秸秆沼气厌氧发酵的预处理工艺优化及经济实用性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农村环境污染和能源短缺问题的日益严重,户用沼气的发展受到人们的广泛关注,成为了我国新农村建设的重要组成部分和农村能源发展的主要内容。大力开发生物质能源,利用农业废弃物进行厌氧发酵生产沼气,是解决我国农村能源紧张和环境污染问题的关键。本研究对比分析了户用沼气和大中型沼气工程在我国农村的适用性,并针对因规模化养殖代替散养模式造成的户用沼气发酵原料不足的问题,提出了通过化学预处理提高秸秆沼气化利用效率的方法,重点研究了不同预处理剂、预处理时间和预处理温度对水稻、玉米和小麦三种秸秆厌氧发酵的影响,并对处理效果较好的酸、碱试剂进行工艺优化,得出最佳预处理参数,在此基础上,对两种预处理方法的沼气经济实用性进行了分析,旨在为我国农村秸秆沼气高效利用提供理论依据和数据支持。研究得到如下结论:
     1.选用双氧水(H_2O_2)、醋酸(CH_3COOH)、硫酸(H_2SO_4)和盐酸(HCl)对水稻、玉米、小麦三种秸秆进行厌氧消化预处理,结果表明,不同浓度的酸预处理剂对秸秆的纤维素含量、沼气产量以及产气效率影响较大。其中,H_2O_2和CH_3COOH预处理的最佳浓度为3%,HCl和H_2SO_4的最佳浓度为2%。四种试剂中,3%H_2O_2的预处理效果最好,产气效率分别达315、320和285mL/g VS。
     2.选用氢氧化钠(NaOH)、氢氧化钙(Ca(OH)2)和氨水(NH_3·H_2O)对水稻、玉米、小麦三种秸秆进行预处理,结果表明,不同浓度的碱预处理剂对秸秆的纤维素含量、沼气产量以及产气效率影响较大。其中,8%Ca(OH)2的预处理效果最好,产气效率分别达325、285和320mL/g VS。
     3.不同预处理时间对秸秆厌氧发酵的影响显著。其中,H_2O_2、CH_3COOH、HCl、H_2SO_4和NaOH对纤维素和半纤维素的降解程度随预处理时间的延长而增加,Ca(OH)2和NH_3H_2O则在预处理1天和4天后纤维素含量无显著变化,但预处理7天后,其含量显著降低。H_2O_2、CH_3COOH、Ca(OH)2和NH_3·H_2O预处理的秸秆产气效率均随预处理时间的增加而升高,HCl和H_2SO_4预处理的产气效率则在预处理4天时最高。
     4.不同预处理温度对秸秆的厌氧发酵具有一定影响。在15℃、35℃和55℃预处理中,H_2O_2、CH_3COOH、Ca(OH)2和NH_3H_2O在15℃和35℃下纤维素和半纤维素含量以及产气效率无显著差异,而在55℃下纤维素和半纤维素含量显著降低,产气效率显著升高。HCl、H_2SO_4和NaOH预处理的纤维素和半纤维素含量均随预处理温度的升高而降低,产气效率随温度的升高而增加。
     5.以水稻秸秆为原料,对H_2O_2和Ca(OH)2的预处理过程进行优化。选择预处理时间、预处理剂浓度和接种物量3个参数分析两种试剂对水稻秸秆厌氧发酵产气特性的影响。结果表明,H_2O_2的最佳处理参数为:6.18天(预处理时间)、2.68%(浓度)以及1.08(接种物比),在最优条件下沼气产量理论值为287.9mL/g VS;Ca(OH)2的最佳处理参数为:5.89天(预处理时间)、9.81%(浓度)以及45.12%(接种物量),在最优条件下产气量理论值为217.8mL/g VS。H_2O_2和Ca(OH)2优化模型的决定系数(R2)分别为95.2%和96.0%,表明两个产气模型利用试验值对实际厌氧发酵进行预测具有较高的可信度。为验证优化方案的可信度,分别采用两种预处理剂在预测的最优条件下进行发酵试验,结果表明,H_2O_2预处理后产气量达到290.3mL/gVS,Ca(OH)2预处理达到225.3mL/g VS,较对照分别增加了88.0%和73.3%。因此,H_2O_2和Ca(OH)2可作为秸秆厌氧发酵的预处理剂,能够有效提高秸秆的能量转化效率。
     6.水稻秸秆经H_2O_2和Ca(OH)2处理后分别与牛粪、鸡粪混合发酵,结果表明,预处理能够显著提高秸秆混合发酵的沼气产量和产气效率。与未处理的秸秆相比,预处理后的秸秆混合发酵产气量增加了29%-43%,产气效率增加了24%-31%。因此,采用H_2O_2和Ca(OH)2预处理提高厌氧发酵效率,不仅适用于秸秆单一原料,同样也适用于混合原料。
     7.化学预处理秸秆厌氧发酵的经济实用性评价表明,与使用原煤作为燃料相比,使用H_2O_2和Ca(OH)2预处理秸秆进行厌氧发酵每年每户可节约311.41元和312.4元。对秸秆沼气利用潜力和温室气体减排进行估算,我国每年产生的农作物秸秆直接焚烧会产生8.85×108t CO_2,若将这些秸秆全部进行户用沼气发酵,每年可生产12.97×106万m3的沼气,同时可减少6.70×108t CO_2的排放。化学预处理技术不仅能够提高秸秆的能量转化效率,而且秸秆沼气化利用可有效减少温室气体的排放,因此,应推广化学预处理技术在农村户用沼气中的应用,从而达到秸秆的沼气化高效利用。
With the deterioration of rural envirionment pollution and energy shortage, thedevelopment of rural household biogas has attracted the people’s attention. It has been animportant part of new countryside construction and main content of rural energy developmentin China. The development of biomass energy and the utilization of agriculture wastes foranaerobic biogas production are important for solving the energy crisis and environmentpollution in rural China. The present study compared the characteristics of household biogasand large-medium biogas plants in rural China, and also put forward the chemicalpretreatment for straw to improve its biodegradability in order to solve the problem ofhousehold biogas raw material shortage caused by large-scale farming. The effect of differentacid and alkaline chemicals pretreatments on the anaerobic digestion of rice straw, wheatstraw and corn straw was investigated, and the effective acid and alkaline pretreatmentschemicals was optimized to obtain the optimal operation parameters. On the basis ofabovement, the economic-practical application of two chemical pretreatment was analyzed toprovide the theoretical basis and data support for the efficient utilization of straw bigasficationin rual China. The main results are as follows:
     1. In the present study, the effect of rice straw, corn straw and wheat straw pretreated byhydrogen peroxide (H_2O_2), hydrochloric acid (HCl), sulfuric acid (H_2SO_4) and ethylic acid(CH_3COOH) on the biogasfication performance was investigated. The results showed the acidpretreatements with different concentration have a different effect on the the cellulose content,biogas yield and biogas efficiency of straws. The optimal treatment of H_2O_2and CH_3COOHfor bigas production was3%, and the optimal treatment of HCl and H_2SO_4was4%. Amongthe four pretreatments, the optimal treatment biogas production was2%H_2O_2, which yieldedthe biogas of315、320and285mL/g VS for rice straw, wheat straw and corn strawrespectively.
     2. The effect of rice straw, corn straw and wheat straw pretreated by sodium hydroxide(NaOH), calcium hydroxide (Ca(OH)2) and aqueous ammonia (NH_3·H_2O) on thebiogasfication performance was investigated. The result showed the the alkalinepretreatements with different concentration have a different effect on the the cellulose content,biogas yield and biogas efficiency of straws. Among the three pretreatments, the optimal treatment for biogas production was8%Ca(OH)2,which yielded the biogas of325,285and320mL/g VS for rice straw, wheat straw and corn straw respectively.
     3. Pretreatment time has a significant effect on the anaerobic digestion of straws.Degradation of H_2O_2、CH_3COOH、HCl、H_2SO_4and NaOH on the cellulose and hemicelluloseincreased with the increase of pretreatment time. There was no significant difference between1d and4d pretreatment on the cellulose content for Ca(OH)2and NH_3H_2O, while the7dresulted in a great decrease on it. The biogas efficiency of straw pretreated by H_2O_2,CH_3COOH, Ca(OH)2and NH_3·H_2O increased with the increase of pretreatment time whilepretreated by HCL and H_2SO_4have the higest value in the4d pretreatment.
     4. Pretreatment temperature can affect the anaerobic digestion of straw. amongthe15℃,35℃and55℃pretreatment, no significant difference was found between the15℃and35℃on the cellulose, hemicellulose and biogas efficiency of straw pretreated byH_2O_2, CH_3COOH, Ca(OH)2and NH_3H_2O, while at the55℃, the cellulose, hemicellulosecontents greatly decreased and biogas efficiency significantly enhanced. The cellulose andhemicellulose contents of straw pretreated by HCl, H_2SO_4and NaOH significantly decreasedand its biogas efficiency increased with the rise of the pretreatment temperature.
     5. The pretreatment time, chemicals concentration and inoculum amount of wereselected as parameters to investigate the effect of H_2O_2and Ca(OH)2on rice strawbiggasfication. The result showed the the optimal conditions of H_2O_2treatment foranaerobic digestion were6.18d treatment time,2.68%H_2O_2and1.08inoculum ratio,which yielded the max theoretical methane of287.90mL/g VS. The optimal conditions ofCa(OH)2treatment for anaerobic digestion were5.89d treatment time,9.81%H_2O_2and45.12%inoculum content, which yielded the max theoretical methane of217.82mL/gVS. The determination coefficient of H_2O_2and Ca(OH)2optimal model are95.2%and96%, this indicated two optimal models to predict the the actual anaerobic fermentationprocess have high credibility. To verify the the incredibility of predicted resutls, H_2O_2andCa(OH)2pretreatment was used for straw anaerobic digestion at the optimal conditions. Theresult showed the methane yield of rice straw pretreated by H_2O_2and Ca(OH)2were90.36mL/gVS and225.3mL/g VS, respectively, which was increased by88%and73.3%,respectively, compard to the untreated rice straw. In conclusion, H_2O_2and Ca(OH)2can usedas pretreatment for rice straw biogasifciaton, and both can effectively improve the energyconversion efficiency of straw.
     6. The anaerobic digestion of cow manure and rice straw mixture was conducted toinvestigate the effect of pretreatment on the mixture anaerobic digestion. The results showedthat the pretreatment on straw after can significantly improve the biogas yield and biogas yield efficiency. Compared with the straw without pretreatment, the biogas yield and biogasyield efficiency of pretreated straw mixture was increased by29%-43%and24%-31%. Thus,H_2O_2and Ca(OH)2pretreatment is an effective method for single material and mixturematerial to improve the anaerobic digestion.
     7. The economic practicability analysis of chemical pretreatment for straw anaerobicdigestion indicated that compared with the use of raw coal for fuel, the use of H_2O_2andCa(OH)2as pretreatment for straw anaerobic digestion can save311.4and312.4Yuan peryear per household, respectively. The evaluation of straw biogas potential and the estimationof greenhouse gas emission reduction showed that the direct buring of straw will annuallycause the8.85×10~8t CO_2in China, if these straws was all used for anaerobic digestion, notonly12.97×10~(11)m~3biogas can be produced per year, but the reduction of6.70×108t CO_2emission can be made. Considering the advantage of chemical pretreatments for stawanaerobic digestion in energy conversion efficiency improvement and the greenhouse gasemission reduction, our study recommend that chemical pretreatment technology should bewidely promoted for straw anaerobic digestion in the rural househould biogas development.
引文
白洁瑞,李轶冰,郭欧燕,等.2009.不同温度条件粪秆结构配比及尿素、纤维素酶对沼气产量的影响.农业工程学报,25(2):188-193.
    白义奎,王铁良,呼应,等.2002.北方农村“五位一体”庭院生态模式.可再生能源,3:15-17.
    卞有生.2005.生态农业中废弃物的处理与再生利用.北京:化学工业出版社:5-10.
    蔡再生.2009.纤维化学与物理.北京:中国纺织出版社:4-15.
    昌盛,李建政,王淑静,等.2011.预处理温度对活性污泥发酵产氢特性的影响.太阳能学报,32(3):395-401.
    常娟,卢敏,尹清强,等.2012.秸秆资源预处理研究进展.中国农学通报,28(11):1-8.
    陈广银,郑正,邹星星,等.2009.稻草与猪粪混合厌氧消化特性研究.农业环境科学学报,28(1):185~188.
    陈驹声.1990.传统和最新的酒精生产技术.北京:化学工业出版社.
    陈素华,孙铁珩,耿春女.2003.我国畜禽养殖业引致的环境问题及主要对策.环境污染治理技术与设备,4(5):5-8.
    陈豫,杨改河,冯永忠,等.2009.“三位一体”沼气生态模式区域适宜性评价指标体系.农业工程学报,25(3):174-178.
    成晓杰,仇天雷,王敏,等2010.低温沼气发酵微生物区系的筛选及其宏基因组文库构建.中国生物工程杂志,30(11):50-55.
    楚莉莉,李轶冰,杨改河,等.2011.猪粪麦秆不同比例混合厌氧发酵特性试验.农业机械学报,42(4):100-104.
    邓可蕴.2001.中国农村能源综合建设理论与实践.北京:中国环境科学出版社:2-18,20-36。
    方浩,宋向阳,赵晨,等.2009.里氏木霉与黑曲霉混合发酵产纤维素酶的研究.林产化学与工业,29(6):1-19.
    方文杰,刘广青,康佳丽,等.堆沤处理对稻草厌氧消化产气的影响.生态与农村环境学报,2007,23(4):63-66.
    高士忠.2008.不同粒径对玉米秸秆厌氧发酵影响的试验研究.河南农业大学学报,42(3):327-329.
    高云超,邝哲师,潘木水,等.2006.我国农村户用型沼气的发展历程及现状分析.广东农业科学,5(11):22–26.
    郭欧燕,李轶冰,白洁瑞,等.2009.温度对鸡粪与秸秆混合原料厌氧发酵产气特性的影响.西北农林科技大学学报(自然科学版),37(6):78-83.
    郭庭双,曼努埃尔·戴维·桑切斯,郭佩玉.2002.秸秆养畜—中国的经验:罗马:联合国粮食及农业组织:21-24.
    何志强,林金华.1994.农业生态系统中沼气综合利用的研究.中国沼气,12(2):42-44.
    胡民强.2004.臭氧处理粗饲料的研究进展.世界农业,1:52-53.
    华永新,朱剑平.2004.大中型畜禽养殖场沼气工程模式及投资效益分析.能源工程,2:11-15.
    蒋建国,赵振振,杜雪娟,等.2007.秸秆高固体厌氧消化预处理实验研究.环境科学,28(4):886-890.
    蒋挺大.2008.木质素.北京:化学工业出版社:12.
    焦静,王金丽,邓怡国,等.2010.草粪比对甘蔗叶干法厌氧发酵产气效果的影响.广东农业科学,1:51-54.
    礼嘉,顾红雅,胡平,等.1998.现代生物技术导论.北京:高等教育出版社.
    李国学,张福锁.2000.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社.
    李海红,常华,袁月祥,等.2012.复合菌剂预处理对秸秆厌氧发酵的影响.西北大学学报(自然科学版),42(6):949-952.
    李泉林.2004.我国人工沼气业的发展历程与可持续性研究.中国沼气,22(4)53-55.
    李维炯,李季,徐艇.2004.农业生态工程基础.北京:中国环境科学出版社.
    李稳宏,吴大雄,高新,等.1997.麦秸纤维素酶解法产糖预处理过程工艺条件.西北大学学报(自然科学版),27(3):227-230.
    李湘,魏秀英,董仁杰.2006.秸秆微生物降解过程中不同预处理方法的比较研究.农业工程学报,22(1):110-116.
    李旭东,王霞.2008.玉米秸秆预处理研究.食品与发酵工业,34(4):112-113.
    李轶冰,张翠丽,杨改河,等.2009.温度对粪便与玉米秸秆混合厌氧消化产生特性的影响.西北农林科技大学学报(自然科学版),37(1):66-72
    林聪.2007.沼气技术理论与工程.北京:化学工业出版社:28-30.
    刘德江.2005.养殖型“五位一体”沼气生态农业模式的建设与管理.新疆农业职业技术学院学报,2:36-39.
    刘尚余,骆志刚,赵黛青.2006.农村沼气工程温室气体减排分析.太阳能学报,27(7):652-655.
    刘银洲,王发富.1991.利用沼液给果树治虫和根外施肥试验.中国沼气,9(1):38-39.
    鲁杰,石淑兰,邢效功,等.2004. NaOH预处理对植物纤维素酶解特性的影响.纤维素科学与技术,12(1):1-6.
    罗鹏,刘忠.2005.用木质纤维原料生产乙醇的预处理工艺.酿酒科技,2005,26(8):42-47.
    马传杰,花日茂,郭亮.2008.接种量对牛粪厌氧干发酵的影响.家畜生态学报,2008,29(5):81-84.
    马洪儒.2003.家用沼气池稳定产气的技术要点.可再生能源,108(2):29-30
    马淑勍,袁海荣,朱保宁,等.2011.氨化预处理对稻草厌氧消化产气性能影响,农业工程学报,27(6):294-299.
    毛华,曲音波,高培基,等.1996.酵母属间原生质体融合改进木糖发酵性能.生物工程学报,12(增刊):157-162.
    聂永丰.2000.三废处理工程技术手册:固体废物卷.北京:化学工业出版社:56-61.
    潘文智.2011.大型养殖场沼气工程—以北京德青源沼气工程为例.中国工程科学,13(2):40-43.
    庞云芝,李秀金,罗庆明.2005.温度和化学预处理对玉米秸厌氧消化产气量的影响.生物加工过程,3(1):37-41.
    庞云芝.2010.基于提高麦秸厌氧消化性能的碱处理方法研究及工程应用.[博士学位论文].北京:北京化工大学.
    蒲小东,邓良伟,尹勇,等.2010.中型沼气工程不同加热方式的经济效益分析.农业工程学报,26(7):281-284.
    邱凌,杨改河,杨世琦.2001.黄土高原生态果园工程模式设计研究.西北农林科技大学(自然科学版),29(5):65-69.
    石卫国.2006.生物复合菌剂处理秸秆产沼气研究.农业工程学报,2006,22(1):93-95.
    宋洪川.2007.农村沼气实用技术.北京:化学工业出版社:14-15
    宋永民,陈洪章.2008.汽爆秸秆高温固态发酵沼气的研究.环境工程学报,2008,2(11):1564-1570.
    宋籽霖,郭燕,杨改河,等.2012.鸡粪与玉米秸秆混合发酵沼气产量影响因子研究.农业环境科学学报,31(8):1624-1629.
    宋籽霖,李轶冰,杨改河,等.2010.温度及总固体浓度对粪秆混合发酵产气特性的影响.农业工程学报,26(7):260–265.
    宋籽霖.2010.不同温度下总固体浓度对厌氧发酵产气特性的影响.[硕士学位论文].杨凌:西北农林科技大学.
    孙弘,李清彪,王远鹏,等.2008.预处理温度对剩余活性污泥生产挥发性脂肪酸的影响.现代化工,28(增刊2):424-427.
    孙永明,李国学,张夫道,等.2005.中国农业废弃物资源化现状与发展战略.农业工程学报,21(8),169-173
    孙振钧,孙永明.2006.我国农业废弃物资源化与农村生物质能源利用的现状与发展.中国农业科技导报,8(1):6-13.
    覃国栋,刘荣厚,孙辰. NaOH预处理对水稻秸秆沼气发酵的影响.农业工程学报,2011,27(增刊1):59-63.
    谭祥云.1992.加快沼气建设步伐促进农村经济发展.中国沼气,10(1),44-46.
    汪丹妤,王海燕,薛国新.2004.麦草浆臭氧漂白中戊聚糖含量的变化.纸和造纸,5:67-70.
    王钢,刘伟,王欣,等.2007a.我国沼气技术的利用现状与前景展望.应用能源技术,12,33-35.
    王莉玮.2005.重庆市农业面源污染的区域分异与控制.[硕士学位论文].重庆:西南大学.
    王联结.2006.一种生物质预处理的方法[专利]. CN1824782.2006-08-30.
    王晓娇,李轶冰,杨改河,等.2010.牛粪、鸡粪和稻秆混合的沼气发酵特性与工艺优化.农业机械学报,41(3):104-108.
    王晓娟,王斌,冯浩,等.2007.生物质制备生物乙醇研究进展.石油与天然气化工,36(6):452-461.
    王效华,冯祯民.2002.中国农村家庭能源消费的回顾与展望.农业机械学报,33(3):125-128.
    王许涛,张百良,宋安东,等.2008.蒸汽爆破技术在秸秆厌氧发酵中的应用.农业工程学报,2008,24(8):189-192.
    王永泽,邵明胜,王志,等.2009. pH值对水稻秸秆厌氧发酵产沼气的影响.安徽农业科学,37(31):15093-15094,15098
    文新亚,李燕松,张志鹏,等.2006.酶解木质纤维素的预处理技术研究进展.酿酒科技,10(8):97-100.
    吴振兴,陈晓晔,杨占春,等.水稻秸秆两相厌氧消化产酸相发酵工艺的研究.第三届全国化学工程与生物化工年会论文摘要集(下).南宁:广西大学,2006.
    武少菁.2009.玉米秸秆干发酵产沼气工艺试验研究.[博士学位论文].郑州:河南农业大学.
    席北斗,刘鸿亮,孟伟,等.2003.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,16(2):58-60.
    夏吉庆,毕经毅,郑国香,等.2009.冬季地表层温度测试及其对地埋沼气池的影响.东北农业大学学报,40(11):121-124.
    徐国涛.2009.玉米秸秆超声波预处理酶解发酵制沼气研究.[博士学位论文].南宁:广西大学.
    徐汉卿.2001.植物学.北京:中国农业出版社:13-15,104-106,120-133.
    徐忠,汪群慧,姜兆华.2004.氨预处理对大豆秸秆纤维素酶解产糖影响的研究.高校化学工程学报,2004,18(6):773-776.
    杨世关,李继红,孟卓,等.2006.木质纤维素原料厌氧生物降解研究进展.农业工程学报,22(增刊1):120-124
    杨淑蕙.2001.植物纤维化学(第3版).北京:中国轻工业出版社.
    杨雪霞,陈洪章,李佐虎.2001.玉米秸秆氨化汽爆处理及其固态发酵.过程工程学报,2001,1(1):86-89.
    张百良.1997.农村能源工程学.北京:中国农业出版社:14-19.
    张可喜.2001.以生活垃圾制取乙醇.中国工程科学,3:15.
    张莉.2011.中国大中型沼气工程发展的制约因素与建议.当代畜牧,4(3):48-49.
    张庭婷.2009.木薯秆预处理厌氧发酵生产沼气的研究.[博士学位论文].南宁:广西大学.
    张婷.2009.超声波与稀碱法联合预处理对秸秆厌氧发酵产沼气的影响.[博士学位论文].武汉:湖北工业大学.
    张无敌,宗德彬,宋洪川.1994.沼气发酵系统在生态农业中的地位和作用.生态农业研究,2(1):56-61.
    赵洪,邓功成,高礼安,等.2008. pH值对沼气产气量的影响.安徽农业科学,36(19):8216-8217,8330.
    赵明星,严群,阮文权,等.2008. pH调控对厨余物厌氧发酵产沼气的影响.生物加工过程,6(4):45-49.
    中国科学院成都生物研究所.1984.沼气发酵常规分析.北京:科学技术出版社.
    中国能源研究会农村能源专业委员会.1994.中国农村能源大事记.北京:中国城市出版社:200-204.
    中国农村能源行业协会.2009.中国沼气发展报告.北京.
    中华人民共和国国家发展和改革委员会.2008.2008年大中型沼气工程投资规划.
    中华人民共和国国家统计局.2009.中国统计年鉴.北京.
    中华人民共和国国家统计局.2011.全国第六次人口普查报告(.http://www.stats.gov.cn/tjgb/rkpcgb/qgrkpcgb/t20110428_402722232.htm.
    中华人民共和国环境保护部,2010. http://www.zhb.gov.cn/S.
    中华人民共和国可再生能源.2005.http://www.gov.cn/ziliao/flfg/2005-06/21/con tent_8275. htm.
    中华人民共和国农业部.2003.对于农村沼气工程资金支持的若干规定(暂定).
    中华人民共和国农业部.2007a.全国农村沼气工程建设规划(2006–2010).
    中华人民共和国农业部.2007b.大中型畜禽养殖场沼气工程设计规范(NT/Y1222-2006).北京:中国农业出版社.
    钟珍梅,黄秀声,黄琴楼,等.2009.规模化牛场"肉牛-沼气-牧草"循环农业模式能值分析.家畜生态学报,30(6),112-116.
    周孟津,张荣林,蔺金印.2011.沼气实用技术.北京:化学工业出版社.
    Alvira A, Tomas P E, Ballesteros M, et al.2010. Pretreatment technologies for an efficient biotechanolproduction process based on enzymatic hydrolysis: A review. Bioresour Technol,101(13):4851-4861.
    American Public Health Association.1995. Standard Methods for the Examination of Water andWastewater,19thed. Washington, D.C.
    Bas D, Boyaci H.2007. Modeling and optimization I: Usability of response surface methodology. J FoodEng,78:836-845.
    Beguin P, Aubert J P. The biological degradation of cellulose[J].Ferm Microbiol Rev,1994,13:25-58.
    Bhattacharya S C, Kumar S.2000. Renewable energy in Asia: a technology and policy review. WorldRenewable Energy Congress VI,1720-1723.
    Bhattacharya S C, Thomas J M, Abdul SP.1997. Greenhouse gas emissions and the mitigation potential ofusing animal wastes in Asia. Energy,22(11):1079-1085.
    Bobleter O.1994. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci,19:797-841.
    Bousková A, Dohányos M, Schmidt J E, Angelidaki I.2005. Strategies for changing temperature frommesophilic to thermophilic condition in anaerobic CSTR reactors treating sludge. Water Research,39(8):1481-1488.
    Box G E P, Draper N R.2007. Empirical Model-Building and Response Surfaces. Wiley, New York.1987.
    Bprnsson L, Murto M, Mattiasson B.2000. Evaluation of parameters for monitoring an aerobicco-digestion process, Appl Microbiol Biotechnol,54:844-849.
    Bremner J M, Mulvaney C S.1982. Nitrogen-total. In: Page, A.L., Miller, R.H., Keeney, D.R.(Eds.),Methods of soil analysis, part2, chemical and microbial properties. Agronomy Society of AmericaAgronomy Monograph9, Wisconsin, pp.595-624.
    Caulfield D, Moore W E.1974. Effect of varying crystallinity of cellulose on enzymic hydrolysis. WoodSci,6(4):375-379.
    Chang J Y C, Leung D, Wu C Z, et al.2003. A review of the energy production, consumption, andprospect of renewable energy in China. Renew Sust Energ Rev,7:453-468.
    Chang V S, Holtzapple M T.2000. Fundamental factors affecting enzymatic reactivity. Appl BiochemBiotechnol,84-86:5-37.
    Chang V S, Nagwani M, Holtzappl M T.1998. Lime pretreatment of crop residues bagasse and wheatstraw. Appl Biochem Biotechnol,74:135-157.
    Chang V S, Nagwani M, Kim C H, et al.2011. Oxidative lime pretreatment of high-lignin biomass. ApplBiochem Biotech,94:1-28.
    Chen H Z, Liu L Y, Yang X X, et al.2005. New process of maize stalk amination treatment by steamexplosion. Biomass Bioenerg,28(4):411-417
    Chen J N, Zhang T Z, Du P F.2002. Assessment of water pollution control strategies: a case study for theDianchi Lake. J Environ Sci,14(1):76-78.
    Chen R J.1997. Livestock-biogas-fruit systems in South China. Ecol Eng,8:19-29.
    Chen Y, Cheng J J, Creamer K S.2008. Inhibition of anaerobic digestion process: A review. BioresourTechnol,99:4044-4064.
    Chen Y, Sharma-Shivappa R R, Keshwani D, et al.2007. Potential of agricultural residues and hay forbioethanol production. Appl Biochem Biotechnol,142:276-290.
    Chosdu R, Hilmy N, Erlinda T B, et al.1993. Radiation and chemical pretreatment of cellulosic waste.Radiat Phys Chem,42:695-698
    Cuetos M J, Fernandez C, Gomez X, et al,2011. Anaerobic co-digestion of swine manure with energy cropresidues. Biotechnol Bioprocess Eng,16:1044-1052.
    Cui Z F, Shi J, Li Y.2011. Solid-state anaerobic digestion of spent wheat straw from horse stall.Bioresour Technol,102(20):9432-9437.
    Dowd B M, Press D, Huertos M L, et al.2008. Agricultural nonpoint source water pollution policy: Thecase of California's Central Coast. Agr Ecosyst Environ,128(3):151-161.
    Duarte A, Anderson G.1982. Inhibition modeling in anaerobic digestion. Water Science and Technology,14:749-763.
    Eskicioglu C, Prorot A, Marin J, et al.2008. Synergetic pretreatment of sewage sludge by microwaveirradiation in presence of H2O2for enhanced anaerobic digestion. Water Res,42:4674-4682.
    Eskicioglu, Ghorbani M.2011. Effect of inoculum/substrate ratio on mesophilic anaerobic digestion ofbioethanol plant whole stillage in batch mode. Process Biochemistry,46(8):1682-1687.
    ESMAP.1996. Energy for rural development in China. Joint UNDP/World Bank.
    Feng H.2011. A summary of the eleventh five-year and a perspective of the twelfth five-year: ruralbiogas increased famers’ income. http://finance.people.com.Cn/GB/8215/179399/204463/13750217.html.
    Fengel D, Wegener G.1984. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin.
    Ferreira S L C, Bruns R E, Ferreira H S, et al.2007. Box-Behnken design: An alternative for theoptimization of analytical methods. Anal Chim Acta,597:179-186.
    Forster-Carneiro T, Perez M, Romero L I.2008. Influence of total solid and inoculum contents onperformance of anaerobic reactors treating food waste. Bioresour Technol,99(15):6994-7002.
    Gan L. Yu J.2008. Bioenergy transition in rural China: Policy options and co-benefits. Energ Policy,36:531-540.
    Garrote G, Dominguez H, Parajo J C.1999. Hydrothermal processing of lignocellulosic materials. Holz RohWerkst,57:191-202.
    Ghosh A, Bhattacharyya B C.1999. Biomethanation of white rotted and brown rotted rice straw.Bioprocess Eng,20(4):297-302.
    Ghosh S, Henry M P, Sajjad A, et al.2000. Pilot-scale gasification of municipal solid wastes by high-rateand two-phase anaerobic digestion (TPAD). Water Sci Technol:101-110.
    Global Status Report,2007. Renewables
    Grethlein H E.1985. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosesubstrates. Nature Biotechnol,3:155-160.
    Grous W R, Converse A O, Grethlein H E.1986. Effect of steam explosion pretreatment on pore size andenzymatic hydrolysis of poplar. Enzyme Microbiol Technol,8:274-280.
    Gunaeeslna N.1995. Effect of inoculums/upstate ratio and pretreatments on methane yield frompathname. Biomass Bioenerg,8(1):39-44.
    Hacking A J.1995. Electron treatment of cellulose for viscose fiber. Chemical Fiber International,1995,45(6):454-459.
    Handlsman J.2004. Metagenomics: Application of genomics to uncultured microorganism[J]. MicrobialMol Biol Rev,68(4):669-685.
    Hjorth M, Gr nitz A P S, M ller H B.2001.Extrusion as a pretreatment to increase biogas production.Bioresour Technol,102:4989-4994.
    Holtzapple M T, Davison R R, Ross M K, et al.2009. Biomass conversion to mixed alcohol fuels usingthe Mixalco process. Appl Biochem Biotechnol,79:609-631.
    Hon D N S, Shirashi N.1991. Wood and Cellulosic Chemistry. Marcel Dekker, New York.
    Hoon K S. Lime pretreatment and enzymatic hydrolysis of corn stover.2004. Dissertation for the Degreeof Doctor of philosophy. Texas A&M University.
    Huang H, Yan L S, Zhang H M.2009. Dilute sulfuric acid cycle spray flow-through pretreatment of cornstover for enhancement of sugar recovery. Bioresour Technol,100:1803-1808.
    Ingram L O, X Lai.1997. In: BC Saha and J. Woodward, eds. Fue1s and Chemicals from Biomass.Washington D. C: American Chemical Society,57-73.
    Isci A, Demirer G N.2007. Biogas production potential from cotton wastes. Renew Energ,32:750-757.
    Jian S, Ratna R S, Mari C, et al.2009. Effect of microbial pretreatment: on enzymatic hydrolysis andfermentation of cotton stalks for ethanol production. Biomass Bioenerg,33(1):88-96.
    Jiang X Y, Sommer S G, Christensen K V.2011. A review of the biogas industry in China. Energ Policy39:6073-6081.
    Kaar W E, Holtzapple M T.2000. Using lime pretreatment to facilitate the enzymic hydrolysis of cornstover. Biomass Bioenerg,18:189-199.
    Karunanandaa K, Varga G A.1996. Colonization of rice straw by white-rot fungi (Cyathus stercoreus):effect on ruminal fermentation pattern, nitrogen metabolism, and fiber utilization during continuousculture. Anim Feed Sci Technol,61:1-16.
    Kato S, Haruta S, Cui Z J, et al.2004. Effective cellulose degradation by a mixed-culture system composedof a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol,2004,51(1):133-142.
    Kim S, Holtzapple M T.2005. Lime pretreatment and enzymatic hydrolysis of corn stover. BioresourTechnol,96:1994-2006
    Kim S, Holtzapple M T.2006. Delignification kinetics of corn stover in lime pretreatment. BioresourTechnol,97:778-785.
    Kim T H, Kim J S, Sunwoo C, et al.2003. Pretreatment of corn stover by aqueous ammonia. BioresourTechnol,90:39-47.
    Koch K, Lubken M, Gehring T, et al.2010. Biogas from grass silage-measurements and modeling withADM1. Bioresour Technol,101:8158-8165.
    Kootstra A M J, Beeftink H H, Scott E L, et al.2009. Comparison of dilute mineral and organic acidpretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal,46:126-131.
    Koullas D P, Christakopoulos P, Kekos D, Macris B J, Koukios EG.1992. Correlating the effect ofpretreatment on the enzymatic hydrolysis of straw. Biotechnol Bioeng,39:113-116.
    Kubler H.2000. Full scale co-digestion of organic waste. Wat Sci Tech,41(3):195-202.
    Kumar P, Barrett D M, Delwiche M J, et al.2009. Methods for pretreatment of lignocellulosic biomass forefficient hydrolysis and biofuel production. Ind Eng Chem Res,48:3713-3729.
    Lahav O, Morgan B E.2004. Titration methodologies for monitoring of anaerobic digestion in developingcountries-A review. J Chem Technol Biotechnol,79:1331-1341.
    Laureano-Perez L, Teymouri F, Alizadeh H, et al.2005. Understanding factors that limit enzymatichydrolysis of biomass. Appl Biochem Biotechnol,124(1-3):1081-1099.
    Lehtomǎki A, Huttrnen S, Rinrala J A.2007. Laboratory investigations on co-digestion of energy crops andcrop residues with cow manure for methane production: Effect of crop to manure ratio. ResourcesConservation&Recycling,51(3):591~609.
    Li Z, Tang R, Xia C, et al.2005. Towards green rural energy in Yunnan, China. Renew Energ,30(2):99-108.
    Liew L N, Shi J, Li Y B.2011. Enhancing the solid-state anaerobic digestion of fallen leaves throughsimultaneous alkaline treatment. Bioresour Technol,102(19):8828-8834.
    Lin Y Q, Wang D H, Wu S Q, Wang C M.2009. Alkali pretreatment enhances biogas production in theanaerobic digestion of pulp and paper sludge. J Hazard Mater,170:366-373.
    Liu C, Wyman C E.2003. The effect of flow rate of compressed hot water on xylan, lignin and total massremoval from corn stover. Ind Eng Chem Res,42:5409-5416.
    Liu Y, Kuang Y Q, Huang N S, et al.2008. Popularizing household-scale biogas digesters for ruralsustainable energy development and greenhouse gas mitigation. Renew Energ,33(9):2027-2035.
    Mata-Alvarez J, Mace S, Llabres P.2000. Anaerobic digestion of organic solid wastes. An overview ofresearch achievements and perspectives. Bioresour Technol,74(l):3-16.
    Morjanoff P J, Gray P P.1987. Optimization of steam explosion as method for increasing susceptibility ofsugarcane bagasse to enzymatic saccharification. Biotechnol Bioeng,29:733-741.
    Mosier N, Wyman C, Dale B, Elander R, et al.2005. Features of promising technologies for pretreatmentof lignocellulosic biomass. Bioresour Technol,96:673-686.
    Nelson D W, Sommers L E.1982. Total carbon, organic carbon, and organic matter, In: Page, A. L., Miller,R. H., and Keeney, D.R.(Eds.), Methods of soil analysis, part2, chemical and microbial properties.Agronomy Society of America, Agronomy Monograph9, Wisconsin, pp.539-552.
    Nigam J N.1999. Continuous ethanol production from pineapple cannery waste. J Biotechnol,72(3):197-202.
    Ongley E D, Zhang X L, Yu T.2010. Current status of agricultural and rural non-point source pollutionassessment in China, Environ Pollut,158:1159-1168.
    Palmowski L, Muller J.1999. Influence of the size reduction of organic waste on their anaerobic digestion.In: II International Symposium on Anaerobic Digestion of Solid Waste. Barcelona15-17June, pp,137-144.
    Pavlostathis S G, Miller T L, Wolin M J.1988. Kinetics of insoluble cellulose fermentation by cultures ofruminococcus albus. Appl Environ Microbiol,54(11):2660-2663.
    Puri V P.1984. Effect of crystallinity and degree of polymerization of cellulose on enzymaticsaccharification. Biotechnol Bioeng,26:1219-1222.
    Qi X S, Zhang S P, Wang Y Z, et al.2005. Advantages of the integrated pig-biogas-vegetable greenhouse.Ecol Eng,24:177-185.
    Qi Z H.2003. Construction of circle economy and eco-town. China Population Resources andEnvironment,13(5):111-114.
    Quintero, Castro L, Ortiz C, et al.2012. Enhancement of starting up anaerobic digestion of lignocellulosicsubstrate: fique's bagasse as an example. Bioresour Technol,108:8-13.
    Rafique R, Poulsen T G, Nizami A S, et al.2010. Effect of thermal, chemical and thermo-chemicalpre-treatments to enhance methane production. Energy,35:4556-4561.
    Ramos L P.2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova,26(6):863-871
    Raposo F, Banks C J, Siegert I, et al.2006.Influence of inoculum to substrate ratio on the biochemicalmethane potential of maize in batch tests. Process Biochemistry,41(6):1444-1450.
    Rivera E C, Rabelo S C, Garcia D R, et al.2010. Enzymatic hydrolysis of sugarcane bagasse forbioethanol production: determining optimal enzyme loading using neural networks. J ChemTechnol Biot,85:983-992.
    Rivero J A C, Madhavan N, Suidan M T, et al.2006. Oxidative co-treatment using hydrogen peroxidewith anaerobic digestion of excess municipal sludge. Water Environ Res,78:691-700.
    Saha B C, Iten L B, Cotta M A, et al.2005. Dilute acid pretreatment,enzymatic saccharification andfermentation of wheat straw to ethanol. Process Biochem,40(12):3693-3700.
    Sanchez G, Pilcher L, Roslander C, et al.2004. Dilute-acid hydrolysis for fermentation of the Bolivianstraw material. Bioresour Technol,93(3):249-256.
    Shen Z Y, Qian L, Qian H, et al.2012. An overview of research on agricultural non-point source pollutionmodeling in China. Separ Puri Technol,84,104-111.
    Sidiras D, Koukios E.2004. Simulation of acid-catalysed organosolv fractionation of wheat straw.Bioresour Technol,94:91-98.
    Sonakya V, Raizada N, Kalia V C.2001. Microbial and enzymatic improvement of anaerobic digestion ofwaste biomass. Biotechnol Lett,23:1463-1466.
    Song Z L, Yang G H, Guo Y, Zhang T.2012. Comparison of two chemical pretreatments of rice straw forbiogas production by anaerobic digestion. BioResources,7(3):3223-3236.
    Song Z L, Yang G H, Han X H, et al.2013. Optimization of alkaline pretreatment of rice straw forenhanced methane yield. BioMed Research International, DOI: Org/10.1155/2013/968692.
    Stephen R H, Frederick G P.2006. Recent development in hydrogen management during anaerobicbiological wastewater treatment. Biotechnol. Bioeng,28(3):585-602.
    Sun F B, Chen H Z.2008. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerolpretreatment[J]. Bioresour Technol,99:6156-6161.
    Sun Y, Cheng J.2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. BioresourTechnol,83:1-11.
    Suwannoppadol S, Ho G, Cord-Ruwisch R.2011. Rapid start-up of thermophilic anaerobic digestion withthe turf fraction of MSW as inoculum. Bioresour Technol,102(17):7762-7767.
    Taniguchi M Y, Suzuki H, Watanabe D, et al.2005. Evaluation of pretreatment with pleurotus ostreatus forenzymatic hydrolysis of rice straw. J Biosci and Bioeng,100(6):637-643.
    Taniguchi, M, Suzuki H, Watanabe D, et al.2005. Evaluation of pretreatment with Pleurotus ostreatusfor enzymatic hydrolysis of rice straw. J Biosci Bioeng,100:637-643.
    Tatsuro S, Yoshitoshi N, Fumihisa K.1999. Effect of frugal pretreatment and steam explosion pretreatmenton enzymatic saccharification of plant biomass. Biotechnol Bioeng,48:719-724.
    Teghammar A, Yngvesson J, Lundin M, et al.2010. Pretreatment of paper tube residuals for improvedbiogas production. Bioresour Technol,101:1206-1212.
    Teixeira L C, Linden J C, Schroeder H A.1999. Alkaline and peracetic acid pretreatments of biomass forethanol production. Appl Biochem Biotechnol,77:19-34.
    Teymour I F, Laureano-perez L, Alizadeh H, et al.2005. Optimization of the ammonia fiber explosion(AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol,96(18):2014-2018.
    Thompson D N, Chen H C, Grethlein H E.1992. Comparison of pretreatment methods on the basis ofavailable surface area. Bioresour Technol,39:155-163.
    Torre M, Rodriguez A R, Saura-Calixto F.1992. Study of the interactions of calcium ions with lignin,cellulose, and pectin. J Agric Food Chem,40:1762-1766.
    Tu W B, Zhang L X, Zhou Z R, et al.2011. The development of renewable energy in resource-rich region:A case in China. Renew Sust Energ Rev,15:856-860.
    Turovskiy I S, Mathai P K.2006. Wastewaster Sludge Processing. Wiley, New York.
    United Nations Development Program.2010.China Human Development Report.2009/10: China and aSustainable Future: Towards a Low Carbon Economy and Society. Beijing: China Translation andPublishing Corporation.
    Vrije D T, Haas G G, Tan G B, et a1.2002. Pretreatment of miscanthus for hydrogen production bythermotoga elfii. Int J Hydrogen Energ,27(11):1381-1390.
    Wang X H, Feng Z M.1996. Survey of rural household energy consumption in China. Energy,21(7-8):703-705.
    Wang X H, Feng Z M.1997. A survey of rural energy consumption in the developed region of China.Energy,22(5):511-514.
    Wang X J, Yang G H, Li F et al.2013. Response surface optimization of methane potentials in anaerobicco-digestion of multiple substrates: dairy, chicken manure and wheat straw. Waste Manage Res,31(1):60-66.
    Wang X, Di C, Hu X, et al.2007b. The influence of using biogas digesters on family energyconsumption and its economic benefit in rural areas—comparative study between Lianshui andGuichi in China. Renew Sust Energ Rev,11(5):1018-1024.
    Wang X, Li J.2005. Influence of using household biogas digesters on household energy consumption inrural areas—a case study in Lianshui County in China. Renew Sust Energ Rev,9(2):229-236.
    Wu C Z, Huang H, Zhang S P, et al.2002. An economic analysis of biomass gasification and powergeneration in China. Bioresource Technol,83:65-70.
    Wu Y J, Ma H, Liu W W. Enhanced enzymatic saccharification of rice straw by microwave pretreatment.Bioresour Technol,2009,100:1279-1284.
    Xu J L, Cheng J J, Sharma-Shivappa R R, et al.2011. Lime pretreatment of switchgrass at mildtemperatures for ethanol production. Bioresour Technol,101:2900-2903.
    Yadvika, Santosh, Sreekrishnan T R, et al.2004. Enhancement of biogas production from solid substratesusing diferent techniques––a review, Bioresour Technol,95:1-10.
    Yu H B, Zhang X Y, Song L L, et al.2010. Evaluation of white-rot fungi-assisted alkaline/oxidativepretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. J Biosci and Bioeng,110(6):660-664.
    Zeikus J G.1976. Microbial populations in anaerobic digestion. Applied Science Publisher:66-89.
    Zeng X Y, Ma Y T, Ma L R.2007. Utilization of straw in biomass energy in China. Renew Sust EnergRev,11:976-987.
    Zhang P D, Yang Y L, Tian Y S, et al.2009. Bioenergy industries development in China: dilemma andsolution. Renew Sust Energ Rev,13(9):2571-2579.
    Zhang P, Jia G, Wang G.2007. Contribution to emission reduction of CO2and SO2by household biogasconstruction in rural China. Renew Sust Energ Rev,11(8):1903-1912.
    Zhang R H, Zhang Z Q.1999, Biogasification of rice straw with an anaerobic-phased solids digestersystem. Bioresour Technol,68:235-245
    Zhang Y H P, Lynd L R.2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems. Biotechnol Bioeng,88(7):797-824.
    Zhong W Z, Zhang Z Z, Wei Q, et al.2010. Comparison of chemical and biological pretreatment of cornstraw for biogas production by anaerobic digestion. Renew Energ,36:1875-1879
    Zhou Y L, Zhang Z Y, Nakamoto T, et al.2011. Influence of substrate-to-inoculum ratio on the batchanaerobic digestion of bean curd refuse-okara under mesophilic conditions. Biomass&Bioenerg,35(7):3251-3256.
    Zinatizadeh A A L, Mohamed A R, Abdullah A Z, et al.2006. Process modeling and analysis of palm oilmill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surfacemethodology (RSM). Water Res,40:3193-3208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700