Bt杀虫基因Cry3A在桑粒肩天牛幼虫肠道优势菌和常驻菌中的转化和表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天牛是鞘翅目昆虫中较大的一个类群,在世界各地广有分布,其幼虫大多以木质纤维为食,林木、果树、桑、茶、棉、木建材料、家具等都可以受到天牛的危害,林木的天牛受害率达20-90%,每年造成的经济损失上亿元。由于天牛幼虫营钻蛀性生活,生活隐蔽,活动期长,所以防治工作难度很大。目前的主要防治方法仍是以传统的人工钩杀幼虫、砸卵、堵洞和化学药剂防治等方法为主。其中人工防治费时、费工、成本又高,不适用于规模化大农场生产;利用化学防治药剂防治由于药剂有效期短,不易达到虫体,而且容易导致害虫抗药性增强以及具有污染环境、杀伤天敌的弊端。因此,探索新的防治途径,开发新的防治技术,已成为生产上的迫切要求。新的害虫防治方法和理论完善与发展离不开昆虫生理生化的研究。近年来,研究昆虫肠道正常菌群和肠道微生态以探索新的害虫控制方法正在成为国内外研究的热点之一。
     本文用传统培养方法和现代分子生物学方法-16S rDNA分析法对桑粒肩天牛幼虫肠道微生物组成进行了研究,在此基础上,首次探索将杀虫基因转入天牛幼虫肠道常驻的和优势的正常菌群载体菌,以构建在昆虫肠道中高定植率、高生存力、高繁殖并能表达杀虫毒蛋白伴孢晶体的新型杀虫工程菌。研究将可能为害虫的生物防治开辟一条新的途径,为新型转基因生物农药的研发提供理论依据与技术支撑。
     主要研究结果如下:
     ①用传统的培养方法从桑粒肩天牛幼虫肠道中共分离鉴定出18个种的细菌,它们分别是产酸克雷伯氏菌(Klebsilla Oxytoca)、成团杆菌(Enterobacter cloacae)、荧光假单胞菌(Pseudomonas fluorescens)、恶臭假单胞菌(Pseudomonas putida)、弗氏志贺氏菌(Shiqella flexneri)、溶血葡萄球菌(Staphylococcus haemolyticus)、鲍氏志贺氏菌(Shiqella boydii)、人葡萄球菌(Staphylococcus homis)、藤黄微球菌(Micrococcus luteus)、Breneria quercina、无花果沙雷氏菌(Serratia ficaria)、短短芽孢杆菌(Brevibacillus brevis)、苏云金芽孢杆菌(Bacillus thuringiensis)、大肠埃希氏菌(Escherichia coli)、Naxibacter haematophilus、产气长杆菌(Enterobacter aerogens)、克里斯汀微球菌( Micrococcus kristinae)、阿氏肠杆菌(Enterobacter absburiae)。其中溶血葡萄球菌(S. haemolyticus)、人葡萄球菌(S. homis)、短短芽孢杆菌(B. brevis)、苏云金芽孢杆菌(B. thuringiensis)等在幼虫肠道中全年均能分离到,成团杆菌(E. cloacae)、产气肠杆菌(E. aerogens)、阿氏肠杆菌(E. absburiae)可在1~2月份外的全年的大部分时间分离到,其它细菌种类则只能在4~11月份分离到,说明至少溶血葡萄球菌(S. haemolyticus)、人葡萄球菌(S. homis)、短短芽孢杆菌(B. brevis)、苏云金芽孢杆菌(B. thuringiensis)应为天牛肠道常驻菌群,而其余种类微生物则很可能是随进食或与环境接触而进入的过路菌群。根据分离率和肠道菌群培养的数量统计结果表明天牛肠道优势菌群是葡萄球菌属(Staphylococcus)细菌中的溶血葡萄球菌(S. haemolyticus)和人葡萄球菌(S. homis),其菌量分别为7.74±0.61和7.66±0.25,分离率分别为100%和98.09%。
     ②将按传统方法从桑粒肩天牛幼虫肠道分离、鉴定的18个不同种的细菌作为PCR模板,进行16S rDNA序列的分析,经与数据库中登录序列比对,鉴定结果与分离培养方法所获得的结果一致。所测序列与Genbank中同种细菌的16S rDNA序列相似性分别为98.58%、99.18%、97.86%、99.89%、98.02%、99.19%、99.32%、98.46%、99.30%、98.05%、96.97%、98.33%、99.46%、99.60%、99.03%、99.45%、99.01%、99.52%,均高于98%,说明鉴定结果正确。所得菌株的16S rRNA都已在Genbank中登录注册,系统接受号为EU554427-EU554444。
     ③将含有红素抗性基因和cry3A基因的Escherichia coli -Bacillus thuringiensis穿梭表达质粒pHT305a和pHT7911转入桑粒肩天牛幼虫肠道优势常驻菌溶血葡萄球菌(S. haemolyticus)、人葡萄球菌(S. homis)和常驻内生菌短短芽孢杆菌(B. brevis)、苏云金芽孢杆菌(B. thuringiensis)中,获得的转化子中外源基因能稳定自主复制,而且其中用红素抗性平板筛选出的常驻内生工程菌转化子在产伴孢晶体发酵培养基中培养至90%以上芽孢脱落晶体释放时的菌液可提取到经SDS-PAGE分析分子量为65KDa的伴孢晶体蛋白,说明已成功获得了四株转基因杀虫工程菌。对工程菌在天牛幼虫肠道内的定殖能力和生物毒力进一步测定的结果显示此四株工程菌既能在桑粒肩天牛幼虫肠道内定殖,又对天牛幼虫具有一定的杀虫活性。
Longhorn Beetle (Coleopteran: Cerambycidae) is a big group of insects distribuding worldwide and most of the larvae boring and feeding in tree trunks or branches. About 20% to 90% forests are damaged by these pests and millions yuan of money losted every year in China. Forest trees, fruit trees, mulbery trees, tea trees, cotton, wood material, evern furnitures and houses can be damaged. The pest control is very different because of the covert and long time life of the beetle’s larva.Now the control methods for the pests mainly included some traditional strategys such as hooking and kill larvae, smashing eggs, pluging up breath hole and the chemical spray. However, most of traditional means have limitations of low efficancy, high cost and and time taking. And the chemical control often results in grievous environmental pollutions, killing natural enemies or even hard to reach the body of pest. Therefore, new biocontrol strategys and techniques are eagerly demanded in practice. A new pest control theories and approach is always based on the research of insect physiology and biochemique. Recently, a kind of new approach for pest control, based on the research of micro-community and micro-ecosystem of insect intestines, is becoming one of the hot topics all over the world.
     In this present, the intestinal microbe flora in Apriona germari (Hope) larvae was analyzed and identified by traditional culture and 16S rDNA sequence analysis. Whith this understanding, a study on the transforming Bt specific insecticidal protein gene cry3A into predominant bacteria and resident bacteria was carried for the first time to construct the recombinant pesticidal engineering bacteria which could settle down and reproduce in intestine of the larva, and express insecticidal crystal protein. The study result would exploit a new approach for covert pest biocontrol and provide a theoretical and technological support for the research of novel genic engineering bio-insecticide development.
     The main results were showed as follows:
     (1) Eighteen different bacterial strains were isolated and identified from A.germari larvae gut by traditional culture and identification methods. They were Klebsilla Oxytoca, Pseudomonas fluorescen, Pseudomonas putida, Shiqella flexneri, Staphylococcus haemolyticu, Staphylococcus homis, Shiqella boydii, Micrococcus luteus, Micrococcus kristinae, Breneria quercina, Serratia ficaria, Brevibacillus brevis, Bacillus thuringiensis, Escherichia coli, Naxibacter haematophilus, Enterobacter aerogens, Enterobacter cloacae, Enterobacter absburiae. Among them, 4 species bacterial Staphylococcus haemolyticu, Staphylococcus homis, Brevibacillus brevis and Bacillus thuringiensis can be isolated from Apriona germari (Hope) larvae intestine all the year, but other microorganisms just can be isolated from March to November ( the active period). So these 4 species bacteria were presumed resident endogenetic bacteria of Apriona germari larvae intestine, whereas other bacteria may be transient flora which get in intestine byfeeding or contact from enviorment. The data statistic of the bacterial clones showed that S. haemolyticu and S. homis were confirmed the endogenetic predominant flora with count of 7.74±0.61 and 7.66±0.25, and the isolation rate (The number of larvae which had the bacteria /the total number of the larvae had been detected) were 100% and 98.09%. The other isolations were comparatively low. They could be ranked orderly by the measure as Enterobacter aerogens, Escherichia coli, Micrococcus luteus, Brevibacillus brevis, Bacillus thuringiensis,Enterobacter cloacae, Micrococcus kristinae, Shiqella boydii, Shiqella flexneri, Klebsilla Oxytoca, Enterobacter absburiae, Serratia ficaria, Pseudomonas putida, Pseudomonas fluorescens, Breneria quercina, Naxibacter haematophilus according to their isolation rates.
     (2) The 18 different bacteria strains, which isolated by traditional cultural means from A. germari larvae’gut, were analyzed by 16S rDNA sequence analysis. The result consists with the results of normal classification by morphology, biochemical methods. The homologous rates between isolations 16S rDNA sequences and the recording 16SrDNA sequences in Genbank were 98.58%, 99.18%, 97.86%, 99.89%, 98.02%, 99.19%, 99.32%, 98.46%, 99.30%, 98.05%, 96.97%, 98.33%, 99.46%, 99.60%, 99.03%, 99.45%, 99.01%, 99.52% respectively. All the 16S rDNA sequeeces abtained were logged in Genbank and the accession number were from EU554427 to EU554444.
     (3) The Escherichia coli - Bacillus thuringiensis shuttle plasmid pHT305a and pHT7911, which contained anti- Erythromycin gene (Erythromycinr) and cry3A gene, had been transformed into predominant bacteria strains S. haemolyticus and S. homis and resident bacteria strains B. brevis and B. thuringiensis respectively. Further examinations by the electron microscope observation of the crystal protein and the protein SDS-PAGE analysis approved that the newly transgenic engineering bacterial strains have been constracted successfrlly. Four engineering bacteria were obtained which can colonize and express the target pesticide gene Bt cry3A perfectly in A. germari larvae, which may be developed a newly pesticide to control the pests.
引文
[1]蒋书楠著.中国天牛幼虫[M].第一版,重庆:重庆出版社, 1989, 1-160.
    [2]李文杰,邬承先.杨树天牛综合管理[M].北京:林业综合出版社, 1993.
    [3] Scrivener A M. Wantanable H ,Noda H. Diet and carbohydrate digestion in the yellow- spotted logicom beetle Psacothea hilaris[J]. Insect Physiol, 1997, 43(11):1039- 1052.
    [4]康白.微生态学[M].大连:大连出版社, 1988.
    [5] Breznak J A. Role of microorganisams in the digestion of Lignocellulose by termites[J]. Annu Reb Entomol, 1994, (64):214-222.
    [6] Gibson G. R, Roberfroid M B. Dietary modulation of the human colonic microbiota introducing the concept of prebiotica[J]. J. 2004, Nutr, 125:1401-1412.
    [7] Cohavy O, Bruckner D, Gordon L K, et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope[J]. Infect Immun. 2007, 68:1542-1548.
    [8] Hooper L V, Wong M H, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science, 2001, (291). 881-884.
    [9] Neish A S, Gewirtz A T, Zeng H, et al. Prokaryotic regulation of epithelial responses by inhibition of I kappa B-alpha ubiquitination[J]. Science, 2007, (289):1560-1563.
    [10] Breznak J A. Role of microorganisams in the digestion of Lignocellulose by termites[J]. Annu Reb Entomol, 1994, (64):214-222.
    [11]何正波,曹月青,殷幼平等.桑粒肩天牛幼虫肠道菌群的研究[J].微生物学报, 2001, 41(6):741-744.
    [12]张伟,何正波,殷幼平等.桑粒肩天牛幼虫肠道菌群的种类及分布[J].西南农业大学学报(自然科学版), 2006, 26(2):169-172.
    [13] WangXianghong. Microbial Flora in the Digestive Tract[J]. 2000, 3(3):493-498.
    [14] Pace N R, Stahl D A, Lane D J, et al. The analysis of natural microbial communities by ribosomal RNA sequences[J].J.Adv.Microbial Ecol, 1986, 9:1-55.
    [15] Ayyamperumal Jeyaprakash. Bacterial diversity in worker adults of Apis mellifera capensis and Apismelliferascutellata(Insecta:Hymenoptera) assessed using 16SrRNA sequences[J]. Journal of Invertebrate Pathology, 2003, 84:96-103.
    [16]焦振泉. 16srRNA序列同源性分析与细菌系统分类鉴定[J].国外医学卫生学分册, 1998, 25(1):12-16.
    [17] Jacek KozdrKoj, Jan Dirk van Elsas.Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAMEprofiling[J]. Applied Soil Ecology, 2001, 17:31-42.
    [18] Daniel L, Mummey Peter, D Stahl. Spatial and temporal variability of bacterial 16S rDNA-based T-RFLP patterns derived from soil of two Wyomingg rassland ecosystems[J]. FEMS Microbiology Ecology, 2003, 46:113-120.
    [19]戴欣等.中国南海南沙海区沉积物中细菌16srRNA多样性的初步研究[J].自然科学进展, 2002, 12(5):479-484.
    [20] Georgina L Hold, Susan E. Samples by 16S rDNA sequence analysis[J]. FEMS Microbiology Ecology, 2002, 39:33-39.
    [21]张灵霞,庄玉辉.应用PCR扩增对分枝杆菌分类鉴定及标本检测的研究[J].微生物学通报, 2001, 28(1):55-58.
    [22] Slaytor M.Cellulase digestion in termites and cockroaches: what role do symbionts play Comp. Biochem. Physiol. 1992.103B.775-784.
    [23] Hunt F, Charnly A k. Abundance and distribution of the gut flora of the desert locust[J]. Schistocerca gregaria Forster Invertebr Pathol,1981, 38:378-385.
    [24]易发平,王林玲等.蚕肠道好氧微生物菌群的研究[J].西南农业大学学报, 2001, 23(2):117-119.
    [25] Hidetaka Hori, N Selvamuthu Kumaraswami, Tohru Hayakawa and Toshiaki Mitsui. Bacillus thuringiensis specific to scaraeid beetles: A Review[J]. enmologia sinica, 2007, 4:359-387.
    [26]喻子牛著.苏云金杆菌[M].北京:科学出版社,1990.
    [27]高梅影,李荣森等.杀鞘翅目苏云金芽孢杆菌新菌株及其杀虫剂的研究[J].微生物学报, 1999, 39
    [28]张爽,杜克久,李成德等.抗鞘翅目基因工程研究进展[J].东北林业大学报, 2004, 32(5):61
    [29] Yue CY, Sun M, Yu ZN. Broadening the Insecticidal Spectrum of Lepidoptera-Specific Bacillus thuringiensis Strains by Chromosomal Integration of cry3A. Wiley InterScience, 2005, 91(3): 299-301
    [30] Environmental Protection Agency. The environmental protection agency white paper on Bt plant-pestitede resistance management[J]. Washington : EPA Publlication , 1998, 128-136.
    [31] Herrnstadt C , Gilroy TE , Sobie DA , et al. A novel cry gene from the strain of Bacillus thuringiensis with active against coleopteran insects[J]. Gene , 1987 , 57 (1) : 37-46.
    [32] Entwistle PF , Cory JS , Bailey M J. Bacillus thuringiensis, An Environmental Biopesticide : Theory and Practice[J]. UK: Wiley Chichester Press ,1993. 125-146.
    [33] Nicholas D, Stephen E. Transgenic Plant and Insect Pests Biocontrol[J].USA: John Wiley &Sons Press, 1997, 1-18.
    [34] N Crickmore, D R Zeugler, J Feitelson, et al. Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Progeins[J]. Microbilogy and Molecular Biology Reviews, 1998:807-813.
    [35] Sheng Jiun Wua, C Noah Kollerb, Deborah L, et al. Enhanced toxicity of Bacillus thuringiensis Cry3Aδ-endotoxin incoleopterans by mutagenesis in a receptor binding loop[J]. FEBS Letters , 2000 (473): 227-232.
    [36] Johnson G. Effects of Clavibacter xyli subsp. cynodontis colonization on growth and yield of corn [J]. Phytopatho logy, 1988, 78 (12): 15403.
    [37] Turner J T, et al. Stability of the delta2eddo toxin gene from Bt. in a recommbinant strain of cxc[J]. Aplied and Environmental Microbiology, 1991, 57: 3522-3526.
    [38]张杰.对鞘翅目害虫高毒力的Bt cry基因分离克隆和工程菌的构建[D].北京:中国农业科学院, 2007.
    [39]刘云霞,张青文,周明. Bt杀虫基因向水稻内生细菌的转化研究[J].农业生物技术学报, 1997, 5 (2): 188-193.
    [40]徐静,张青文,丁军等. BtcryIA(c)杀虫基因向棉花内生细菌Bacillus cereus染色体中整合的研究[J].农业生物技术学报, 2002, 10(2): 189-193.
    [41] Thanabalu T, Hindley J, Brenner C, et al. Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp, israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae[J]. Appl. Enciron Microbiol, 1992, 58:905-910.
    [42] Souza MTE, Lecadet MM, Lereclus D. Full expression of the cryⅢA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription[J]. J Bacteriol, 1993, 175 (10): 2952-2960.
    [43] Lecadet MM, Chaufaux J, Ribier J, et al. Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation[J]. Applied and Enviromental Microbiology, 1992, 58(3): 840-849.
    [44]何正波.桑粒肩天牛肠道好氧及兼性厌氧菌群的研究[D].重庆:西南农业大学, 2001.
    [45]陈天寿.微生物培养基的制造与应用[M].第一版,北京:中国农业出版社, 1995.
    [46] John GH, Nobel RK, Peter HA, et a1. Bergey’s Manual of Determinative Bacteriology. 9th ed[M]. Baltimore: WilliaIns&Wilkins Press, 1994.
    [47]东秀珠,蔡妙英.常见细菌系统鉴定手册,第一版[M].北京:科学出版社, 2001.
    [48] Broderick NA, Raffa KF, Goodman RM, et al. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture independent methods[J]. App .Environ. Microbio, 2004, 70 (1): 293-300.
    [49]冯霞,殷幼平,王中康.现代分子生物学技术在动物肠道微生物多样性研究中的应用[J].应用与环境生物学报, 2002,22(7):1085-1090.
    [50]赵斌,何绍江.微生物实验[M].北京:科学出版社, 2002.
    [51] Broderick NA, Raffa KF, Goodman RM, et al. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture independent methods[J]. App . Environ. Microbio, 2004, 70 (1): 293-300.
    [52]冯霞.桑粒肩天牛幼虫肠道菌群研究及含GFP标记的cry3A基因工程菌的构建[D].重庆:重庆大学, 2005
    [53]刘渠,白松涛,殷强仲等. G+球菌及G-杆菌质粒消除方法的研究[J].中国卫生检验杂志, 1998, 8(5) : 275.
    [54] Biswajit Saha, et al. A new method of plasm id DNA preparation by sucrose - mediated degtexgent lysis from Escherich ia (Gram - negative ) and staphylococcus aureus(Gram- postive) [J]. A nalytialBiochem istry, 1989, 176:344-349.
    [55] Kraemer R. High-frequency transformation of Staphylococcus aureus by electrooration[J]. Curr Microbiol, 1990, 221:373.
    [56] Takagi H, Kagiyama S, Kadowaki K, et al. Genetic Transformation of Bacillus brevis with Plasmid DNA by Electroporation[J]. Agric. Biol. Chem, 1989, 53(ll): 3099-3100.
    [57]彭清忠,彭清静,张惟材等.短芽孢杆菌的转化方法[J].吉首大学学报(自然科学版), 2003, 25(4):2.
    [58]李林,喻子牛.苏云金芽孢杆菌无质粒突变株BMB171的转化和表达性能[J].应用与环境生物学报, 1999, 5(4): 395-399.
    [59]乐超银,邵伟,喻子牛等.转化cry3A基因对苏云金芽孢杆菌YBT-803-21生长特性的影响[J].微生物学杂志, 2001, 21(2).
    [60]彭清忠,张惟材,朱厚础.具有分泌蛋白能力的短芽孢杆菌的筛选及鉴定[J].微生物学报, 2002, 42(6): 693–699.
    [61]邵宗泽,喻子牛.苏云金芽孢杆菌杀虫晶体蛋白超量表达的机制[J].生命科学, 2002,12(4).
    [62] Kurt A, Ozkan M, Ozcengiz G. Inorganic phosphate has a crucial effect on Cry3Aaδ-endotoxin production[J]. Letters in Applied Microbiology, 2005, 41:303-308.
    [63] Wirth MC, Georghiou GP, Federici BA. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels CryIV resistance in the mosquito Culex quingues fasciatus[J]. Proc Natl Acad Sci USA, 1997, 94: 10536-10540.
    [64]郭艾英,王硕.苏云金芽孢杆菌晶体蛋白的制备方法[J].食品与发酵工业, 2004, 31(8):8-10.
    [65] Lereclus D, Arantes O, Chaufaux J, et al. Transformation and expression of a clonedδ-endotoxin gene in Bacillus thuringiensis[J]. Fems Microbiol. Lett, 1989, 60: 211-218.
    [66]左雅慧,丁之铨,张杰.苏云金芽孢杆菌培养条件及晶体蛋白提纯方法初探[J].植物保护, 1999,4.
    [67] Ge A Z, Shivarova N I, and Dean D H K. Strain improvement of insect pathogens(J). Maramorosch K.Biotechnology in Invertebrate Pathology and Cell Culture Proc. Natl.Acad. Sci. USA:1989 (86), 4037- 4041.
    [68]汪家政,范明主编.蛋白质技术手册.科学出版社,第一版[M].北京:2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700