用户名: 密码: 验证码:
厌氧消化反应器中同型产乙酸菌产乙酸机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对厌氧发酵过程中同型产乙酸作用的研究,提出提高同型产乙酸作用以提高有机质厌氧发酵产乙酸比例的思路;通过对CO_2浓度的变化对有机质厌氧发酵产酸体系中乙酸产率影响的研究,提出CO_2资源化,提高厌氧发酵产酸过程中乙酸比例的方法;通过对富集同型产乙酸菌的富集方法的研究,建立了以甲酸钠作为碳源的混菌富集方法;通过对接种富集前、后的污泥对有机质厌氧发酵产酸结果的比较,验证了提高同型产乙酸作用有利于提高乙酸比例的思路;通过在接种富集后污泥的厌氧发酵产酸体系中通入CO_2的乙酸产率的结果,建立了提高乙酸产率、CO_2减排资源化的方法。全文主要研究内容如下:
     1.在中温厌氧发酵产酸体系中,产氢产乙酸菌和同型产乙酸菌具有互营关系。产氢产乙酸菌为同型产乙酸菌提供底物,同型产乙酸菌为产氢产乙酸菌降低氢分压,使产氢产乙酸作用顺利进行。在高氢分压条件下,产氢产乙酸作用不能进行,在CO_2缺失情况下,同型产乙酸作用不能顺利进行。结果表明,改变反应体系中气体成分可以控制两反应的发生状况。以1g/L葡萄糖做模拟废水碳源,接种1g VS/L的种泥,在中温、初始pH为7,抑制产甲烷时,得到同型产乙酸作用对总产乙酸量贡献14.1%,对总VFA产量贡献为6.36%。
     2.研究不同顶空CO_2浓度对有机物厌氧发酵体系中底物转化速率、挥发性脂肪酸(VFA)产率及微生物相变化的影响。结果表明,顶空低浓度CO_2有助于葡萄糖底物转化,在16h转化率达到93%以上,顶空高浓度CO_2和对照组在20h时转化率分别为88.3%、87.6%。顶空高浓度CO_2有助于乙酸积累,乙酸产率达8.2mmol/gCOD,分别是对照组和低浓度CO_2组的1.52倍和1.87倍。顶空CO_2浓度与同型产乙酸菌数量正相关,顶空低浓度CO_2组fhs基因为9.83×106拷贝数/mL,高浓度CO_2组fhs基因为5.32×108拷贝数/mL,对照组fhs基因为6.97×107拷贝数/mL。提高顶空CO_2浓度有利于在混和培养环境中富集同型产乙酸菌。
     3.在抑制产甲烷的有机质中温厌氧发酵体系中,研究混菌条件下富集同型产乙酸菌的方法。结果表明,甲酸钠作为培养液的碳源可以富集同型产乙酸菌。当甲酸钠浓度为3.25g/L、6.5g/L、13g/L,培养后得到的同型产乙酸菌浓度分别为2.93×109 /mL、6.09×109 /mL和6.08×109 /mL占总菌数的比例为5.68%、12.01%、11.68%。其中甲酸钠为3.25g/L时同型产乙酸菌增长最快,甲酸钠利用率相对较高,为最佳培养液浓度。
     4.研究接种富集后的污泥对有机质厌氧发酵产乙酸量的影响。结果表明,接种富集后污泥的乙酸产率是接种未富集污泥的1.38倍。在接种富集污泥的厌氧发酵产酸体系中充入CO_2时,乙酸产率比未充入CO_2提高1.77倍。根据理论核算,接种富集后的污泥并在充入CO_2的方法在经济、环境方面是可行的,在工业方面是具有可操作性的。
This study investigated the contribution of homoacetogenic bacteria during the anaerobic fermentation and proposed the methods for improving the acetate percentage from the organic matters by anaerobic fermentation. By the influence of CO_2 concentration on the acetate yield, a strategy of enhancing acetate production was developed. A novel method for the homoacetogens enrichment was developed based on the formate as carbon source after the study of the enrichment methods. Comparing the production of volatile fatty acids before and after the inoculum of homoacetogen enriched sludge, the idea that homoacetogen is favorable of the acetate production was demonstrated. The detailed contents were as follows:
     1. The syntrophic acetogenic bacteria and the homoacetogenic bacteria are belonged to syntrophic relationship in the anaerobic fermentation system. The syntrophic acetogen provides substrate for the homoacetogens and homoacetogen decreased hydrogen partial pressure for the syntrophic acetogens. Under the conditions of high hydrogen partial pressure, the syntrophic acetogenesis can not be occurred while under the condition of absent of CO_2, the homoacetogenesis was not happened. The results showed that change of the composition of the headspace gas can control the acetogenesis process. When the fermentation was run at 1g/L glucose as substrate, 1 1g VS/L seed sludge, pH at 7.0 and the mesophilic conditions, the contribution of the acetogenesis was 14.1% for the total acetate production and 6.36% 2. The effects of CO_2 concentrations in headspace of anaerobic fermentation system on the volatile fatty acids generation, substrate degradation and homoacetogen change were investigated. The results showed that low concentration of headspace CO_2 was helpful for the substrate degradation. The substrate degradation efficiency of low CO_2, high CO_2 and control are over 93% at 16h, 87.6% and 88.3% at 20h, respectively. The high CO_2 concentration improved the acetate accumulation with the conversion yield at 8.2 mmol/g COD at the end of fermentation, which was 1.52 and 1.87 folds of the control and low CO_2 reactors, respectively. There is a positive relationship between CO_2 concentration and the quantity of homoacetogen. The fhs gene copy numbers are 9.83×106/mL, 5.32×108/mL, 6.97×107/mL in the low CO_2, high CO_2 and the control reactors, respectively. The homoacetogen can be enriched from a mixed culture by a high CO_2 concentration in the headspace.
     3. The method of homoacetogenic bacteria enrichment was studied in mixed strains. The results showed that the homoacetogenic bacteria could be enriched when the carbon source was sodium formate. When the concentration of sodium formate were 3.25g/L, 6.5g/L and 13g/L, the homoacetogenic bacteria were 2.93×109 /mL, 6.09×109 /mL and 6.08×109 /mL, respectively, which were 5.68%, 12.01% and 11.68% of the total bacteria. The growth rate of homoacetogenic bacteria and utilization of sodium formate were the fastest during the enrichment period when the sodium formate was 3.25g/L.
     4. The effect of inoculum with homoacetogenic enriched sludge on the acetate yield was investigated. The results showed that the yield of acetate in the reactors which homoacetogen enriched sludge was 1.38 folds higher than the reactors without homoacetogen enriched sludge. The yield of acetate which filled with CO_2 in the reactors with homoacetogen enriched sludge was 1.77 folds higher than the CO_2 absent group. Based on the theoretic calculation, the inoculum with homoacetogen in coupled with CO_2 filling is a promising and feasible strategy for the pollution control.
引文
[1]余杰,田宁宁,王凯军等.中国城市污水处理厂污泥处理处置问题探讨分析[J].环境工程学报, 2007, 1(1): 82-86
    [2]杨小文,杜英豪.污泥处理与资源化利用方案[J].中国给水排水, 2002, 18(4):31-33
    [3]王晓吡,詹健,康晓荣等.中国城市污水厂污泥处理处置技术[J].江西化工, 2007, 3: 24-27
    [4]张水英,张辉,周军等.我国污泥处理处置现状及发展.第二届中国城镇水务发展国际研讨会, 33-35
    [5] Hudson J A. Sewage sludge incineration: some planning and operating experiences[C]. In IWEM Year BOOK, 1992
    [6] Gilbert C. Sigua: Current and futum outlook of dredged and sewage materials in agriculture and environment [J]. Journal Soils &Sediments, 2005, 5(1): 50-52
    [7]赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002
    [8] Hiroyuki Y, Hayato T, Kyoko I, et al. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment[J]. Bioresource Technology, 2009, 100: 2933-2939
    [9] Zhao YX, Chen YG, Zhang D, et al. Waste Activated Sludge Fermentation for Hydrogen Production Enhanced by Anaerobic Process Improvement and Acetobacteria Inhibition: The Role of Fermentation pH [J]. Environ Sci Technol, 2010, 44: 3317-3323
    [10] Colmenarejo MF, Sánchez E, Bustos A, et al. A pilot-scale study of total volatile fatty acids production by anaerobic fermentation of sewage in fixed-bed and suspended biomass reactors [J]. Process Biochemistry, 2004,39: 1257-1267
    [11]聂艳秋.废水产氢产酸/同型产乙酸耦合系统厌氧发酵产酸工艺及条件优化[M].[博士学位论文].无锡:江南大学, 2007
    [12] Michael KR. Production of acetic acid from waste biomass: [PHD. Dissertation]. USA: Texas A&M University, 1998
    [13] IPCC, 2001. Climate change 2001: the scientific basis. In: Houghton, J.T., Ding, Y., Griggs, DJ, Noguer M, van der Linden, PJ, Dai X, Maskell K, Johnson, C.A. (Eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
    [14] Steed J, Hashimoto AG. Methane emissions from typical manure management systems [J]. Bioresour. Technol. 1994, 50: 123-130
    [15] Largus TA, Khursheed K, Muthanna HA, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater [J]. TRENDS Biotechnol, 2004, 22: 477-485
    [16] Carrèrea H, Dumasa C, Battimelli A, et al. Pretreatment methods to improve sludge anaerobic degradability: A review [J]. Journal of Hazardous Materials, 2010, 183: 1-15
    [17] Rajan RV, Lin JG, Ray BT. Low-level chemical pretreatment for enhanced sludge solubilization [J]. J WPCF, 1989, 61:1678-1683
    [18] Lafitte-Trouque S, Forster C F. The use of ultrasound and c-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures [J]. Bioresource Technol, 2002, 84: 113-118
    [19] Bougrier C, Albasi C, Delgenès J P, Carrère H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J]. Chem Eng Pro, 2006, 45(8): 711-718
    [20] Kim JS, Park CW, Kim TH et al. Effects of various pretreatment for enhanced anaerobic digestion with waste activated sludge [J]. Biosci Bioengin, 2003, 95(3): 271-275
    [21]李敏,郭静,罗晶.化学前处理改善城市污水污泥厌氧消化处理的有效途径[J].城市环境与城市生态, 1997, 10(4): 60-62
    [22] Valo A, Carrère H, Philippe Delgenès J. Thermal chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion [J]. Chemic Technol Biotechnol, 2004, 79: 1197-1203
    [23] Vlyssides AG, Karlis PK. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion [J]. Bioresour Technol, 2004, 91: 201-206.
    [24]刘晓玲.城市污泥厌氧发酵产酸条件优化及机理研究[D], [博士学位论文].无锡:江南大学, 2008.
    [25] Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J]. Water Res, 1999, 33: 2579-2586
    [26] Chen CC, Lin CY, Lin MC. Acid-base enrichment enhances anaerobic hydrogen production process [J]. Appl Microbiol Biotechnol, 2002, 58:224-228
    [27] Mu Y, Yu H Q, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge [J]. Enzyme Microb Technol, 2007, 40:947-953
    [28] Liu H, Wang J, Wang AJ. Chemical inhibitors of methanogenesis and putative applications [J]. Appl Microbiol Biotechnol, 2011, 89(5): 1333-1340.
    [29] Cheong DY, Hansen CL. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge[J]. Appl Microbiol Biotechnol, 2006, 72: 635-643
    [30] Noike T, Takabatake H, Mizuno O, et al. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria [J]. Int J Hydrogen Energy, 2002, 27: 1367-1371
    [31] Chang JS, Lee KS, Lin PJ. Biohydrogen production with fixed-bed bioreactors [J]. Int J Hydrogen Energy. 2002, 27: 1167-1174
    [32] Sparling R, Risbey D, Poggi-Varaldo HM. Hydrogen production from inhibited anaerobic composters [J]. Int J Hydrogen Energy, 1997, 22: 563-566
    [33] Xu KW, Chen J, Liu H. Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion[J]. Bioresource Technology, 2010, 101: 2600-2607
    [34]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社, 2005: 51-135
    [35] Horiuchi J, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acid reactor by pH control [J]. Bioresource Technol, 2002, 82(3): 209-213
    [36] Liu XL, Liu H, Chen J, et al. Enhancement of solubilization and acidification of wasteactivated sludge by pretreatment [J]. Waste Management 2008, 28: 2614-2622
    [37]肖本益,刘俊新. pH对碱处理污泥厌氧发酵产氢的影响[J].科学通报, 2005, 50(24): 2734-2738
    [38]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].同济大学博士论文.2006
    [39] Kayhanian M, Rich D. Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements [J]. Biomass and Bioen, 1995, 8: 433-444
    [40] Tuomela M, Vikman M, Hatakka A, Itavaara M. Biodegradation of lignin in a compost environment: a review [J]. Bioresource Technol, 2000, 72:169-183
    [41] Liu XL, Liu H, Du GC, et al. Effects of organic matter and initial carbon–nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge [J]. Chem Technol Biotechnol, 2008,83: 1049-1055
    [42]张春杨.厌氧互营细菌的生态、资源和分子系统学研究[D]: [博士学位论文].北京:中国科学院微生物研究所, 2004
    [43] Drake HL, Daniel SL, Küsel K. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities [J], BioFactors1997, 6: 13-24
    [44] Wang J, Zhang Z, Zhang Z, et al.The in?uence of anaerobic sludge retention time on anaerobic co-digestion of dyeing and printing wastewater and sewage sludge [J]. African Journal of Biotechnology, 2007, 6 (7), 902-907.
    [45] Wood HG, and Ljungdahl LG. AutotroPHic character of the acetogenic bacteria [J]. In‘‘Variations in AutotroPHic Life’’(L. L. Barton and J. Shively, eds.), 1991: 201-250.
    [46]聂艳秋,刘和,堵国成等.废水产氢产酸/同型产乙酸耦合产酸条件优化[J],环境工程学报, 2008, 2(2): 145-149
    [47]许科伟.污泥厌氧消耗过程中乙酸机理的微生物机理研究[D].[博士学位论文],无锡:江南大学, 2010.
    [48] Drake HL., Daniel SL, Kusel K, et al. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? [J]. BioFactors, 1997, 6: 13-24
    [49] Angenent LT, Karim K, Al-Dahhan MH, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends Biotechnol., 2004, 22(9): 477-485.
    [50] Drake HL, Küsel K, Matthies C. Ecological consequences of the phylogenetic and PHysiological diversities of acetogens [J]. Antonie van Leeuwenhoek, 2002, 81: 203-213.
    [51] Diekert G, Wohlfarth G. Metabolism of homoacetogens [J]. Antonie van Leeuwenhoek, 1994, 66: 209-221.
    [52] Oh SE, Ginkel SV, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production [J]. Environ Sci Technol, 2003, 37: 5186-5190
    [53]赵庆祥.污泥资源化技术[M].北京:化学工业出版社, 2003.
    [54] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances [J]. Anal Chem, 1956, 28: 350-356.
    [55]林炎坤.常用的几种蒽酮比色定糖法的比较[J].植物生理学通讯, 1989,4: 53-55.
    [56] Valdez-Vazquez I, R?os-Leal E, Esparza-Garc?a F, et al. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime [J]. Int J Hydrogen Energy, 2005, 30: 1383-1391
    [57] Angenent LT, Karim K, Al-Dahhan MH, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater [J]. Trends Biotechnol, 2004, 22(9): 477-485.
    [58] Diekert G, Wohlfarth G. Metabolism of homoacetogens [J]. Antonie van Leeuwenhoek, 1994, 66: 209-221.
    [59] Park W, Hyun SH, Oh SE, et al. Removal of headspace CO2 increases biological hydrogen production [J]. Environ. Sci. Technol., 2005, 39(12): 4416-4420.
    [60] Salomoni C, Caputo A, Bonoli M, et al. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes [J]. Bioresour. Teclnol, 2011, 102(11): 6443-6448.
    [61] Thauer RK, Jungermann K, Decker K. Energy conservation in chemotropic anaerobic bacteria [J]. Bacteriological Reviews, 1977, 41(1): 100-180.
    [62] Horiuchi JI, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acid reactor by pH control [J]. Bioresour. Teclnol., 2002, 82(3): 209-213
    [63] Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation [J]. Biochim. Biophys. Acta, 2008, 1784(12): 1873-1898.
    [64] Hunger S, Schmidt O, Hilgarth M, et al. Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil [J]. Appl. Environ. Microbiol, 2011, 77(11):3773-3785.
    [65]刘和,聂艳秋,许科伟等.产乙酸耦合系统产酸及其微生物种群动态分析[J].中国环境科学, 2008, 28(4): 219-323.
    [66] Conrad R, Klose M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots [J]. Fems. Microbiol. Ecol., 1999, 30(2): 147-155.
    [67] Wang Yuanyuan, Zhang Yanlin, Wang Jianbo, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria [J]. Biomass and bioenergy 2009, 33: 848-853.
    [68] Siriwongrungson Vilailuck and Zeng Raymond J., Angelidaki Irini. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis [J]. Water Research 2007, 41: 4204-4210
    [69] Angsana R, Warinthorn S, and Annop N. Combination effect of pH and acetate on enzymatic cellulose hydrolysis [J]. Journal of Environmental Sciences 2009, 21: 965-970.
    [70] Van Lier JB, Martin JS, Lettinga G. Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge [J]. Water Research 1996, 30(1): 199-207.
    [71] Kim DH, Kim SH, Shin HS. Sodium inhibition of fermentative hydrogen production [J]. international journal of hydrogen energy, 2009,34: 3295-3304
    [72] Penning H, Conrad R. Effect of inhibition of acetoclastic methanogenesis on growth of archaeal populations in an anoxic model environment [J]. Appl. Environ. Microbiol. 2006,72: 178-184.
    [73] Hamberger A, Horn MA, Dumont MG, et al. Anaerobic consumers of monosaccharides in a moderately acidic fen [J]. Appl. Environ. Microbiol. 2008, 74: 3112-3120.
    [74] Wüst PK, Horn MA, and Drake HL. Trophic links between fermenters and methanogens in a moderately acidic fen soil [J]. Environ. Microbiol. 2009, 11: 1395-1409.
    [75] Ren NQ, Chua H, Chan SY, et al. Assessing optimal fermentation type for bio-hydrogen production in continuous-?ow acidogenic reactors [J]. Bioresource Technology, 2007, 98: 1774-1780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700