浮游动物与藻类水华的控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化现象日趋严重的一个重要表征就是藻类水华的大规模暴发,控制水体富营养化和藻类水华的暴发是生态学研究的热点之一。
     利用浮游动物摄食蓝藻水华是生物操纵控制藻类水华的基础理论。根据浮游植物-浮游动物相互关系的体积-效率假说(Size-efficiency hypothesis),浮游动物对尺寸<100μm的藻类均有摄食作用,但对藻类的摄食效率与浮游动物的体长有密切的关系。在以水华微囊藻为食物时,浮游动物的不同体型大小对浮游动物滤食率有超过40%的影响力。大型浮游动物Daphnia是藻类最有效的牧食者,因此为控制富营养化造成的藻类水华,就要保持大型浮游动物Daphnia种群的优势地位。针对建立大型浮游动物摄食种群的需要,与经典生物操纵理论的控制滤食性鱼类的方法不同,本研究发现了造成大型浮游动物种群衰败的两个新的因素:
     大型浮游动物夏季种群衰败的生理原因-实验中测定一个世代时间内隆线溞(Daphnia carinata)体内CDNB, p-NB, p-NC, EA, Trans等五种不同底物的GST酶活力随生长变化的情况。GSTs酶活力随着生长的下降,如正常食物条件下,隆线溞体内CDNB为底物的GST酶活力由幼体的579.30nmol/min.(mg Protein)下降到成体的230.18 nmol/min.(mg Protein),下降了60%.而产毒铜绿微囊藻PCC7820的加入虽然短期内提高了GSTs酶活力水平,却大大降低了浮游动物的生长速度和繁殖能力(同期的隆线溞成体体长为2.17mm而加入微囊藻后体长为1.79mm,下降了17%;作为繁殖力代表的怀卵量下降也非常显著,正常条件下,成体隆线溞第八天怀卵量为9.50个/ind,而在12000cells/ml有毒铜绿微囊藻PCC7820的加入下,每个成体的第八天怀卵量为4.83个/ind)。但成体GSTs酶活力仍然保持稍低或略等于幼体的水平,这种GSTs酶活力水平的下降可能预示着大型浮游动物Daphnia的“生理衰老(Senescence)”,这种“生理衰老”的后果是大型浮游动物的成体死亡率(Adult mortality)居高不下,种群受其影响而衰败。因此很多富营养化湖泊中夏季的大型浮游动物种群衰败,对藻类滤食率下降,藻类水华无法控制。
     小型浮游动物取代大型浮游动物成为湖泊中优势种群的原因-为研究这种取代现象的存在,本研究设计了提升不同浮游动物对微囊藻毒素毒素耐受力的实验。实验中用到三种不同体型的枝角类浮游动物:隆线溞(Daphnia carinata,成体体长约2.7mm);微型裸腹溞(Moina micrura,成体体长约1.0mm);角突网纹溞(Ceriodaphnia cornuta,成体体长约0.5 mm)进行驯化实验,所用的蓝藻为产毒和不产毒的铜绿微囊藻PCC7820,产毒微囊藻的产毒能力为:Microcystin-LR 1.34×10-10μ?g.μm-3。驯化过程持续四个星期:从第一周到第四周,食物中微囊藻的比例由10%提升到40%。四周的驯化过程结束后,收集怀卵的浮游动物母体所产的幼体进行有毒微囊藻喂养的毒理实验。尽管产毒和不产毒的微囊藻均可造成微囊藻毒素毒素耐受能力的提高,但是小型浮游动物显然有更快的提高效率(角突网纹溞在100%有毒蓝藻条件下LT50上升了100-194%,远大于微型裸腹溞的35-52%和隆线溞的49-69%)。这说明小型的枝角类浮游动物如网纹溞长期遭受蓝藻水华的过程中提升对微囊藻毒素耐受的能力较强,因而维持较高的存活率和较大的种群,从而取代大型浮游动物成为水体中的优势种群,进而造成了藻类水华的无法控制。
     大型浮游动物Daphnia优势种群的建立对控制水体的藻类有着重要的意义,传统的经典生物操纵理论主要通过控制滤食性鱼类来达到建立Daphnia优势种群的目的,这种操纵方式在理论上还存在很多不足之处。本研究提出了导致Daphnia种群衰败的两个新的因素,找到克服这两个因素困扰的方法对建立水体中大的Daphnia种群,增强湖泊水体中浮游生物滤食率并控制蓝藻水华有重要意义。
During the past decades, eutrophication has resulted in a wide increase of cyanobacterial blooms in freshwater lakes,and many efforts have been done to alleviate the progress of eutrophication and the control cyanobacterial blooms.
     The use of zooplankton to control cyanobacterial blooms is a basic mechanism of the so-called“traditional biomanpulation”. There is a relationship between the body length of zooplankton and its food items (called as size-efficiency hypothesis): zooplankton can ingest algae smaller than 100 m, but the ingest rate is dependent on the body length of zooplankton. When Microcystis was use as food, the function of anmial length explained 40% of the variance in the fitration rate of cladocerans, Large-sized Daphnia was an efficient grazer of algae. In eutrophic lakes, we need to build a high population of Daphnia to control cyanobacterial blooms. There are two main reasons leading to the decline of Daphnia population.
     “Senescence”leaded to the decline of Daphnia population: we measured changes in GSTs activity of Daphnia carinata during their growths. Five different substrates were used: CDNB, p-NB, p-NC, EA and Trans. GSTs activity of Daphnia declined as the animal grew, i.e., when Daphnia carinata was fed with Senedesmus, GST activity toward CDNB was 579.30nmol/min.(mg Protein) for juvenile Daphnia, but declined to 230.18 nmol/min.(mg Protein) for adult Daphnia, a 60% decline. When MC-containing Microcystis aergunosa PCC7820 was added to the food, GSTs activity of Daphnia showed a little rise, but followed by a quick decline in body length and reproductive capacity. When fed with Senedesmus, adult D. carinata had a body length of 2.17 mm, while fed with Microcystis, adult D. carinata had a body length of only 1.79 mm, a 17% decline. Brood size also decreased significantly: in the control, each adult Daphnia produced 9.50 individuals during a period of eight days, while when fed with 12000 cells/ml MC-containing Microcystis aergunosa PCC7820, each adult Daphnia produced only 4.83 individuals. When fed with MC-containing Microcystis, the adult Daphnia showed similatr or lower GSTs activities compared with the juvenile Daphnia, suggesting that GST was a likely source of tolerance. Decrease of GSTs activity in Daphnia may mean“Senescence”during growth. Such“Senescence”leads to higher adult mortality in Daphnia, which causes decline of Daphnia population. As Daphnia population declines, the ingest rate of algae decreases, and consequently cyanobacterial blooms go out of control.
     In order to clarify why large-sized Daphnia are usually replaced by small-sized zooplanlton, we conducted an experiment to compare the ability of different zooplankton to develop tolerance to MC-containing Microcystis. Three different cladocerans were used in the experiments: Daphnia carinata (mean adult size 2.7mm), Moina micrura (mean adult size 1.0mm) and Ceriodaphnia cornuta (mean adult size 0.5mm). All cladocerans were pre-exposed to Microcystis strains for four weeks, with a proportion of Microsytis ranging from 10 to 40% in the food. Two Microsytis strains were used: MC-containing Microcystis aergunosa PCC7820 and MC-free Microcystis aergunosa PCC7820. Their newborns were collected for experiments. A pre-exposure to MC-containing or MC-free Microcystis increased tolerance against toxic Microcystis. The marked increases in survival rate and median lethal time (LT50, 100-194% increase, 35-52% in Moina micrura and 49-69% in Ceriodaphnia cornuta) in the M-C population of Ceriodaphnia suggest that small-sized cladocerans may develop stronger tolerance against Microcystis than large-sized ones when both groups are exposed to toxic Microcystis. This leads to a higher survivship of the small sized cladocerans when cyanobateria blooms. In this way, dominance of large-sized Daphnia is replaced by small-sized species, and a lowered filtering rate of algae is followed by burst of cyanobaterial blooms.
     To maintain a sufficiently large population of Daphnia in eutrophic lakes is very important for the control of cyanobacteria. In“traditional biomanilation”, the control of zooplanktontivore is a chief measure for the enhancement of Daphnia population, nevertheless, this measure fails to control cyanobacterial blooms in many etrophic lakes. In this study, we proposed two key factors responsible for the decline of large-sized Daphnia population, and it is recommended that measures overcoming the effects of these factors are important for a successful control of cyanobacterial blooms.
引文
1. Agrawal AA (1998). Algal defence, grazers, and their interactions in aquatic trophnic cascade. Acta Oecologia 19(4):331-337.
    2. Argentesi F, De Bernardi, R. and Di Cola, G. (1974) Mathematical models for the analysis of population dynamics in species with continuous recruitment. Mem. Ist. Ital. Idrobiol., 31, 245–275.
    3. An J and Carmichael WW (1994), Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunoorbent assay for the study of microcystis and Nodularins. Toxin, 32(12): 1495-1507.
    4. Baird DJ, Barbar I, Bradley M, Soares A.M.V.M, Calow P(1991). A comparative study of Genotype sensitivity to acute toxic stress using clones of Daphnia magna Straus. Ecotoxicology and Environmental Safety 21: 257-265.
    5. Baldwin WS, Leblanc G.A (1996). Expression and induction of an immunochemically related class of Glutathione S-transferase in Daphnia magna Comp. Biochem. Physiol.113 (2):261-267.
    6. Barata C, Baird DJ, Markich SJ (1998). Influence of genetic and environmental factors on the tolerance of Daphnia magna straus to essential and non-essential metals. Aquatic Toxicology 42: 115-137.
    7. Barata C, Markich S, Baird DJ, Taylor G and Soares A.M.V.M (2002). Genetic variability in sublethal tolerance to Mixtures of cadmium and zinc in clones of Daphnia magna straus. Aquatic Toxicology 60: 85-99.
    8. Beattie K.A, Ressler J, Wiegand C, Krause E, Codd G.A, Steinberg C.E.W.(2003).Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia Salina. Aquatic Toxicology 62:219-226
    9. Benndorf J and Henning, M. (1989) Daphnia and toxic blooms of Microcystis aeruginosa in BautzenReservoir. Int Revue Ges Hydrobiol. 74, 233–248.
    10. Benndorf, J (1995) Possibilities and limits for controlling eutrophication by biomanipulation. Internat. Revue Ges. Hydrobiol. 80, 519–534.
    11. Benndorf J, B?ing W, Koop J and Neubauer I, 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state.Freshwater Biology 47: 2282-2295
    12. Best J.H, Pflugmacher S, Wiegand C, Eddy F.B, Metcalf J.S, Codd G.A (2002) Effects of enteric bacterial and cyanobacterial Lipopolysaccharides, and ofmicrocystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquatic toxicology 60:223-231
    13. Bergmeyer HU, Hφrder M and Markowetz D. Reliability of laboratory Results and practicability of procedures.PP:21-49
    14. Berthon JL, Brouse S (1995), Modification of migratory behavior of planktonic crustacean in the presence of a bloom of Microcystis aeruginosa (Cyanobacteria) space partition within Aquatic Ecosystems. Hydrobiologia (300-301):185-193
    15. Board P.G, Baker R.T, Chelvanayagam G and Jermiin LS (1997). Zeta, a novel class of glutathione transferases in a range of species from plants to humans Biochem J 328:929-935.
    16. Boersma,M. (1995) Competition in natural populations of Daphnia. Oecologia, 103, 309–318.
    17. Boersma,M. and Vijverberg,J. (1994a) Seasonal variation in the condition of two Daphnia species and their hybrid in a eutrophic lake: evidence for food limitation. J. Plankton Res., 16, 1793–1809.
    18. Boersma,M. and Vijverberg,J. (1994b) Resource depression in Daphnia galeata, Daphnia cucullata and their interspecific hybrid: life history consequences. J. Plankton Res., 16, 1741–1758.
    19. Boersma, M and Vijverberg,J. (1995) The significance of nonviable eggs for Daphnia population dynamics. Limnol. Oceanogr. 40, 1215–1224.
    20. Boersma, M., van Tongeren,O.F.R. and Mooij,W.M. (1996) Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can. J. Fish. Aquat. Sci. 53, 18–28.
    21. B?ing TJ, Wagner A, Voigl H, Deppe T and Benndorf J (1998). Phytoplankton responses to grazing by Daphnia galeata in the biomanipulated Bautzen reservoir. Hydrobiologia 389:101-114
    22. Borgeraas J and Hessen DO (2002), Variations of antioxidant enzymes in Daphnia species and populations as related to ambient UV exposure. Hydrobiologia 477:15-30.
    23. Butler NM (1998). Effects of sediment loadingon food perception and ingestion by freshwater copepods pp: 315-387.
    24. Carmichael WW, YU Mj, He JW and Yu JL(1988), Occurrence of the toxic cyanobacterium (blue-green algae ) Microsystis aeruginosa in central China Arch Hydrobiology 114(1):21-30.
    25. Carmichael W.W. (1994). The toxins of cyanobacteria. Sci. Am. 270: 64–70.
    26. Carrillo P, Pizarro LC and Castillo PS, (1990). Analysis of phytoplankton-zooplankton relationships in a oligotrophic lake under natural and manipulated conditions. Hydrobiologia 200/201:49-58
    27. Chang K.H and Hanazato T (2003). Seasonal and reciprocal succession and cyclomorphosis two Bosimina species (Cladocera, Crustacea) coexisting in a lake: their relationship with invertebrate predators. Journal of plankton Research. 25(2):141-150.
    28. Chen F, Xie P(2003). The Effects of Fresh and Decomposed Microcystis aeruginosa on cladocerans from a subtrophic Chinese lake Journal of Freshwater Ecology 18(1):97-104.
    29. Chen F and Xie P(2003). Different effects of alternative green algae on toxic of single-cultures Microcystis aeruginosa PCC7820 and Liberated M.aeruginosa as food for Daphnia carinata. In press.
    30. Chen W, Song L, Ou D and Gan N (2005). Chronic Toxicity and responses of several important Enzymes in Daphnia magna on Exposure to Sublethal Microcystin-LR. Environmental. Toxicology 20:323-330.
    31. Christoffersen K (1993), Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnol Oceangr 38(3):561-573
    32. Christoffersen K. (1996). Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 35: 42–50.
    33. Claska ME and Gilbert JJ (1998). The effect of temperature on the response of Daphnia to toxic Cyanobacteria. Freshwater Biology (39):221-232.
    34. Coley PD, Bryant JP and Chapin Ⅲ FS(1985). Response Availability and plant Antiherbivore Defense Science 230(4728): 895-899.
    35. Dawidowicz P, (1990). Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobilogia 200/201: 43-47
    36. Dawson R.M (1998). The toxicology of Microcystis. Toxin 36 (7): 953-962.
    37. De Bernardi R and Giussani G, 1990. Are blue-green algae a suitable food for zooplankton? An overviem. Hydrobilogia 200/201:29-41
    38. De Stasio, B.T.Jr, Rudstam, L.G., Haning,A., Soranno,P. and Allen,Y.C. (1995) An in situ test of the effect of food quality on Daphnia population growth. Hydrobiologia, 307, 221–230.
    39. Desmarais, K.H. (1997) Keeping Daphnia out of the surface film with cetyl alcohol. J. Plankton Res. 19, 149–154.
    40. DeMelo R, France R and McQueen DJ, 1992, Biomanipulation hit or myth? Limnol, Oceanogr﹔37: 192-207
    41. DeMott WR (1979). An analysis of the precision of birth and death rate estimates for egg-bearing.zooplankters Algal Toxicity, Manageability and nutritional quality pp:337-345.
    42. DeMott WR and Kerfoot WC(1982). Competition among cladocerans: Nature of the interaction between Bosmina and Daphnia.Ecology 63(6):1806-1825.
    43. DeMott WR (1988). Discrimination between algae and artifical particles by freshwater and marine copepods. Limnology. Oceanogr 33(3):397-408.
    44. DeMott WR and Moxter F(1991). Foraging on Cyanobacteria by copepods responses to chemical defenses and resource aboundance. Ecology 72(5):1820-1834.
    45. DeMott WR, Zhang Qing-xue and Carmichael WW (1991). Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia Limnol Oceanogr 36(7):1346-1357.
    46. DeMott WR (1995).The influence of prey hardness on Daphnia’s selectivity for large prey. Hydrobiologia 307:127-138.
    47. DeMott, WR; Dhawale, S(1995). Inhibition of in vitro protein phosphatase activity in three zooplankton species by microcystin-LR, a toxin from cyanobacteria. Archiv fur Hydrobiologie. Stuttgart [ARCH. HYDROBIOL.], vol. 134, no. 4, pp. 417-424.
    48. DeMott WR, Müller-Navarra DC(1997). The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshwater Biology 38:649-664.
    49. DeMott WR (1998). Utilization of a cyanobacterium and a phosphorus-deficient green alga as complementary resources by Daphnids. Ecology 79(7):2463-2481
    50. DeMott WR (1999). Foraging strategies and growth inhibition in five dephnids feeding on mixtures of a toxic Cyabibacterium and a green alga. Freshwater Biology 42:263-274.
    51. DeMott WR, Gulati RD, Donk EV (2001). Daphnia food limitation in three hypereutrophic Dutch Lakes: Evidence for exclusion of large-bodied species byinterfering filaments of cyanobacteria. Limnol Oceanogr 46(8):2054-2060.
    52. DeMott WR, Gulati RD and Donk EV(2001). Effects of dietary phosphorus deficiency on the abundance, Phosphorus balance, and growth of Daphnia cucullata in three hypereutrophic Dutch lakes. Limnol. Oceanogr 46(8):1871-1880.
    53. DeMott WR and Tessier AJ (2002). Stoichiometric constraints VS algal Defences: Testing mechanisms of zooplankton food limitation. Ecology 83(12):3426-3433.
    54. Dierickx PJ and Vanderwielen C (1986). Glutathione-Dependent toxicity of the Algicide 1-chloro-2, 4-dinitrobenzene to Daphnia magna straus. Bull. Environ. Contam. Toxicol 37:629-632.
    55. Dilution Water PP:31-36
    56. Dodson, S.I. (1972) Mortality in a population of Daphnia rosea. Ecology, 53, 1011–1023.
    57. Dodson S(1988), The ecological role of chemical stimuli for the zooplankton predator-avoidance behavior in Daphnia Limnol Oceanogr 33(6,Part2).1431-1439
    58. Elser JJ. Carney HJ and Goldman CR, 1990. The zooplankton-phytoplankton intereface in lakes of contrasting trophic status: an experimental comparison. Hydrobilogia 200/201:69-82
    59. Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14(1): 3-8
    60. Evolution revealed permant eggs. Nature 401(1999)
    61. Ferguson AJD, Thompson JM and Reynolds CS (1982). Structure and dynamics of zooplankton communities maintained in closed systems, with special reference to the algal food supply. Journal of Plankton Research Volume 4 Number 3: 523-543.
    62. Ferr?o-Filho Ads, Azevedo M.F.O and DeMott WR (2000). Effects of toxic and non-toxic Cyanobacteria on the life history of tropical and temperate Cladocerans. Freshwater Biology. 45:1-19.
    63. Ferr?o-Filho Ads , Kozlowsky-Suzuki B and Azevedo S.M.F.O (2002), Accumulation of microcystins by a tropical zooplankton community. Aquatic Toxicology 59: 201-208
    64. Ferr?o-Filho Ads and Azevedo M.F.O (2003). Effects of unicellular and colonial forms of toxic Microcystis aeruginosa from Laboratory cultures and naturalpopulations on tropical cladocerans. Aquatic Ecology 37:23-35.
    65. Fulton RS Ⅲ, and Paerl HW(1987a).Toxic and inhibitory effects of the blue-green algal Microcystis aeruginosa on herbivorous zooplankton. Journal of Plankton Research 9(5):837-855.
    66. Fulton RS Ⅲ, and Paerl HW(1987b).Effects of colonial morphology on zooplankton utilization of algal resoures during blue-green algal (Microcystis aeruginosa ) blooms Limnol Oceanogr 32(3):634-644.
    67. Fulton R.S.I. and Jones R.C. (1991). Growth and reproductive responses of Daphnia cyanobacterial blooms on the Potomac River. Int. Rev. Gesamten Hydrobiol 76: 5–19.
    68. Geng H, Xie P, Deng DG and Zhou Q (2005). The Rotifer Assemblage in a shallow Eutrophnic Chinese lake and its relationships woth cyanobacterial blooms and crustacean zooplankton. Journal of Freshwater Ecology. Volume 20(1):93-100
    69. George DG and Edwards RW (1974). Population dynamics and production of Daphnia hyaline in a eutrophic reservoir. Freshwater Biology 4: 445-465.
    70. Genkai-Kato M (2004). Nutritional value of algae: acritical control on the stability of Daphnia-algal systems. Journal of Plankton Research 26(7):711-717.
    71. Ghadouani A., Pinel-Alloul B. and Prepas E.E. (2003). Effects ofexperimentally induced cyanobacterial blooms on crustaceanzooplankton communities. Freshwater Biol. 48: 363–381.
    72. Giddings JM, Salvito D and Putt A.E (2000). Acute Toxicity of 4-amino muskxylene to Daphnia magna in Laboratory water and nutural water. Water Research 34(14):3686-3689.
    73. Gilbert JJ (1988). Suppression of rotifer population by Daphnia: A review of the evidence, the mechanisms and the effects on zooplankton community structure. Limnol Oceanogr 33(6):1286-1303.
    74. Gilbert J.J. and Durand M.W. (1990). Effect of Anabaena flos-aquae on the abilities of Daphnia and Keratella to feed and reproduce on unicellular algae. Freshwater Biol 24: 577–596.
    75. Gliwicz ZM (1979). Filtering rates, food size selection, and feeding rates in cladocerans-another aspect of interspecific competition in filter-feeding zooplankton. Algal toxicity, manageability and Nitritional quality pp: 282-291.
    76. Gliwicz ZM (1990). Why do cladocerans fail to control algal blooms?Hydrobiologia 200/201:83-97
    77. Gliwicz Z.M. (1990). Daphnia growth at different concentrations of blue-green filaments. Arch. Hydrobiol. 120: 51–65.
    78. Gliwicz ZM and Lampert W (1993). Body-size related survival of cladocerans in a trophic gradient: an enclosure study. Arch. Hydrobiol 129(1):1-23.
    79. Gophen M, (1990). Biomanipulation: restrospective and future development. Hydrobilogia 200/201:1-11
    80. Gorbi G, Corradi MG, Invidia M, Rivara L, Bassi M(2002). Is Cr( Ⅵ) toxicity to Daphnia magna modified by food availability or algal exudates? The hypothesis of a specific chromium/algae/exudates interaction. Water Research 36: 1917-1926.
    81. Gulati RD and DeMott WR (1997). The role of food quality for zooplankton: remarks on the state-of –the –art, perspectives and priorities.Freshwater Biology 38:753-768.
    82. Gustafsson S and Hansson LA (2004). Development of tolerance against toxic cyanobacteria in Daphnia. Aquatic Ecology 38: 37-44.
    83. Habig WH, Pabst MJ, Jakoby MB(1974), Glutathione S-transferases the journal of Biological Chemistry vol 249 (22):7130-7139
    84. Habig W.H, Jakoby W.B (1981). Assays for differentiation of Glutathione S-transferases Methods in Enzymology 77:398-405.
    85. Hairston Jr NG, Lampert W, Caceres CE, Holtmeier CL, Gaedke U, Fischer JM, Fox JA and Post DM (1999). Rapid evolution revealed by dormant eggs. Nature 401(6152):446.
    86. Hall, D.J. (1964) An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology, 45, 94–112.
    87. Hallegraeff G.M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.
    88. Hayes JD, Flanagan JV and Jowsey IR (2005). Glutathione transferases Annu Rev.Pharmacol. Toxicol 45:51-58
    89. Hanazato,T. and Yasuno,M. (1985) Effect of temperature in the laboratory studies on growth, egg development and first parturition of five species of Cladocera. Japan J. Limnol., 46, 185–191.
    90. Hanazato T and Yasuno M (1987). Evaluation of Microcystis as food for zooplankton in a eutrophnic lake. Hydrobiologia 144:251-259.
    91. Hanazato T. (1991) Interaction between Microcystis and cladocera in the highly eutrophic lake Kasumigaura, Japan. Internationale Revue der gesamten Hydrobiologie, 76, 21–36.
    92. Haney JF, Forsyth D and James MR (1994). Inhibition of zooplankton filtering rates by dissolved inhibitors produced by naturally occurring cyanobacteria. Arch.Hydrobiol 132(1):1-13.
    93. Havens KE (1999). Comparative analysis of lake plankton structure VS function Aquature Sci 61:150-167.
    94. Hawkins P and Lampert W (1989).The effect of Daphnia body size on filtering rate inhibition in the presence of a filamentous cyanobacterium. Limnol. Oceanogr 34(6):1084-1089
    95. Helen K and Lampert W (1999), Urea excretion by Daphnia: A colony-inducing factor in Scenedesmus? Limnol Oceanogr 44(8): 1894-1903.
    96. Hessen D.O and Donk EV (1993), Morphological changes in Scenedesmus induce by substances released from Daphnia Arch Hydrobiology 127(2): 129-140.
    97. Hessen D.O, Borgeraas J and ¢rbAEk JB (2002). Response in pigmentation and antioxidant expression in artic Daphnia along gradient of Doc and UV exposure. Journal of plankton Research. Volume 24 10:1009-1017.
    98. HieTAla J, Laurēn-M??TT? C and Walls M(1997). Sensitivity of Daphnia to toxic cyanobacteria to toxic cyanobacteria: effects of genotype and temperature. Freshwater Biology 37:299-306.
    99. Hovenkamp, W. (1989) Instar-dependent mortalities of coexisting Daphnia species in Lake Vechten, The Netherlands. J. Plankton Res., 11, 487–502.
    100.Hovenkamp, W. (1990) Instar-specific mortalities of coexisting Daphnia species in relation to food and invertebrate predation. J. Plankton Res., 12, 483–494.
    101.Hovenkamp,W. (1991) How useful are laboratory-determined growth curves for the estimation of size-specific mortalities in Daphnia populations? J. Plankton Res., 13, 353–361.
    102.Hülsmann,S. and Mehner,T. (1997) Predation impact of underyearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshwater Biol., 38, 209–219.
    103.Hülsmann,S., Mehner,T., Worischka,S. and Plewa,M. (1999) Is the difference inpopulation dynamics of Daphnia galeata in littoral and pelagic areas of a long-term biomanipulated reservoir affected by age-0 fish predation? Hydrobiologia, in press.
    104.Hülsmann S and Weiler W(2000). Adult, not juvenile mortality as a major reason for the midsummer decline of Daphnia population. Journal of Plankton Research. 22(1):151-168.
    105.IchiKAWA T, Yashioka T, Wada E and Hayashi H(1992).Estimation of Nitrogen uptake Rate of small zooplankton using 15N tracer Jpn J Limnol 53(4): 273-280
    106.Innes DJ (1997). Sexual reproduction of Daphnia pulex in a temporary habitat. Oecologia 111:53-60.
    107.Javvis AC, Hart RC and Combrink S (1988). Cladoceran filtration rate-body length relations: model improvements developed for a Microcystis-dominanted hypertrophic reservoir. Journal of Plankton Research 10(1):115-131.
    108.Jarvis AC, Hart RC and Combrink S (1987), zooplankton feeding on size fractionated Microcystis colonies and chlorella in a hypertrophic lake (hartbeespoort Dam, south Africa): implications to resource utilization and zooplankton succession. Journal of Plankton Research 9(6):1231-1249.
    109.Jang MH, HA K, Joo GJ and Takamura N (2003). Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology 48:1540-1550.
    110.Jarvis AC (1986). Zooplankton community grazing in a hypertrophic lake (Hartbeesport Dam, South Africa). Journal of Plankton Research 8(16):1065-1078
    111.Kaebernick M, Rohrlack T, Christofferson K and Neilan A (2001). A spontaneous mutant of Microcystin biosynthesis: genetic characterization and effect on Daphnia. Environment Microbiology 3(11):669-679.
    112.Kerfoot WC, Levitan C and DeMott WR (1988). Daphnia-Phytoplankton interactions: Density-Dependent shifts in resource quality. Ecology 69(6):1806-1825.
    113.Kirk KL and Gilbert JJ (1992). Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria. Ecology 73(6):2208-2217.
    114.Knisely K and Geller W (1986). Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69:86-94.
    115.Kotak BG, Zurawell RW, Prepas EE and Holmes CFB (1996). Microcystin-LRconcentration in aquatic food web compartments from lakes of varying trophic status. Can. J. Fish. Aquat Sci 53:1974-1985.
    116.Kurmayer R and Jüttner F(1999). Strategies for the co-existence of zooplankton with the toxic cyanobacterium planktothrix rubescens in lake zürich. Journal of Plankton Research.21 (4):659-683.
    117.Lammens EHRR, Gulati RD, Meijer M.L and Donk E.V, (1990). The first biomanipulation conference:w a synthesis Hydrobiologia 200/201:619-627
    118.Lampert W, (1977). Studies on carbon balance of Daphnia pulex De Geer as related to environmental conditions. II. The dependenceof carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol. 48: 310–335.
    119.Lampert W (1981). Inhibitory and toxic effects of blue-green Algae on Daphnia. Hydrobiologia 66(3):285-298.
    120.Lampert W (1982). Further studies on the inhibitory effect of the toxic blue-green Microcystis aerginosa on the filtering rate of zooplankton Arch Hydrobiology 95(1-4):207-220.
    121.Lampert, W. and Trubetskova, I. (1996) Juvenile growth rate as a measure of fitness in Daphnia. Funct. Ecol., 10, 631–635.
    122.Lampert W and Taylor B.E (1985). Zooplankton Grazing in a Eutroohic Lake: Implications of Diel vertical Migration. Ecology 66(1):68-82.
    123.Lampert W, Fleckner W, Rai H and Taylor BE (1986). Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase Limnol Oceanogr 3(3):478-490
    124.Lampert W (1986). Response of the respiratory rate of Daphnia magna to changing food conditions. Oecologia 70:495-501.
    125.Lampert T.W, Boland M.P, Holmes C.F.B and Hrudey S.E (1994). Communications: Quantitation of the Microcystin Hepatotoxins in water at Environmentally relevant concentrations with the protein phosphatase Bioassay. Environ.Sci. Technol 28:753-755.
    126.Lampert W, Rothaupt KO and Elert EO (1994). Chemical induction of colony formation in a green alga(Scenedesmus acutus) by grazers (Daphnia) Limnol Oceanogr 39(7): 1543-1550
    127.Lehtiniemi M, Engstr?m-?st J,Karjalainen M, Kozlowsky-suzuki B, Viitasalo M(2002). Fate of cyanobacterial toxins in the pelagic food web: Transfer tocopepods or to faecal pellets? Marine Ecology Progress series 241:13-21.
    128.Lin, J.R and Chu F.S (1994). In vitro neutralization of the inhibitory effect of microcystin-LR to Protein Phosphatase 2A by Antibody against the toxin. Toxin 32(5): 605-613.
    129.Long BM, Jones GJ, ORR PT (2001), Cellular Microcystin content in N-limited Microcystis Aeruginosa can be predicted from growth rate Applied And Environmental MicroBiology 67(1):278-283.
    130.Lundstedt L and Brett MT (1991). Differential growth rates of three cladoceran species in response to mono-and mixed-algal cultures. Limnol Oceanogr 36(1):159-165.
    131.Lürling M and Donk EV (1997), Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol Oceanogr 42(4): 783-788.
    132.Lürling M(2003). Effects of Microcystin –Free and Microcystin-containing strains of the cyanobacterium Microsystis aeruginosa on Growth of the Grazer Daphnia magna. Environ toxicol 18:202-210.
    133.Lynch M (1979), Predation, Enrichment, and the Evolution of cladoceran life Histories: A theoretical approach. Algal toxicity, Manageability and Nutritional quality pp: 367-387.
    134.Lynch M and Shapiro J(1981). Predation, enrichment, and phytoplankton community structure. Limnol Oceanogr 26(1):86-102.
    135.Lynch, M. (1983) Estimation of size-specific mortality rates in zooplankton populations by periodic sampling. Limnol Oceanogr., 28, 533–545.
    136.Lynch, M. (1989). The life history consequences of resource depression in Daphnia pulex. Ecology, 70,246–256.
    137.Lynch, M. and Ennis, R. (1983) Resource availability, maternal effects, and longevity. Exp. Geront., 18, 147–165.
    138.MacKintosh C., Beattie K.A., Klumpp S., Cohen P.T.W. and CoddG.A. (1990). Cyano- bacterial microcystin-LR is a potent and specificinhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264: 187–192.
    139.Manca M, Ramoni C and Comoli P (2000). The decline of Daphnia hyaline galeata in lago Maggiore: a comparison of the population dynamics before and after oligotrophication Aquat Sci 62:142-153.
    140.Macias-silva M and GarciA-s?innz JA (1994). Inhibition of hormone-stimulated inositol phosphate production and disruption of cytoskeletal structure Effects of okadaic Acid, Microcystin, Chlorpromazine, WT and Nystatin. Toxin 32(1): 105-112.
    141.Magalk?es UF, Marinho M.M, Domingos P, Oliveira A.C, Costa SM, Azevedo L.O, Azevedo S.M.F.O(2003). Microcystins (Cyanobacteria hepatotoxins) bioaccumulation in fish and Crustaceans from sepetiba Bay (Brasil RJ) Toxin 42: 289-295.
    142.Matveev V., Matveeva L. and Jones G.J. (1994). Study of the abilityof Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity: Implications for bioman- ipulation in Australia. Aust. J. Mar. Freshwater Res. 45: 889–904.
    143.McCord J.M and Fridovich I (1969). Superoxide Dismutase-an enzymic function for erytheo cuprein (Hemocuprein). The Journal of Biological Chemistry. 244 (22):6049-6055.
    144.Meester LD, Weider LJ and Tollrian R(1995). Alternative antipredator defences and genetic polymorphism in a pelagic predator-prey system.. Nature 378:483-485.
    145.Mehner, T., Schultz,H., Werner,M.-G., Wieland,F., Herbst,R. and Benndorf,J. (1996) Do 0+ percids couple the trophic cascade between fish and zooplankton in the top-down manipula- ted Bautzen reservoir (Germany)? Publ. Espec. Inst. Esp. Oceanogr., 21, 243–251.
    146.Mehner,T., Hülsmann,S., Worischka,S., Plewa,M. and Benndorf,J. (1998a) Is the midsummer decline of Daphnia really induced by age-0 fish predation? Comparison of fish consumption and Daphnia mortality and life history parameters in a biomanipulated reservoir. J. Plankton Res., 20, 1797–1811.
    147.Mehner, T., Plewa, M., Hülsmann,S. and Worischka,S. (1998b) Gape-size dependent feeding of age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata. Arch. Hydrobiol., 142, 191–207.
    148.Mikalsen B, boison G, Skillberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS (2003). Natural Variation in the Microcystin synthetase operon mcyABC and Impact on Microcystin production in Microcystins strains. Journal of bacteriology 185(9):2774-2785
    149.Michels E, Leynen M, Cousyn C, Meestor LD, Ollevier F(1999). Phototacticbehavior of Daphnia as a tool in the continuous monitoring of water quality: experiments with a positively Phototactic Daphnia Magna clone. Water Research 33(2):401-408.
    150.Mohamed ZA (2001). Accumulation of cyanobacterial Hepatotoxins by Daphnia in some Egyptain Irrigation canals. Ecotoxicology and Environmental safety 50:4-8
    151.Nanazato T and Yasuna M (1985). Population dynamics and production of cladoceran zooplankton in the highly eutrophnic lake kasumigaura. Hydrobiologia 124:13-22.
    152.Nandini S. (2000). Responses of rotifers and cladocerans to Microcystis aeruginosa Cyanophyceae: A demographic study.Aquatic. Ecol. 34: 227–242.
    153.Nandini S and Rao T.R. (1998). Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacteriumMicrocystis aeruginosa as food. Aqua Ecol. 31: 283–298.
    154.Nizan S, Dimentman C and Shilo M (1986). Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna. Limnol.Oceanogr. 31: 497–502.
    155.OECD (1998) OECD Guidelines for testing of chemicals Daphnia magna reproduction test.
    156.Oh H.-M., Lee S.J., Jang M.-H.and Yoon B.-D (2000). Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Applied and Environmental Microbiology, 66, 176–179.
    157.Oliver R and Ganf GG (2000). Freshwater blooms. the ecology of cyanobacteria pp:149-194
    158.Oliverira-Filho EC and paumagartten FJR (2000), Toxicity of Euphorbia milu latex and Nidosamide to snails and Nontarget Aquatic species. Ecotoxicolgy and Environmental safety 46:342-350.
    159.Pflugmacher S, Wiegand C, Werner S, Schr?der H, Kankaanp?? H (2005). Activity and substrate specificity of Cytosolic and Microsomal Glutathione S-transferase in Australian Black Tiger Prawns (Penaeus monodon) after exposure to cyanobacterial toxins. Environ. toxicol 20:301-307.
    160.Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA, Steinberg C.E.W (1998) Identification of an enzymatically formed glutathioneconjugate of the cyanobacterial hepatotoxin microcystin –LR, the first step of detoxication. Biochimica et Biophysica Acta 1425:527-533.
    161.Pinho G.L.L, Rosa C.M.D, Yunes J.S, Luquet C.M, Bianchini A, Monserrat J.M (2003). Toxic effects of microcystins in the hepatopancreas of the estuarine crab chasmagnathus granulatus (Decapoda, Grapsidae). Comparative. Biochemistry and Physiology Part C 135:459-468.
    162.Porter KG and Orcutt JD (1979). Nutritional adequacy, Manageability, and toxicity as factors that determine the food quality of green and blue –green algae for Daphnia Algal toxicity, Manageability and Nutritional quality pp:268-280.
    163.Power ME (1990). Effects of fish in River Food webs Science 250:811-813.
    164.Pan H, Song LR, Liu YD, B?rner T (2002), Detection of hepatotoxic Microcystis strains by PCR with intact cells from both culture and environment samples Arch Microbiol 178:421-427.
    165.Pan H, Song LR, Li SD and Liu YD(1999), Phylogenetic relationship among seven strains of Microcystis based on the randomly amplified polymorphic DNA PCR ACTA Hydrobiologia Sinica 1999 23(5):469-474
    166.Reinikainen M, Hietala J and Walls M (1999). Reproductive allocation in Daphnia exposed to toxic Cyanobacteria. Journal of Plankton Research 21(8):1553-1564.
    167.Reinikainen M, Meriluoto J.A.O, Spoof L, Harada K.I (2001). The toxicities of a polyunsaturated Fatty Acid and a Microcystin to Daphnia magna Toxicities of PuFa to Daphnia. 444-448.
    168.Repka S (1997). Effects of food type on the life history of Daphnia clones from lakes differing in trophic state Ⅰ Daphnia galeata feeding on Scenedesmus and Oscillatoria. Freshwater Biology 37:675-683.
    169.Repka S (1998). Effects of food type on the life history of Daphnia clones from lakesdiffering in trophic state Ⅱ Daphnia cucallata feeding on mixed diets. Freshwater Biology 38:685-692.
    170.Repka S, Veen A and Vijverberg J (1999). Morphological adaptations in filtering screens of Daphnia galeata to food quantity and food quality. Journal of Plankton Research 2(5):971-989.
    171.Reynolds C.S. (1994). The ecological basis for the successful biomanipulation of aquatic communities . Arch. Hydrobiol. 130: 1–33.
    172.Reynolds C (1998). The state of freshwater ecology. Freshwater Biology39:741-753.
    173.Roche KF (1998). Growth potential of Daphnia magna straus in the water of clairy waste stabilization ponds. Water research 32(4): 1325-1328.
    174.Rohrlack T, Henning M and Kohl JG (1999). Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata’s ingestion rate.Journal of Plankton Research 21(8):1489-1500.
    175.Sarma S.S.S, Nandini S and Gulati R.D (2002). Cost of reproduction in selected species of zooplankton (rotifers and cladocerans). Hydrobiologia 481:89-99.
    176.Sartonov A (1995). Effects of Microcystis aeruginosa on interference competition between Daphnia pulex and Keratella cochlearis. Hydrobiologia (307):117-126.
    177.Sanchez M, Ferrando M.D, Andreu ESE (1999). Assessment of the toxicity of a pesticide with a two-generation reproduction test using Daphnia magna comparative Biochemistry and Physiology Part C 124:247-252.
    178.Schoenberg S.A. and Carlson R.E. (1984). Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. OIKOS 42: 291–302.
    179.Shapiro J; Wright DI, 1984. Lake restoration by biomanipulation: Round lake, Minnesota, the first two years. Freshwater Biology 14:371-383
    180.Shapiro J 1990. Biomanipulation: the next phase-making it stable. Hydrobiologia 200/201:13-27
    181.Sheehan D, Meade G, Foley VM and Dowd C.A (2001). Structure, Function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J360:1-16
    182.Sim A.T.R and Mudge L.M (1993). Protein Phosphatase activity in cyanobacteria consequences for Microcystin toxicity analysis. Toxin. 31(9): 1179-1186.
    183.Sivonen K. 1996. Cyanobacterial toxins and toxin production. Phycologia. 35(Suppl 6): 12-24.
    184.Sommer U, Gliwicz ZM, Lampert W and Duncan A (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiology 106(4):433-471.
    185.Steiner CF (2004). Daphnia dominance and zooplankton community structure in fishless ponds. Journal of Plankton Research 26(7):799-810.
    186.Strange R.C, Spiteri M.A, Romachandran S and Fryer AA (2001). Glutathione S-transferase family of enzymes. Mutation Research 482:21-26
    187.Suzuki T, Takagi Y, Osanai H, Li Li, Takeuchi M, Katoh Y, Kobayashi M and Yamamoto M(2005). Pi class glutathione S-transferase genes are regulated by Nrfz through an evolutionarily conserved regulatory element in zebrafish Biochem J 388:65-73
    188.Tarczynska M, Nalecz- Jawecki G, Romanowska-Duda Z, Sawicki J, Beattie K, Codd G and Zalewski M(2001). Tests for the toxicity assessment of Cyanobacterial Bloom Samples. Toxicity Assessment of Cyanobacterial Bloom. 383-390
    189.Takenaka S and Otsu R (1999), Effects of L-cysteine and reduced glutthione on the toxicities of microcystin-LR: the effect for acute Liver failure and inhibition of protein Phosphatase 2A acticity. Aquatic Toxicology 48:65-68.
    190.Taylor, B.E. (1988) Analysing population dynamics of zooplankton. Limnol Oceanogr., 33, 1266–1273.
    191.Tessier, A.J. (1986) Comparative population regulation of two planktonic cladocera (Holopedium gibberum and Daphnia catawba). Ecology, 67, 285–302.
    192.Tessier, A.J., Henry, L.L., Goulden,C.E. and Durand,M.W. (1983) Starvation in Daphnia: energy reserves and reproductive allocation. Limnol Oceanogr., 28, 667–676.
    193.Theiss J, Zielinski K and Lang H, 1990. Biomanipulation by introduction of herbivorous zooplankton. A helpful shock for eutrophic lakes. Hydrobiologia 200/201:59-68
    194.Thostrup L. and Christoffersen K. (1999). Accumulation of microcystinin Daphnia magna feeding on toxic Microcystis. Arch.Hydrobiol. 145: 447–467.
    195.Threlkeld, S.T. (1976) Starvation and the size structure of zooplankton communities. Freshwater Biol., 6, 489–496.
    196.Threlkeld, S.T. (1979) The midsummer dynamics of two Daphnia species in Wintergreen Lake, Michigan. Ecology, 60, 165–179.
    197.Threlkeld, S.T. (1985) Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. Ergebn Limnol., 21, 333–340.
    198.Townsend DM and Tew KD (2003). The role of glutathione S-transferase in anti-canser drug resistance. Oncogene 22:7369-7375
    199.Trabeau M, Bruha-keap R, McDemott C, KeoMany M, Millsaps A, Emery A and JR, BDS(2004). Midsummer decline of a Daphnia population attributed in part tocyanobacterial capsule production. Journal of Plankton Research 26(8):949-961.
    200.Ventura RF and Enderez E.M (1980). Preliminary studies on Moina sp production in freshwater tanks.Aquaculture 21:93-96.
    201.Versteeg DJ, Stalmans M, Dyer SD and Janssen C (1997). Ceriodaphnia and Daphnia: A comparison of their sensitivity to xenobiotics and utility as a test species Chemosphere 34(4):869-892
    202.Vijverberg, J. (1976) The effect of food quantity and quality on the growth, birth-rate and longevity of Daphnia hyalina Leydig. Hydrobiologia, 51, 99–108.
    203.Vijverberg, J. (1980) Effect of temperature in laboratory studies on development and growth of cladocera and copepoda from Tjeukemeer, The Netherlands. Freshwater Biol., 10, 317–340.
    204.Vijverberg, J. and Richter,A.F. (1982) Population dynamics and production of Daphnia hyalina Leydig and Daphnia cucullata Sars in Tjeukemeer. Hydrobiologia, 95, 235–259.
    205.Vontas JG, Small G.J, Nikou D.C Ranson H and Hemingway J (2002). Purification molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown plantthopper, Nilaparvata Lugens Biochem J 362:329-337
    206.Walls M, Laurēn-M??TT? CL, Ketola M, OHRA-AHO P., Reinikainen M.S and Repka S (1997). Phenotypic plasticity of Daphnia life history traits the roles of predation, food lecel and toxic cyanobacteria .Freshwater Biology 38:353-364.
    207.Watanabe M.M. and Ichimura T. (1977) Fresh and saltwater forms of Spirulina platensis in axenic cultures.Japanese Society of Phycology, 25, 371–377.
    208.Watanabe M.F., Harada K.I., Matsuura K., Watanabe M. and Suzuki M. (1989) Heptapeptide toxin productionduring the batch culture of two Microcystis species (cyanobacteria). Journal of Applied Phycology, 1, 161–165.
    209.Water quality-Determination of the acute toxicity of substance to Daphnia (Daphnia magna straus) GB/Ti3266-91 2003-11-11.
    210.Wiegand C, Pflugmacher S, Oberemm A, Meems N, Beattie K.A, Steinberg C.E.W Codd G.A(1999). Uptake and Effects of Microcystin-LR on Detoxication Enzymes of early life stages of the zebra fish (Danio rerio). Environ, toxicol 14:89-95
    211.Wiegand C, Peuthert A, Pflugmacher S, Carmeli S (2002). Effects of Microcin SF608 and Microcystin –LR, two cyanotobacterial compounds produced byMicrocystis SP, on Aquatic organisms. Environ Toxicol 17: 400-406
    212.Whitton BA, Potts M (2000). Introduction to the cyanobacteria. The Ecology of cyanobacteria pp:1-11
    213.Willett KL, Wilson C, Thomsen J and Porter W (1999). Evidence for and against the presence of polynuclear aromatic hydrocarbon and 2, 3, 7, 8-tetrachloro-p-dioxin binding proteins in the marine Mussels. Bathymodiolus and Modiolus. Aquatic Toxicology 48:51-64.
    214.Xie P, Iwakwwa T and Fujii K (1998). Changes in the structure of a zooplankton community during a ceratium (dinoflagellate) bloom in a eutrophnic fishless pond. Journal of Plankton Research 20(9):1663-1678.
    215.Yasuno M, Sugaya Y, Kaya K and Watanabe MM (1998), Variations in the toxicity of Microcystis species to Miona macrocopa. Phycological Research 46:31-36.
    216.Zhang Z, Bai G, Deans-Zirattu S, Browner M.F and Lee E.Y.C (1992). Expression of the catalytic subunit of Phosphorylase Phosphatase (Protein Phosphatase-1) in Escherichia Coli The Journal of Biological Chemistry. 263(3): 1484-1490.
    217.崔福义, 林涛,马放, 张立秋。水体治理中鲢鳙生物操纵作用的实验研究。 南京理工大学学报 2004 12(6):668-672
    218.崔福义,林涛, 马放,冯琦,张立秋。水源中水蚤类浮游动物的孳生与生态控制研究。哈尔滨工业大学学报 2002 34(3):399-403
    219.陈国致, 李玉华。动力学法血清谷胱甘肽 S-转移酶活力测定及其临床应用。陕西医学检验 1994 9(1):8-9
    220.陈国致,胡大荣,李玉华,徐明华。血清谷胱甘肽 S-转移酶基质非酶结合反应及其对检测结果的影响。重庆医学 1994 23(1):18-19
    221.陈钦耀,魏晓飞,廖洪梅。LAS 和 5 种洗衣粉对水溞的毒性实验?不沾笱?学报 1997 21(2):107-109。
    222.蔡启馅太胡环境生态研究.北京:气象出版社,1998
    223.曹双俊,林小涛,黄长江,骆育敏。微型裸腹溞的生长,生殖和种群增长。应用与环境生物学 1998 4(1):37-39。
    224.刘春光,邱金泉,王雯,庄源益。富营养化湖泊治理中的生物操纵理论。农业环境科学学报 2004 23(1):198-201
    225.李春雁,崔毅。生物操纵法对养殖水体富营养化防治的探讨。海洋水产研究。2002 23(1):71-75
    226.李维,张淼 王丽珍。 生物操纵法治理富营养化湖泊的细菌类群研究。云南大学学报(自然科学版)1996 18(2):131-134
    227.刘晶, 秦玉洁,丘-伦, 潘伟斌。生物操纵理论与技术在富营养化湖泊智力中的应用。生态科学 2005 24(2):188-192
    228.刘建康,谢平。用鲢鳙直接控制微囊藻水华的围隔实验和湖泊实践。生态科学 2003 22(3):193-196
    229.罗岳平,邱振华,李建国。用水溞检测水质?肪臣觳夤芾碛爰际? 2002 14(1):12-16。
    230.秦伯强太湖水环境面临的主要问题,研究动态与初步进展湖泊科学,1998,10(4):1 - 9
    231.邱东茹, 吴振斌。 生物操纵, 营养级联反应和下行影响。生态学杂志 1998 17(5):27-32
    232.任光仁,林潇,胡雷光,戴湘如。血清谷胱甘肽 S-转移酶测定法及其在肝病中的应用。上海医学检验杂志 1991 6(1):16-17
    233.王丹丽,赖伟。拟老年低额溞的生长与生殖。 水产学报 1990 14(4):304-311。
    234.王启山, 吴立波,段晶晶。作为应用水源的微污染湖泊水库的生态修复。机械给排水 2004:1-4
    235.王海珍, 刘永定,肖邦定,李敦海,陈德辉。围隔中鲢和菹草控藻效果及其生态学意义。水生物学学报 2004 28(2):141-145
    236.汪晖,乐江,吴东方,李十月,彭仁琇小鼠血清 GST 实验的正常值范围及其评价 中国卫生检测杂志 2001 2 11(1):27-28
    237.汪晖,彭仁琇 对乙酰氨基酚对小鼠血清谷胱甘肽 S-转移酶活性的影响。中国药理学报 1993 14:41-44
    238.汪晖,彭仁琇, 黎七雄,孔悦。血清谷胱甘肽 S-转移酶在小鼠急性乙醇肝损伤中的诊断作用。 中国卫生检验杂志 1999 9(5):331-334
    239.汪晖,彭仁琇,吴东方,李十月。 溴苯所致小鼠肝损伤时血清谷胱甘肽 S-转移酶的变化。 卫生研究 2001 30(3):135-137
    240.王丹丽,赖伟。拟老年低额溞的生长与生殖。 水产学报 1990 14(4):304-311。
    241.王如平 徐家铸。温度对微型裸腹溞(Moina Micrura)发育和生长的影响。南京师大学报(自然科学版)1989 12(3):75-79。
    242.王如平 赵凯。直额裸腹溞生长生殖的研究镅г又? 1995 66:22-23。
    243.王文学,周四元, 李文丽。 血清谷胱甘肽 S-转移酶分光光度测定法。第四军医大学学报 1997 18(3):241-243
    244.谢平 高村典子。武汉东湖桡足类群落结构与生物多样性的变化。水生生物学学报 1996 20:18-23。
    245.殷锁敖,顾萍。磁化水对多刺裸腹溞生长和繁殖的影响?不沾笱аП? 1992 3:86-88。
    246.翼元棠,陈钦耀,廖洪梅,魏晓飞。 LAS 和 5 种洗衣粉对多刺裸腹溞的毒性研究。生物学杂志 1998 15(81):21-23
    247.庄德辉。低 pH 值对大型溞(Daphnia magna Straus)存活,生长和生殖的影响。中国环境科学 14(2):107-111。
    248.庄德辉,梁彦龄,邓冠强。 氯化高汞对大型溞的慢性毒性镅Ъ?刊 1984 8(4):449-456
    249.庄德辉,梁彦龄。大型溞生长,生殖和种群增长的研究镅П? 1986 10(1):24-31
    250.庄德辉,周晏敏。重铬酸钾对方形网纹溞的毒性研究?肪晨蒲аП? 1994 14(3):335-339。
    251.张光生,王明星,叶亚新,朱成东,宋朝霞,周青。太湖富营养化现状及其生态防治对策。农业生态科学 2004 20(3):235-238
    252.张晓良。中科院水生生物研究所揭开武汉东湖蓝藻水华消失之谜。刊 2001(4)
    253.张孝山,晋光荣,戴晨阳,张健民,黄志民。肝脏疾病时血清谷胱甘肽 S-转移酶的测定及其临床意义。天津医药 1992 6:359-361
    254.郑有刚, 王宇庭,李风梅。 放养渔业与水体富营养化关系的研究进展。2002 莱阳农学院学报 19(3):171-175
    255.郑又雄 发头裸腹溞卵和胚胎发育形态研究?镅г又? 1993 23(6):5-8
    256.周凤帆,蒋锋,金洪钧,尹大强。低 pH,铝和钙离子对隆线溞(Daphnia carinata king)生存,生长及繁殖的影响。 南京大学学报 1992 28(3):411-417。
    257.祖措杰,赵伟。蒙古裸腹溞的简易培养。1992 饲养工业 13(6):30-31。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700