Zeng Q, et al. Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors[J]. J Environ. Sci.,2009, 21:892-899.
    [140]Tillett D, Dittmann E, Erhard M, et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806:an integrated peptide-polyketide synthetase system[J]. Chem. Biol.,2000,7(10):753-764.
    [141]Trimbee AM and Prepas EE. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes[J]. Can. J Fisher Aquat. Sci.,1987,44:1337-1342.
    [142]Tsukada H.2006. A study on the life history and the factor affecting the dominance of Microcystis in eutrophic lakes. Ph. D. Thesis. Kyoto University, Kyoto, Japan
    [143]Tsuji K, Watanukit T, Kondo F, et al. Stability of microcystins from cyanobacteria-Ⅱ. Effect of UV light on decomposition and isomerization[J]. Toxicon,1995,33:1619-1631.
    [144]Vaitomaa J, Rantala A, Halinen K, et al. Quantitative Real-Time PCR for Determination of Microcystin Synthetase E Copy Numbers for Microcystis and Anabaena in Lakes[J]. Appl. Environ. Microbiol.,2003,69:7289-7297.
    [145]Verspagen JMH, Snelder EOFM, Visser PM, et al. Recruitment of benthic Microcystis (Cyanophyceae) to the water column:internal buoyancy changes or resuspension? [J] J Phycol.,2004,40:260-270.
    [146]Via-Ordorika L, Fastner J, Kurmayer R, et al. Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies:detection of microcystins and microcystin genes in individual colonies[J]. System. Appl. Microbiol.,2004,27:592-602.
    [147]Watanabe MF and Oishi S. Effect of environmental factors on toxicity of a cyanobacterium(Microcystis aeruginosa) under culture conditions[J]. Appl. Environ. Microb.,1985,49:1342-1344.
    [148]Watanabe MM, Kaya K, Takamura N. Fate of the toxic cyclic heptapeptides, the microcystins, from blooms of Microcystis (cyanobacteria) in a hypertrophic lake[J]. J Phycol.,1992,28:761-767.
    [149]Watanabe MF, Harada K, Carmichael WW, et al.1996. Toxic Microcystis[M]. New York:Boca Raton CRC Press
    [150]Wang Z, Li D, Li G, et al. Mechanism of photosynthetic response in Microcystis aeruginosa PCC7806 to low inorganic phosphorus[J]. Harmful Algae, 2010,9:613-619.
    [151]Wetzel RG.2001. The phosphorus cycle. In:Wetzel, R.G. (Ed.), Limnology, Lake and River Ecosystem. Academic Press, California.
    [152]Van Wichelen J, van Gremberghe I, Vanormelingen P, et al. Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria) [J]. Environ. Microbiol.,2010,12:2797-2813.
    [153]Wicks RJ and Thiel PG. Environmental factors affecting the production of peptide toxin floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic african reservoir[J]. Environ. Sci. Tech.,1990,24:1413-1418.
    [154]Williams SK, Kempton J, Wilde SB, et al. A novel epiphytic cyanobacterium associated with reservoirs affected by avian vacuolar myelinopathy[J]. Harmful Algae,2007,6(3):343-353.
    [155]Van Der Gucht K, Vandekerckhove T, Vloemans N, et al. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure[J]. FEMS Microbiol. Ecol.,2005,53(2):205-220.
    [156]Van de Waal DB, Verspagen JMH, Lurling M, et al. The ecological stoichiometry of toxins produced by harmful cyanobacteria:an experimental test of the carbon-nutrient balance hypothesis[J]. Ecol. Letters,2009,12:1326-1335.
    [157]Van der Westhuizen AJ and Eloff JN. Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006) [J]. Planta,1985,163:55-59.
    [158]Ueno Y, Nagata S, Tsutsumi T, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay[J]. Carcinogenesis,1996,17:1317-1321.
    [159]Uwins HK, Teasdale P, Stratton H. A case study investigating the occurrence of geosmin and 2-methylisoborneol (MIB) in the surface waters of the Hinze Dam, Gold Coast, Australia[J]. Water Sci. Technol.,2007,55:231-238.
    [160]Xie LQ, Xie P, Li SX, et al. The low TN:TP ratio, a cause or a result of Microcystis blooms? [J] Water Res.,2003,37:2073-2080.
    [161]Xie L, Xie P, Ozawa K, et al. Dynamics of microcystins-LR and-RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment [J]. Environ. Pollut.,2004,127(3):431-439.
    [162]Xu Y, Wu Z, Yu B, et al. Non-microcystin producing Microcystis wesenbergii (Komarek) Komarek (Cyanobacteria) representing a main waterbloom forming species in Chinese waters[J]. Environ. Pollut.,2008,156:162-167.
    [163]Xu Y, Wang G, Yang W, et al. Dynamics of the water bloom-forming Microcystis and its relationship with physicochemical factors in Lake Xuanwu (China) [J]. Environ. Sci. Pollut. Res.,2010,17:1581-1590.
    [164]Xu Y, Yang F, Liu Y, et al. Diversity in Microcystis blooms and the relationship to the environmental factors in Qinhuai River. Microbiol. Res., accept
    [165]Xu H, Paerl H, Qin B, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China[J]. Limnol. Oceanogr., 2010,55:420-432.
    [166]Yamamoto Y and Nakahara H. Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond[J]. Limnology,2009,10: 185-193.
    [167]Yang M, Yu JW, Li ZL, et al. Taihu Lake not to blame for Wuxi's woes[J]. Science,2008,319:158.
    [168]Ye W, Liu X, Tan J, et al. Diversity and dynamics of microcystin—Producing cyanobacteria in China's third largest lake, Lake Taihu[J]. Harmful Algae,2008,8: 637-644.
    [169]Yoshida M, Yoshida T, Takashima Y, et al. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake[J]. FEMS Microbiol. Lett., 2007,266(1):49-53.
    [170]Young EB and Beardall J. Rapid ammonium and nitrate induced perturbations to chla fluorescence in nitrogen stressed Dunaliellatertiolecta (chlorophyta) [J]. J. Phycol.,2003,39(2):332-342.
    [171]Yu SZ. Primary prevention of hepatocellular-carcinoma[J]. J. Gastroen. Hepatol.,1995,10:674-682.
    [172]Zhang DW, Xie P, Liu YQ, et al. Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu[J]. Ecotox. Environ. Safe.,2009,72:466-472.
    [173]Zhang T and Fang HHP. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples[J]. Appl. Microb. Biotech.,2006,70 (3):281-289.
    [174]蔡启铭.太湖环境生态研究(一).1998,气象出版社.
    [175]陈德辉.种间竞争及蓝藻水华形成的生物学过程.1999,中国科学院水生生物研究所博士论文.
    [176]陈伟.微囊藻毒素的环境归宿及其对大型溞的生态毒理学效应.2006,中国科学院研究生院博士学位论文.
    [177]崔俊涛,蔡秋波.环境因子对新立城水库铜绿微囊藻生长的影响[J].吉林农业大学学报,2010,32(1):72-74.
    [178]国家环境保护局.水和废水监测分析方法第四版[M].2002,北京:中国环境科学出版社.
    [179]贺超.内秦淮河中段污水截流系统的改造[J].中国给水排水,2009,25(24):53-54.
    [180]胡鸿钧,魏印心.中国淡水藻类——系统、分类及生态[M].2006,北京:科学出版社.
    [181]黄湫淇.微囊藻毒素的细胞毒性[J].预防医学情报杂志,2005,21(3):304-306.
    [182]孔繁翔,高光.大型浅水湖泊的蓝藻水华形成机理研究的思考[J].生态学报,2005,25(3):589-595.
    [183]孔繁翔,曹焕生,谭啸.水华蓝藻复苏的研究进展与水华预测[J].环境监控与预警,2010,2(1):1-4.
    [184]刘海林,章群,李名立等.太湖与广东汤溪水库微囊藻gyrB基因序列分析[J].湖泊科学,2010,22(2):221-226.
    [185]刘永定.蓝藻水华暴发的主要生物学机制.2003,第十二届中国藻类学研讨会论文摘要集,141.
    [186]骆昆,华慧娟.南京内秦淮河水污染治理初探[J].环境监测与预警,2010,2(2):43-45.
    [187]毛新伟,徐枫,徐彬等.太湖水质及富营养化变化趋势分析.水资源保护,2009,25:48-51.
    [188]彭亮.太湖、巢湖、滇池水体和水产品中微囊藻毒素污染状况研究.2010,中国科学院研究生院博士学位论文.
    [189]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.
    [190]秦红杰,李敦海.铜绿微囊藻高温胁迫后的超补偿生长[J].环境科学,2010,31(7):1504-1509.
    [191]施丽梅,蔡元锋,杨华林等.太湖梅梁湾水华微囊藻基因型组成和产毒微囊藻丰度的变化[J].湖泊科学,2009,21(6):801-805.
    [192]石晓丹,阮晓红.南京外秦淮河浮游动植物初步调查研究[J].人民长江,2008,39(3):51-56.
    [193]宋丽娜,郑晓宇,顾詠洁等.磷浓度对海洋小球藻叶绿素荧光及生长的影响[J].环境污染与防治.2010,32(8):20-24.
    [194]谭啸,孔繁翔,曾庆飞等.太湖中微囊藻群落的季节变化分析[J].生态与农村环境学报,2009,25(1):47-52.
    [195]王霞,吕宪国,张学林等.松花湖铜绿微囊藻无菌株和单藻株生长因素的研究[J].生态学杂志,2005,24(5):518-522.
    [196]王崇,王海瑞,徐晓菡等.光照与磷对铜绿微囊藻生长的交互作用[J].环境科学与技术,2010,33(4):35-37.
    [197]王婷婷,朱伟,李林.不同温度下水流对铜绿微囊藻生长的影响模拟[J].湖泊科学,2010,22(4):563-568.
    [198]王东红,黄清辉,王春霞等.长江中下游浅水湖泊中总氮及其形态的时空分布.环境科学,2004,25:27-30.
    [199]吴世凯,谢平,王松波.长江中下游地区浅水湖泊群中无机氮和TN/TP变化的模式及生物调控机制.中国科学(D辑),2005,35:111-120.
    [200]吴生才,陈伟民.太湖底泥中微囊藻环境适应性的适应研究.海洋湖沼通报,2004,4:41-45.
    [201]吴生才,陈伟民,高光.太湖藻类抗逆性的初步研究.生态环境,2004,13(4):500-502.
    [202]魏玉香,周宁晖,方孝华.南京市内秦淮河环境综合整治中水质变化趋势回顾[J].环境监测管理与技术,2004,16(6):42-43.
    [203]许大全,张玉忠,张荣铣.植物生理学通讯,1992,28(4):237-243.
    [204]颜庆云.浮游生物群落DNA指纹分析及其在生态学研究中的应用.2010,中科院水生所博士论文.
    [205]颜润润,逢勇,陈晓峰等.不同风力等级扰动对贫富营养下铜绿微囊藻生长的影响[J].环境科学,2008,29(10):2749-2753.
    [206]杨佳,胡洪营,李鑫.再生水水质环境中典型水华藻的生长特性[J].环境科学,2010,31(1):76-81.
    [207]谢平.论蓝藻水华的发生机制-从生物进化、生物地球化学和生态学视点.2007,北京:科学出版社.159-163.
    [208]杨清心.太湖水华成因及控制途径初探[J].湖泊科学,1996,8(1):67-74.
    [209]虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论-以滇池为例[J].植物分类学报,2007,45(5):727-741.
    [210]张玮,林一群,郭定芳等.不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响[J].水生生物学报,2006,30(3):318-322.
    [211]张毅敏,张永春,张龙江等.湖泊水动力对蓝藻生长的影响[J].中国环境科学,2007,27(5):707-711.
    [212]张靖天,霍守亮,姚波.铜绿微囊藻生长条件优化模拟研究[J].环境工程学报,2010,4(10):2161-2167.
    [213]郑朔方,杨苏文,金相灿.铜绿微囊藻生长的营养动力学[J].环境科学,2005,26(2):152-156.
    [214]张晓峰,孔繁翔,曹焕生等.太湖梅梁湾水华蓝藻复苏过程的研究[J].应用生态学报,2005,16(7):1346-1350.
    [215]张宁红,黎刚,郁建桥等.太湖蓝藻水华暴发主要特征初析.中国环境监测,2009,25(1):71-74。
    [216]宗良纲,王良梅,占新华等.南京秦淮河水环境质量现状评价[J].南京林业大学学报,2000,24:81-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700