废水产氢产酸/同型产乙酸耦合系统厌氧发酵产酸工艺及条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废水处理正由单纯的污染控制向污染控制和资源化利用并重方向发展,利用废水生产生物能和生化品的研究正日益受到人们的广泛关注。通过废水厌氧发酵产酸为进一步发酵生产高值生化品提供相对单一的溶解性碳源是实现废水资源化的一条新途径。厌氧发酵产生的乙酸,很容易通过食乙酸产甲烷菌的作用转变为甲烷而减少酸的累积,本研究采用加热法处理厌氧活性污泥杀灭产甲烷菌;同时构建了产氢产酸/同型产乙酸耦合系统,通过同型产乙酸菌的耗氢产乙酸作用解除产氢产酸过程中的氢抑制,强化乙酸生产。
     对葡萄糖浓度为5g/L的模拟废水进行厌氧酸化,当初始pH为8.0时,采用加热种泥的乙酸产率比采用未加热种泥高3.1倍。利用产氢产酸/同型产乙酸耦合系统对含葡萄糖30g/L的模拟废水和COD为34g/L的污泥预处理液分别进行厌氧发酵产酸,得到的乙酸产率分别比一般产酸系统提高52-87%和29-39%。产氢产酸/同型产乙酸耦合系统对乙酸生产的强化可归因于同型产乙酸作用、产氢产酸相产物抑制的解除以及葡萄糖转化和乙醇氧化的强化。
     利用单因素试验方法,研究了底物浓度、初始pH和种泥浓度等关键因素对耦合系统产酸的影响。发现产氢产酸相中的条件变化,不仅影响本相产酸,而且影响同型产乙酸相产酸。乙酸浓度一般随着底物浓度的增加而增加,但在发酵后期(192 h),底物浓度为30 g/L时产生的乙酸浓度比底物为40g/L时高27%。pH为5时主要进行乙醇型发酵;pH为6和7时主要进行丁酸型发酵;而pH处于8-11时均以乙酸为主要产物,其中pH为10时,产乙酸最高。pH和底物浓度对产酸的影响归因于游离酸对各种微生物的抑制程度上的差异。在种泥浓度为2-8 g/L范围内,两相种泥浓度均为4g/L时产乙酸最高。乙酸产率随种泥浓度的变化归因于不同种泥浓度条件下代谢途径的改变以及耦合系统两相间产耗氢不平衡程度的差异。在上述单因素实验基础上,采用均匀设计方法,得出耦合系统厌氧产酸以高乙酸产量为主要目标导向同时兼顾高乙酸产率和高乙酸生产强度目标的优化条件是:发酵时间10 d,初始pH 11,底物浓度40g/L,种泥浓度6 g/L。
     同型产乙酸相产生的乙酸占耦合系统总乙酸的比例只有5-9%,而根据厌氧产酸反应计量学理论计算,该比例应可达到33%。这可能是耦合系统中存在严重的产耗氢不平衡以及两相间物质传递不顺畅所致。论文采用分批补料技术防止发酵初期产氢产酸相的有机负荷过高,同时减轻产耗氢不平衡程度;采用气体循环策略强化H_2+CO_2由产氢产酸相向同型产乙酸相转移,提高同型产乙酸相的底物浓度,降低产氢产酸相的氢分压。结果表明:采取气体循环和分批补料两种策略后,耦合系统乙酸产率约提高44%。乙酸有三种直接来源:葡萄糖转化、H_2+CO_2同型乙酸化和乙醇氧化,其中葡萄糖的直接转化所占比例最高,达49-80%;在产氢产酸相真空度为28 kPa时,H_2+CO_2同型乙酸化对于分批补料试验产乙酸的贡献>30%;乙醇氧化对于分批试验产乙酸的贡献>40%。
     为了解产氢产酸/同型产乙酸耦合系统长期运行的稳定性以及产酸条件下微生物的种群动态,论文采用半连续方式进行长期运行并利用分子生态学技术对产酸微生物的种群动态进行了分析。结果表明:产氢产酸/同型产乙酸耦合系统半连续运行100 d后达到稳定状态,即有机酸和乙醇浓度基本恒定,pH值波动较小。在底物负荷为4-6g/(L·d)、HRT为20 d时,乙酸产率为0.4-0.48g/g。随着底物负荷率由4 g/(L·d)上调到6g/(L·d),耦合系统产氢产酸相的香农指数由0.71 dit下降到0.50 dit;当负荷率回调到4g/Ld时,香农指数增加到0.75 dit。生物多样性丰富度与乙酸产率呈正相关。同型产乙酸相的香农指数只有0.21 dit,远低于产氢产酸相。耦合系统两相始终均有Clostridium和Fusobacterium,而且占有较高的比例。定量PCR检测到耦合系统产氢产酸相同型乙酸菌为6.3×10~8个/mL,同型产乙酸相为8.9×10~8个/mL,比一般厌氧消化反应器高2-3个数量级。耦合系统污泥微生物产乙酸关键酶活性为:产氢产酸相中的乙酸激酶(AK)活性1.5-2.5 U/mg,磷酸转移乙酰酶(PTA)为0.17-0.33 U/mg:同型产乙酸相中的AK活性1.0-1.7 U/mg,PTA为0.11-0.22 U/mg。关键酶活性与产乙酸强度呈正相关。
Wastewater treatment is shifting from single pollution control to paying equal attention to both pollution control and waste resource utilization. Research about using wastewater to produce bioenergy and biochemical materials is increasingly attracting widespread attention. Volatile fatty acids can be produced by wastewater anaerobic fermentation and be supplied to produce highly valuable biochemical products by further fermentation, which provides a new way for achieving wastewater resource utilization. Acetate is produced by anaerobic fermentation and can be easily converted to methane, and carboxylate accumulation is reduced. This study treated the anaerobic activated sludge by heat to kill methanogen, and constructed a novel acidificationhomoacetogenesiscoupling system. In this case, hydrogen inhibition during wastewater acidification is relieved resulting from hydrogen consumption by homoacetogen, which enhances acetate production.
     Simulated wastewater containing 5 g/L glucose was acidified by heat-treated sludge and non-heat-treated sludge, respectively. It is indicated that acetate yield of the former is 3.1-fold higher than the latter at an initial pH 8.0. Then, the acidification-homoacetogenesis coupling system was used to produce acetate from simulated wastewater containing 30 g/L glucose and pretreated sludge liquor containing 34 g/L COD. Acetate yields in the coupling system are 52-87% and 29-39% higher than that in ordinary acidification systems, respectively. Enhancement of acetate production is attributed principally to homoacetogenesis, relief of the products (H_2 and CO_2) inhibition to acidification and syntrophic acetogenesis, enhancement of the conversion of substrate and the oxidation of ethanol.
     The single-factor experiments were conducted to study the effects of substrate concentrations, initial pH and inoculum concentrations on acetate production in the acidification and homoacetogenesis coupling system. The results show the variation of a condition in the acidification phase affects acetate production not only in the acidification phase itself but also in the homoacetogenesis phase. With the increase of substrate concentration, acetate concentrations usually increase. But at 192 h, the acetate concentration at 30 g/L of substrate is 27% higher than that at 40 g/L of substrate. Ethanol-type fermentation mainly takes place at initial pH 5 while butyrate-type fermentation at initial pH 6 and 7. But acetate is the dominant product at initial pH 8-11. The optimal initial pH is 10 for acetate production in the coupling system. Such an effect of initial pH and substrate concentration can be attributed principally to the difference of inhibition degree of non-dissociated acids on different microbes. At 2-8 g/L of inoculum sludge, the optimum sludge inoculum size in the syntrophic acetogenesis phase and the homoacetogenesis phase is both 4 g/L. At that sludge inoculum size, the maximum acetate production and yield can be achieved. The variation of acetate yield may be attributed to different metabolic pathways and the imbalance between hydrogen production and hydrogen consumption in the coupling system with different inoculum concentrations. Based on above single factor tests, uniformity design test was used to obtain the optimization conditions as follows: fermentation time 10 d, initial pH 11, substrate concentration 40 g/L and inoculum sludge 6 g/L. At these conditions, the maximum acetate production, high acetate yield and high acetate production rate could be achieved.
     The contribution of homoacetogenesis to acetate production should reach up to 33% by calculation according to acidification reaction metrology. But the acetate production in the homoacetogenesis phase accounted for only 5-9% in the coupling system. This may be resulted from the serious imbalance between hydrogen production and hydrogen consumption, and mass transfer obstruct between two phases. Gas circulation and fed-batch fermentation were applied for enhancing acetate production. The fed-batch method helps to balance hydrogen production in the acidification phase and hydrogen consumption in the homoacetogenesis phase of the coupling system, and helps to reduce the shock loading of organics at the beginning of the fermentation. Gas circulation enhances mass transfer from acidification phase to homoacetogenesis phase, hence resulting in increasing substrate concentrations in homoacetogenesis phase and decreasing the hydrogen partial pressure in the acidification phase. The results show that the acetate yield in the fed-batch test with gas circulation is about 44% higher than that in the batch test without gas circulation. Acetate can be directly from glucose conversion, H_2+CO_2 homoacetogenesis and ethanol oxidation. Acetate from glucose conversion accounted for 49-80%. When vacuum degree in the acidification phase was 28 kPa, H_2+CO_2 homoacetogenesis contributed more than 30% of acetate production for fed-batch tests, and ethanol oxidation contributed more than 40% of acetate production for batch tests.
     To investigate the operation stability of the acidification-homoacetogenesis coupling system and the microbial population dynamics under acidification condition, semi-continuous long term run was conducted and molecular ecology techniques were used to analyze acidification microbial population dynamics. The stable status of the semi-continuous run test can be attained after 100 d, at which organic acids and ethanol concentrations and pH are almost constant. When substrate loading rate is 4-6 g/(L·d) and HRT is 20 d, acetate yield in the coupling system is 0.4-0.48 g/g. When the loading rate increases from 4 g/(L·d) to 6 g/(L·d), Shannon-Weiner index decreases from 0.71 dit to 0.50 dit in the acidogenesis phase. When the loading rate is adjusted back to 4 g/(L·d), the Shannon-Weiner index then increases to 0.75 dit. There is a positive correlation between biology diversity and acetate yield. The Shannon-Weiner index in the homoacetogenesis phase is only 0.21 dit, which is much lower than acidogenesis phase. There are Clostridium and Fusobacterium in two phases of the coupling system all the time, and they represent a higher proportion. Through quantitative PCR, homoacetogens in samples of the acidification phase and homoacetogenesis phase are 6.3×10~8 cells/mL and 8.9×10~8 cells/mL, respectively. These are 2-3 orders of magnitude higher than the ordinary anaerobic digestor. In the coupling system, the activities of key enzymes are as follows: the activities of acetate kinase (AK) and phosphotransacetylase (PTA) in the acidification phase are 1.5-2.5 U/mg and 0.17-0.33 U/mg, respectively; the activities of AK and PTA in the homoacetogenesis phase are 1.0-1.7 U/mg and 0.11-0.22 U/mg, respectively. There is a positive correlation between key enzyme activity and acetate production rate.
引文
[1] Iranpour R, Stenstrom M, Tchobanoglous G. Environmental engineering: energy value of replacing waste disposal with resource recovery. Science, 1999,285: 706-711
    
    [2] Largus T A, Khursheed K, Muthanna H A, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS Biotechnol, 2004, 22: 477-485
    [3] Bungay, H R. Confessions of a bioenergy advocate. Trends Biotechnol, 2004,22: 67-71
    [4] Laufenberg G, Kunz B, Nystroem M. Transformation of vegetable waste into valu e added products: (A) the upgrading concept; (B) practical implementations. Bioresour Technol, 2003, 87: 167-198
    
    [5] Montgomery R. Development of biobased products. Bioresour Technol, 2004,91:1-29
    [6] Wang R, Dominguez-Espinosa R M., Leonard K, et al. The application of a generic feedstock from wheat for microbial fermentations. Biotechnol Prog, 2002,18:1033-1038
    [7] Chan W N. Thermophilic anaerobic fermentation of waste biomass for producing acetic acid[D]. Ph.D. Thesis. Chemical Engineering Department, Texas A&M University. 2002
    [8] Tanaka T, Sasak, K, Noparatnaraporn N, et al. Utilization of volatile fatty acids from the anaerobic digestion liquor of sewage sludge for 5-aminolevulinic acid production by photosynthetic bacteria. World J of Microbiol and Biotechnol, 1994, 10: 677-680
    [9] Takashima I M, Tachibana M S, Inoue Z, et al. Biosurfactant production from acetic acid as a strategy for waste sludge utilization. Biocontrol Sci and technol, 1998, 3:31-38
    [10] Preez, J C, Immelman, M, Kilian, SG. The utilization of short-chain monocarboxylic acids as carbon sources for the production of gamma-linolenic acid by Mucor strains in fed-batch culture. World J of Microbiol and Biotechnol, 1996,12: 68-72
    
    [11] Nielsen A M, Rampsch B J, Sojka G A. Regulation of isocitrate lyase in a mutant of Rhodopseudomonas capsulata adapted to growth on acetate. Archives of Microbiol, 1979,120: 43-46
    
    [12] Potvin J, Desrochers M, Arcand Y. Fermentation of kraft black liquor for the production of citric acid by Candida tropicalis. Applied Microbiol and Biotechnol, 1988,28: 350-55
    [13] Nuske J, Scheibnerb K, Dornbergera U, et al. Large-scale production of manganese-peroxidase using agaric white-rot fungi. Enzyme and Microbial Technol, 2002, 30: 556-561
    [14] Jang J H , Ike M, Kim S M,et al. Production of a novel bioflocculant by fed-batch culture of Citrobacter sp. Biotechnol Lett, 2001,23: 593-597
    [15] Dantzig A H, Zuckerman S H, Andonov R M M. Isolation of a Fusarium solani Mutant Reduced in Cutinase Activity and Virulence. J Bacteriol, 1986, 168: 911-916
    [16] Lettinga G, Velsen A F M, Hobma S W, et al. Use of the upflow sludge blanket (USB) reactor
    ??concept for biological wastewater treatment, especially for anaerobic treatment. BiotechnolBioeng, 1980,22:699-734
    
    [17] Jantsch T G, Angelidaki I, Schmidt J E, et al. Anaerobic biodegradation of spent sulphiteliquor in a UASB reactor. Bioresour Technol, 2002, 84:15-20
    
    [18] Karim K, Gupta S K. Continuous biotransformation and removal of nitrophenols underdenitrifying conditions. Water Res, 2003,37: 2953-2959
    
    [19] Angenent LT, Sung S, Raskin L. Formation of granules and Methanosaeta fibres in ananaerobic migrating blanket reactor (AMBR). Environ Microbiol, 2004, 6: 315-322
    
    [20] Angenent L T, Sung S. Development of anaerobic migrating blanket reactor (AMBR), anovel anaerobic treatment system. Water Res, 2001,35:1739-1747
    
    [21] Angenent L T, Zheng D, Sung S, et al. Microbial community structure and activity in acompartmentalized, anaerobic bioreactor. Environ.Res, 2002, 74: 450-461
    
    [22] Kalogo Y, Verstraete W. Development of anaerobic sludge bed (ASB) reactor technologiesfor domestic wastewater treatment: motives and perspectives. World J. Microbiol Biotechnol,1999, 15:523-534
    
    [23] Angenent L T, Sung S, Raskin L. Methanogenic population dynamics during startup of afull-scale anaerobic sequencing batch reactor treating swine waste. Water Res, 2002, 36:4648-4654
    
    [24]付胜涛,于水利,严晓菊,等.剩余活性污泥和厨余垃圾的混合中温厌氧消化[J].环 境科学,2006,27(7):1459-1463
    
    [25] Mata-Alvarez J, Cecchi F, Pavan P, et al. The performances of digesters treating the organicfraction of municipal solid waste differently sorted. Biological Wastes, 1991,33: 181-199
    
    [26] Del Borghi A, Converti A, Palazzi E, et al. Hydrolysis and thermophilic anaerobic digestionof sewage sludge and organic fraction of municipal solid waste. Bioprocess Engineer, 1999,20: 553-560
    
    [27] Ueno Y, Sato S, Morimoto M. Hydrogen production from industrial wasewater by anaerobicmicroflora in hemostat culture. J Ferment Bioeng, 1996, 82(2): 194-197
    
    [28] Yu H Q, Zhu Z H. Hydrogen production from rice winery wastewater in an upflow anaerobicreactor by using mixed anaerobic cultures. Int. J.Hydrogen Energy, 2002, 27: 1359-365
    
    [29] Ren N Q, Wang A J, Huang J C. Ethanol-type fermentation from carbohydrate in high rateacidogenic reactor. Biotechnol and bioeng, 1997, 54: 428-433
    
    [30]刘敏,任南琪,丁杰,等.糖蜜、淀粉和乳品废水厌氧发酵法制氢[J].环境科学,2004, 25(5): 65-69
    
    [31]李建政,任南琪,林明,等.有机废水发酵法制氢中试研究[J].太阳能学报,2002, 23(2):252-256
    [32] Chen C C, Lin C Y, Chang J S. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol, 2001, 57: 56-64
    [33] Hussy I, Hawkes F R, Dinsdale R, et al. Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng, 2003, 84: 619-626
    [34] Jiunn J L. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol and Bioeng, 2000, 68: 269-278.
    [35] Oh S E , Ginkel S V, Logan B E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol, 2003, 37: 5186-5190
    [36] Liu H, Ramnarayana R, Logan B E, Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Techno, 2004, 38: 2281-2285
    [37] Logan B E, Oh S E, In S K, et al. Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol, 2002, 36: 2530-2535
    [38] Ginkel S V, Sung S, Lay J J. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol, 2001, 35:4726-4730
    [39] Liu H, Logan B E. Electricity generation using an air cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol, 2004, 38 (14): 4040 -4046
    [40] Booki M, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol, 2004, 38 (21): 5809-5814
    [41] Jang J K, Pham T H ,Chang I S , et al. Construction and operation of a novel mediator and membraneless microbial fuel cell. Process Biochemistry, 2004, 39: 1007-1012
    [42] Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett, 2003, 25: 1531-1535
    [43] Burkert J F M, Maugeri F, Rodrigues M I. Optimization of extracellular lipase production by Geotrichum sp. using factorial design. BioresourTechnol, 2004, 91: 77-84
    [44] Tubesha Z A, Al-Delaimy K S. Rennin-like milk coagulant enzyme produced by a local isolate of Mucor. Int. J. Dairy Technol, 2003, 56: 237-241
    [45] Carvalho W, Silva S S, Converti A, et al. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng, 2002, 79, 165-169
    [46] Jin B, Leeuwen J, Yu Q, et al. Screening and selection of microfungi for microbial biomass protein production and water reclamation from starch processing wastewater. J Chem Technol Biotechnol, 1999, 74: 106-110
    
    
    [47] Zheng S, Min Y, LI P. Seed yeast cultivation for salad oil manufacturing wastewater treatment.J Environ Sci, 2002,14:39-43
    
    [48] Domi'nguez-Espinosa R M, Webb C. Production of monascus pigments in wheat basedsubstrates. World J Microbiol Biotechnol, 2003,19: 329-336
    
    [49] Du G, Yu J. Green technology for conversion of food scraps to biodegradable thermoplasticpolyhydroxyalkanoates. Environ Sci Technol, 2002, 36: 5511-5516
    
    [50] Park S J, Park J P, Lee S Y. Production of poly(3-hydroxybutyrate) from whey by fed-batchculture of recombinant Escherichia coli in a pilotscale fermenter. Biotechnol Lett, 2002, 24:185-189
    
    [51] Guerra N P, Pastrana L. Nisin and pediocin production on mussel-processing wastesupplemented with glucose and five nitrogen sources. Lett Appl Microbiol, 2002, 34:114-118
    
    [52] Aldor I S, Keasling J D. Process design for microbial plastic factories: metabolic engineeringof polyhydroxyalkanoates. Curr Opin Biotechnol, 2003,14: 475-483
    
    [53] Bramucci M G, Nagarajan V. Industrial wastewater bioreactors: sources of novelmicroorganisms for biotechnology. Trends Biotechnol, 2000,18: 501-505
    
    [54] Rittmann B E. Microbial ecology to manage processes in environmental biotechnology.TRENDS in Biotechnology, 2006, 24 (6): 261-266
    
    [55] Huang Y L, Wu Z, Zhang L, et al. Production of carboxylic acids from hydrolyzed corn mealby immobilized cell fermentation in a fibrous bed bioreactor. Bioresour Technol, 2002, 82:51-59
    
    [56] Collet C, Schwitzguebel J P, Peringer P. Improvement of acetate production from lactose bygrowing Clostridium thermolacticum in mixed batch culture. J Appl Microbiol, 2003, 95:824-831
    
    [57] Pynaert K, Smets B F, Wyffels S, et al. Characterization of an autotrophic nitrogenremovingbiofilm from a highly loaded lab-scale rotating biological contactor. Appl Environ Microbiol,2003, 69: 3626-3635
    
    [58] Li J Z, Donald S M, Harlan G K. Pilot-scale operation of thermophilic aerobic digestion forvolatile fatty acid production and distribution. J Environ Eng Sci, 2003, 2 (3): 187-197
    
    [59]吴满昌,孙可伟,李如燕,等.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学 与生物工程,2005, (9):28-30
    
    [60]吴满昌,孙可伟.温度波动对城市有机生活垃圾高温厌氧消化工艺影响[J].环境科学, 2006, 27(4): 805-809
    
    [61] Ahring B K, Ibrahim A A, Mladenovska Z. Effect of temperature increase from 55 to 65℃on performance and microbial population dynamics of an anaerobic reactor treating cattle??manure. Water Res, 2001, 35 (10): 2446-2452
    
    [62]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005.51-135
    
    [63] Raposo F, Banks C J, Sieger I T, et al., Influence of inoculum to substrate ratio on thebiochemical methane potential of maize in batch tests. Process Biochem, 2006, 41:1444-1450
    
    [64] Neves L, Oliveira R, Alves M M. Influence of inoculum activity on the biomethanization of akitchen waste under different waste/inoculum ratios. Process Biochem, 2004,39:2019-2024
    
    [65] Ten-Hong C, Andrew G, Hashimoto. Effects of pH and substrate: inoculum ratio on batchmethane fermentation. Bioresour Technol, 1996, 56:179-186
    
    [66] Wilton S L, Valderi D L, Shiva P. Influence of inoculum on perfomance of anaerobic reactorsfor treating municipal solid waste. Bioresour Technol, 2004, 94: 261-266
    
    [67] Parawira W, Murto M, Read J S, et al. Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochem, 2005, 40: 2945-2952
    
    [68] Gabriele D, Gert W. Metabolism of homoacetogens. Antonie van leeuwenhock, 1994, 66:209-221
    
    [69] Tsuyoshi M, Naoki K. The production of acetic acid from carbon dioxide and hydrogen by ananaerobic bacterium. J Biotechnol, 1990, 14: 187-194
    
    [70] Xu Li. Production of acetic acid from synthesis gas with mixed acetogenic microorganisms[D]. Ph.D. Thesis. Chemical Engineering Department, Texas A&M University, 2002
    
    [71]李建政,张妮,李楠,等.HRT对发酵产氢厌氧活性污泥系统的影响[J].哈尔滨工业 大学学报,2006,38:1840-1843,1846
    
    [72]赵丹,任南琪,王爱杰.pH、ORP调控发酵类型和微生物顶级群落[J].重庆环境科学, 2003,25:33-35,38
    
    [73]任南琪.产酸发酵细菌演替规律研究----pH≤5条件下ORP的影响[J].哈尔滨建筑大学 学报,1999,32(2):29-34
    
    [74] Horiuchi J, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acidreactor by pH control. Bioresour Technol, 2002, 82 (3): 209-13
    
    [75] Zhu Y Yang ST. Effect of pH on metabolic pathway shift in fermentation of xylose byClostridium tyrobutyricum. J Biotechnol, 2004, 110: 143-157
    
    [76]苑宏英,张华星,陈银广,等.pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响 [J].环境科学,2006,27(7):1358-1361
    
    [77]陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社,2002.1-10
    
    [78]方开泰.均匀设计与均匀设计表.北京:科学出版社,1994.69-70.
    
    [79]陈敏,赵立平.焦化污水处理系统中不同培养基分离的细菌种群多样性[J].微生物学??报,2003,43(3):366-377
    
    [80]高平平,赵立平.微生物种群结构探针杂交评价不同培养基从活性污泥分离优势菌群 的能力[J].微生物学报,2003,43(2):264-270
    
    [81] Allison E, McCaig A, Susan J, et al. Impact of cultivation on characterisation of speciescomposition of soil bacteria communities. FEMS Microbiol Ecol, 2001,35: 37-48
    
    [82] Klatt, Christian G, Timothy M. Aerobic biological treatment of synthetic municipal wastewater in membrane-coupled bioreactors. Biotechnol and Bioeng, 2003,82 (3): 313-320
    
    [83]王莹,万欢,吴根福.环境微生态研究中的分子生物学新技术[J].环境污染与防治, 2006,28(6):457-460
    
    [84]高平平,晁群芳,张学礼,等.TGGE分析焦化污水处理系统活性污泥细菌种群动态变 化及多样性[J].生态学报,2003,23(10):1963-1969
    
    [85]苏俊峰,马放,王弘宇,等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物 群落动态.环境科学学报,2007,27(3):386-390
    
    [86] Muyzer G. DGGE / TGGE, a met hod for identifying genes from natural ecosystems. CurrOpin in Microbiol, 1999 , (2): 317-322
    
    [87] Pearce D A, Lawley B, Ellis E J C, et al. Bacterioplankton community diversity in a maritimeAntarctic lake determined by culture2dependent and culture2independent techniques. FEMSMicrobiol Ecol, 2003,45: 59-70
    
    [88] Luxmy B S, Nakajima F, Yamamoto K. Predator grazing effect on bacterial size distributionand floc size variation in membrane-separation activated sludge. Water Sci and Technol, 2000,42 (3): 211-217
    
    [89] Marsh T. Terminal restriction fragment length polymoromologous populations ofamplification prophism (T-RFLP): an emerging method for characterizing diversity amonghducts. Curr Opin Microbiol. 1999,2: 323-327
    
    [90] Veoronique EH, Christiane D ,Ana P P ,et al . Terminal rest riction f ragment lengthpolymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol, 2004,47: 397-404
    
    [91]高平平,赵义,赵立平.焦化污水处理系统微生物种群结构动态的ERIC-PCR指纹图 谱分析[J].环境科学学报,2003,23(6):705-710
    
    [92] Peter S. Spore germination. Curr Opin Microbiol, 2003, 6: 550-556
    
    [93] Woese C R, Stackebrandt E, Macy T J, et al. A Phylogenetic definition of the majoreubacterial taxa. Syst Appl Microbiol, 1985, 6:143-151
    
    [94] David B, Paolo P, Paolo B. Mesophilic anaerobic digestion of waste activated sludge:influence of the solid retention time in the wastewater treatment process. Process Biochem,2005, 40:1453-1460
    [95] David B L., Rumana I, Nazim C, et al. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J of Hydrogen Energy, 2006, 31: 1496-1503
    [96] De C B, Verhaegen K, Boissier P, et al. Effect on methane digestion of decreased H_2 partial pressure by means of phototrophic or sulfate-reducing bacteria grown in an auxiliary reactor. Appl Microbiol Biotechnol, 1988,27: 410-415
    [97] Deplancke B, Hristova K R, Oakley H A, et al. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl Environ Microbiol, 2000, 66: 2166-2174
    [98] Dimitar K, Damien J B, Irini A. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl and environ microbiol, 2005, 71(1): 331-338
    [99] Mackay I. Real-time PCR in the microbiology laboratory. Clin Microb Infect, 2004, 10: 190-212
    [100] Amann R, Fuchs B M, Behrens S. The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol, 2001,12: 231-236
    [101] Amann R I, Krumholz L, Stahl D A. Fluorescent oligonucleotides probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol, 1990, 172:762-770
    [102] Wobus A ,Bleul C, Maassen S, et al. Microbial diversity and functional characterization of sediment s f rom reservoirs of different t rophic state. FEMS Microbiol Ecol, 2003 ,46: 331-347
    [103] Monique J, Batrice R. Development and use of fluorescent 16S rRNA2targeted probes for the specific detection of Met hylophaga species by in situ hybridization in marine sediment s. Research in Microbiol, 2003,154: 483-490
    [104] Zhou J Z. Microarrays for bacterial detection and microbial community analysis. Current Opinon in Microbiol, 2003, 6: 288-294
    [105] Jang C C, Kyung J P, Hyuk S I, et al . A novel continuous toxicity test system using a luminously modified f reshwater bacterium. Biosensors and Bioelectronics, 2004 , 20: 338-344
    [106] Cambours M A, Nejad P, Granhall U, et al. Frost-related dieback of willows. Comparison of epiphytically and endophytically isolated bacteria from different Salix clones, with emphasis on ice nucleation activity, pathogenic properties and seasonal variation. Biomass and Bioenergy, 2005,28:15-27
    
    [107] 刑德峰.产氢-产乙醇细菌群落结构与功能研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2006
    [108] Jiunn J L, Kuo S F, James C, et al. Influence of chemical nature of organic wastes on their ??conversion to hydrogen by heat-shock digested sludge. Int J of Hydrogen Energy, 2003, 28: 1361-1367
    
    [109] Ginkel S V, Sung S H. Biohydrogen production as a function of pH and substrateconcentration. Environ Sci Technol, 2001, 35: 4726-4730
    
    [110] Ginkel SV, Logan B E. Inhibition of biohydrogen production by undissociated acetic andbutyric acids. Environ Sci Technol, 2005, 39: 9351-9356
    
    [111] Park W, Hyun S H, Oh S E, et al. Removol of headspace CO_2 increases biological hydrogenproduction. Environ Sci Technol, 2005, 39: 4416-4420
    
    [112] Dae-Yeo C, Conly L, Hansen D. Production of Bio-Hydrogen by Mesophilic Anaerobic Fermentation in an Acid-Phase Sequencing Batch Reactor. Biotechnol and Bioeng, 2007, 96: 421-432
    
    [113]张波,史红钻,张丽丽.pH对厨余两相厌氧消化水解酸化的影响[J].环境科学学报, 2005,25(5):665-669
    
    [114]刘振玲,堵国成,刘和,等.食品废物厌氧发酵产酸研究[J].环境污染与防治,2007, 29(1): 49-52
    
    [115] Yuan H Y, Chen Y G, Zhang H X, et al. Improved bioproduction of short-chain fatty acids(SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol, 2006, 40:2025-29
    
    [116] Agbogboa F K, Holtzapple M T. Fixed-bed fermentation of rice straw and chicken manureusing a mixed culture of marine mesophilic microorganisms. Bioresour technol, 2007, 98:1586-1595
    
    [117] Cateryna A M, Frank K A, Holtzapple M T. Conversion of municipal solid waste tocarboxylic acids using a mixed culture of mesophilic microorganisms. Bioresource Technol,2006, 97:47-56
    
    [118] Donke S B, Aiello-Mnzzarri C, Holtzapple M T. Mixed acid fermentation of paper fines andindustrial biosludge. Bioresour Technol, 2004, 91:41-51
    
    [119] Miller G L. Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1960,31:426-428
    
    [120]国家环境保护局.水与废水监测分析方法[第三版][M].北京:中国环境科学出版社, 1997. 233-237
    
    [121] Michael K R, Production of acetic acid from waste biomass. Ph.D. Thesis. ChemicalEngineering Department, Texas A&M University (1998)
    
    [122] Poels J, Assche P V, Verstraete W. Influence of H_2 stripping on methane production inconventional digesters. Biotechnol and Bioeng, 1985, 27: 1692-1698
    
    [123] Samir K K, Chen W H, Li L, Sung S H. Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy, 2004, 29: 1123-1131
    [124] Jackson B E, Mclnerney M J. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature, 2002,415: 454-456
    [125] Chen A C, Ohashi A, Harada H. Acetate synthesis from H_2/CO_2 in simulated and actual landfill samples. Environ Technol, 2003, 24: 435-43
    
    [126]吕凡,何品晶,邵立明.pH对可降解有机废物发酵途径的影响[J].环境科学,2006,27(5): 991-97
    [127] Soni B K, Jain M K. Influence of pH on butyrate uptake and solvent fermentation by a mutant strain of Clostridium acetobutylicum. Bioprocess Eng, 1997,17: 329-334
    [128] Grupe,H, Gottschalk G. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microbiol, 1992, 58 (12): 3896-3902
    [129] Jones D T, Woods D R. Acetone-Butanol Fermentation Revisited. Microbiol Rev, 1986, 50 (4): 484-524
    [130] Ezeji T C, Qureshi N, Blaschek H P. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol, 2004, 63 (6): 653-658
    [131] van den H J C, Beeftink M H, Verschuren P G, et al. Determination of the critical concentration of inhibitory products in a repeated fed-batch culture. Biotechnol Techn,. 1992, 6: 33-38
    [132] Clarke K G, Hansford G S, Jones D T. Nature and significance of oscillatory behavior during the solvent production by Clostridium acetobutylicum in continuous culture. Biotechnol Bioeng, 1988, 32 (4): 538-544
    [133] Zheng X J, Yu H Q. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manage,. 2005, 74: 65-70
    [134] Inanc B, Matsui S, Ide S. Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: effects of H_2 and pH. Water Sci and Technol, 1996,34: 317-325
    [135] Osamu M, Richard D, Freda R, et al. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol, 2000, 73: 59-65
    [136] Idania V V, Richard S, Derek R, et al. Hydrogen generation via anaerobic fermentation of paper mill wastes. Bioresour Technol, 2005, 96: 1907-1913
    [137] Idania V V, Elvira R L, Alessandro C M, et al. Improvement of Biohydrogen Production from Solid Wastes by Intermittent Venting and Gas Flushing of Batch Reactors Headspace. Environ Sci and Technol, 2006, 40: 3409-3415
    [138] Rees E M, Lloyd D, Williams A G. The effects of cocultivation with the acetogen??Acetitomaculum ruminis on the fermentative metabolism of the rumen fungi Neocallimastix patriciarum and Neocallimastix sp. strain L2. FEMS Microbiol Lett, 1995, 133: 175-180
    
    [139] Simankova M V, Nozhevnikova A N. Thermophilic homoacetate fermentation of celluloseby a combined culture of Clostridium thermocellum and Clostridium thermoautotrophicum.Microbiology, 1989, 58: 723-728
    
    [140]张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用[J].生态学 杂志,2003,22(5):131-136
    
    [141] Ramakrishnan B, Lueders T, Dunfield P F, et al. Archaeal community structures in rice soilsfrom different geographical regions before and after initiation of methane production. FEMSMicrobiol Ecol, 2001, 37: 175-186
    
    [142] Liidemann H, Arth I, Liesack W. Spatial changes in the bacterial community structure alonga vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol, 2000, 66 (2):754-762
    
    [143] Scala D J, Kerkhof L J. Horizontal heterogeneity of denitrifying bacterial communities inmarine sediments by terminal restriction fragment length polymorphism analysis. ApplEnviron Microbiol, 2000, 66 (5): 1980-1986
    
    [144] Marsh T L, Liu W T, Forney L J, et al. Beginning a molecular analysis of the eukaryalcommunity in activated sludge. Wat Sci Tech, 1998, 37:455-460
    
    [145] Eschenhagen M, Schuppler M, Roske I. Molecular characterization of the microbialcommunity structure in two activated sludge systems for the advanced treatment of domesticeffluents. Water Research, 2003, 37: 3224-3232
    
    [146]李光伟,刘和,云娇,等.应用T-RFLP技术研究五氯酚对好氧颗粒污泥中细菌组成 的影响[J].环境科学,2006,27:794-799
    
    [147]刘和,李光伟,云娇,等.好氧颗粒污泥和活性污泥细菌种群结构对五氯酚污染的响 应研究[J].环境科学学报,2006,26:1445-1450
    
    [148] Wittwer C T, Herrmann M G, Gundry C N, et al. Real-Time Multiplex PCR Assays.Methods, 2001, 25: 430-442
    
    [149] Einspanier R, Lutz B, Rief S, et al. Tracing residual recombinant feed molecules duringdigestion and rumen bacterial diversity in cattle fed transgene maize. Euro Food Res andTechnol, 2004, 218 (3): 269-273
    
    [150] He J Z, Ritalahti K M, Aiello M R, et al. Complete detoxification of vinyl chloride by ananaerobic enrichment culture and identification of the reductively dechlorinating populationas a Dehalococcoides species. Appl Environ Microbiol, 2003, 69 (2): 996-1003
    
    [151] Griintzig V, Nold S C, Zhou J Z, et al. Pseudomonas stutzerinitrite reductase geneabundance in environmental samples measured by real-time PCR. Appl Environ Microbiol,??2001, 67 (2): 760-768
    
    [152] Okano Y, Hristova K R, Leutenegger C M, et al. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol, 2004, 70 (2): 1008-1016
    
    [153]李光伟,刘和,张峰,等.荧光定量PCR监测五氯酚对好氧颗粒污泥和活性污泥中氨 氧化细菌数量的影响[J].微生物学报,2007,47(1):136-140
    
    [154] Wolfram A, Hubert B, Gerhard G Level of enzymes involved in acetate, butyrate, acetoneand butanol formation by clostridium acetobutylicum. Europ J appl microbiol and biotechnol,1983,18:327-332
    
    [155] Zhu Y, Yang S T. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyricacid in a fibrous-bed bioreactor. Biotechnol.Prog, 2003,19: 365-372
    
    [156] Marsh T L, Saxman P, Cole J, et al. Terminal Restriction Fragment Length PolymorphismAnalysis Program, a Web-Based Research Tool for Microbial Community Analysis. ApplEnviron Microbiol, 2000, 66 (8): 3616-3620
    
    [157] Heuer H, Krsek M, Baker P, et al.. Analysis of actinomycete communities by specificamplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturinggradients. Appl Environ Microbiol, 1997, 63: 3233-3241
    
    [158] Leaphart A B, Lovell C R. Recovery and Analysis of Formyltetrahydrofolate SynthetaseGene Sequences from Natural Populations of Acetogenic Bacteria. Appl and environmicrobiol, 2001, 67: 1392-1395
    
    [159]张雪萍,张毅,侯威岭,等.小兴安岭针叶凋落物的分解与土壤动物的作用[J].地理 科学,2000,20(6):552-556
    
    [160] Ueno Y, Haruta S, Ishii M, et al.Microbial community in anaerobic hydrogen-productionmicroflora enriched from sludge compost. Appl Microbiol Biotechnol, 2001, 57: 555-562
    
    [161] Fang H P H, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture.Bioresour Technol, 2002, 82: 87-93
    
    [162] Fang H P H, Liu H, Zhang T. Characterization of a hydrogen-producing granular sludge.Biotech Bioeng, 2002, 78: 44-52
    
    [163] Kirshtein J D, Paerl H W, Zehr J. Amplification, cloning, and sequencing of a nifH segmentfrom aquatic microorganisms and natural communities. Appl Environ Microbiol, 1991, 57:2645-2650
    
    [164] Lovell, C R, Piceno Y M, Quattro J M, et al. Molecular analysis of diazotroph diversity inthe rhizosphere of the smooth cordgrass, Spartina alterniflora. Appl Environ Microbiol, 2000,66:3814-3822
    
    [165] Henckel T, Jackel U, Schnell S, et al.. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol, 2000, 66:1801-1808
    
    [166] Sakano Y, Kerkhof L. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. Appl Environ Microbiol, 1998,64: 4877-4882
    [167] Braker G, Zhou J, Lu L, et al. Nitritereductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol, 2000, 66: 2096-2104
    [168] Deplancke B, Hristova K R, Oakley H A, et al. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl Environ Microbiol, 2000, 66: 2166-2174
    [169] Lovell C R, Przbyla A, Ljungdahl. L G. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry, 1990, 29: 5687-5694
    [170] Lovell C R, Hui Y. Design and testing of a functional groupspecific DNA probe for the study of natural populations of acetogenic bacteria. Appl Environ Microbiol, 1991, 57: 2602-2609
    [171] Bach H J, Tomanova J, Schloter M, et al. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods, 2002,49: 235-245
    [172] Hermansson A, Lindgren P. Quantification of ammoniaoxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol, 2001, 67: 972-976
    [173] Philippot L. Denitrifying genes in bacterial and Archaeal genomes. Biochim Biophys Acta, 2002,1577:355-376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700