附着型和颗粒型膨胀床生物制氢反应器的运行调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气是清洁、高效、可再生能源,也是化石燃料的理想替代品之一。生物制氢具有回收能源和净化环境的双重功效。发酵法生物制氢技术产业化的关键因素是进一步提高反应器系统的产氢能力,降低生产成本。开发高效生物制氢反应器及提高反应器内的产氢微生物生物量是解决这一瓶颈因素的有效途径之一。与传统悬浮生长型反应器相比,附着生长型膨胀床反应器具有在低HRT条件下运行稳定,反应器内可保持较高生物量,传质效率高等优点。尽管如此,其在生物制氢领域的研究及应用还缺乏报道。所以,研究附着生长型膨胀床反应器的启动及运行调控,以获得较高的生物量和产氢能力,对于加速发酵法生物制氢技术的产业化进程具有重要意义。
     针对以上问题,本文采用3个相同设计尺寸的膨胀床反应器,系统地研究了附着型和颗粒型膨胀床的启动和运行调控及其影响因素,并对两种反应器的产氢效能进行了比较分析。对附着型膨胀床的研究发现,启动容积负荷对获得目标发酵类型至关重要。启动容积负荷为4 kgCOD/m3·d和8 kgCOD/m3·d的2个反应器分别在第32 d和第15 d实现了成功启动。启动容积负荷为8 kgCOD/m3·d的反应器形成乙醇型发酵。
     采用间歇试验,对反应器的接种污泥进行不同的预处理,并与不经过预处理的对照样品对比,发现多次曝气法是建立乙醇型发酵初始生态群落的有效预处理方法。多次曝气法预处理和加热预处理有效的抑制或杀灭了耗氢菌的活性,可以促进产氢。碱处理和酸处理对于微生物活性的恢复不利。碱处理可观察到甲烷,对耗氢菌的抑制不完全。群落分析结果表明,不同方法的预处理,改变了微生物的初始群落结构,是造成发酵类型及产氢能力差异的内在因素。以多次曝气法预处理的污泥为接种污泥,控制启动容积负荷为8 kgCOD/m3·d,启动附着型膨胀床,连续运行150 d,在运行容积负荷控制120 kgCOD/m3·d左右,pH平均值为4.2~4.4的条件下,反应器的平均产氢能力为0.71 L/L·h。
     对颗粒型膨胀床的研究表明,产氢颗粒污泥的形成是反应器成功启动的关键。以缺氧污泥混合厌氧颗粒污泥进行接种,可以快速培养出产氢颗粒污泥。容积负荷也间接影响了颗粒污泥的形成,当反应器容积负荷为36~96 kgCOD/m3·d时,颗粒污泥的粒径是随容积负荷的增加而增加的。快速缩短HRT,即加大进水流量来提高容积负荷,比保持HRT不变,提高进水COD浓度对产氢微生物快速颗粒化更加有效。通过快速缩短HRT的策略,可使颗粒污泥粒径增长加快了66.7 %。投加少量微粒载体,可促进产氢微生物颗粒化进程。应用响应曲面法中的CCD模型,对载体投加量和晶核载体的粒径对产氢微生物颗粒化的影响进行分析,发现二者对所形成的颗粒污泥的产氢速率、生物量和粒径都有影响。优化产氢的载体投加方案为:添加的载体粒径为0.68 mm,载体添加比为5.92 %时,预测产氢速率为13.47 L/d,预测生物量为15.82 g/L,预测形成的产氢颗粒污泥平均粒径为1.59 mm。随后进行的验证试验较好的证明了模型的准确性。
     综合对产氢微生物颗粒化的影响因素,启动颗粒型膨胀床生物制氢反应器,在启动后第20 d观察到颗粒污泥的形成。形成成熟颗粒污泥后,系统最大产氢能力达到1.07 L/L·h,污泥平均浓度高达24.1 gVSS/L。反应器中颗粒污泥的沉速随粒径的增大而增大;但在一定运行条件下,粒径增大到一定程度,沉速便不再增加。试验得到膨胀床内的产氢颗粒污泥在清水中的静沉速与粒径成二次多项式关系,可以表示为Y = 33.93x2 - 8.453x + 16.58,该式拟合程度较好,R2 = 0.998。可以较为准确的反映膨胀床中产氢颗粒污泥的粒径与沉速的关系。
     以葡萄糖为底物,启动和运行附着型和颗粒型膨胀床。附着型膨胀床在HRT为1.0 h,葡萄糖浓度为40 g/L时,最大产氢速率为6.54 L/L·h;颗粒型膨胀床在HRT为1.5 h,葡萄糖浓度为60 g/L时,最大产氢速率为6.85 L/L·h。而当HRT为1.0 h,葡萄糖浓度为40 g/L时,两个反应器获得的最大氢气产率分别为1.69 mol/mol-葡萄糖和1.54mol/mol-葡萄糖。两个反应器稳定运行时的平均生物量差别不大,均可达到25~29 g/L。微生物群落结构分析表明,生物膜和颗粒污泥表面群落结构复杂,细菌种类繁多,颗粒内部的菌群比较单调。生物膜和产氢颗粒污泥内形成了良好的产氢产酸微生态系统;产氢颗粒污泥外部活性要大于颗粒内部,产氢主要在颗粒污泥外部完成,颗粒污泥内部产氢细菌种类和数量较少。
     对于长期运行的附着型膨胀床,载体的定期补充是必须考虑的;而颗粒型反应器就不必考虑上述不足,所以基于降低运行成本和简化操作复杂性的目的,推荐选择颗粒型膨胀床作为连续流生物制氢反应器进行应用。
Hydrogen is a clean, effetive and renewable energy, and is a satisfactory alternative for fossile hydrocarbon fuels in the future. Biohydrogen from waste is attactive due to energy recovery and environmental cleanup at the same time. Improving hydrogen-producing capacity and reducing the cost are the key factor to realize industrialization. One of the most effective ways is to employ high effecient reactor systems and obtain higher active biomass concentration. As compared to cell suspended growth systems, cell attached growth expanded bed system has been noted more efficient in obtaining higher biomass concentration and mass transfer in low HRT. Nevertheless, the research and application of this reactor is scarecely reported. Accordingly, deep understanding of the principles and applying techniques of the cell attached growth expanded bed hydrogen production reactor is quite necessary. The present research attempted to investigate the strategy of rapid startup and stable operation mainly on biofilm-based and granule-based expanded bed hydrogen production processes. Moreover, higher hydrogen production ability and biomass concentration are desired as well as stable operation.
     Aiming at solving the above problems, this thesis focused on startup and operation strategy and the factors, which affected the processes of biofilm-based and granule-based hydrogen-producing expanded bed reactors. The results showed organic loading rate (VLR) was a significant parameter in reactor control and hydrogen production, especially in fermentation types formation. When VLR was controled at 4 kgCOD/m3·d and 8 kgCOD/m3·d, the reactors achieved successful startup. Ethanol-type fermentation formed under the VLR of 8 kgCOD/m3·d.
     In order to enrich hydrogen production bacteria and establish better communities in mixed culture reactors, inoculation at start-up stage need pretreatment. Four pretreatment methods, this is, heat-shock, acid, alkaline and repeated-aeration pretreatment, were conducted. The heat-shock, acid and repeated-aeration pretreatment operation had effectively suppressed the methanogenic activity in the mixed culture, and the alkaline pretreatment was unsuccessful at methanogenesis repression. Different pretreatment methods could induce different fermentation types. Ethanol-type fermentation was observed by repeated-aeration pretreatment. The different pretreatment methods could affect the formation of microbial communities by the evaluation of denaturing gradient gel electrophoresis (DGGE) profiles. The results indicated that the pretreatment methods had probably led to the differences in the initial microbial communities, which were directly responsible for different fermentation types and hydrogen yields.
     Inoculated by repeated aeration pretreatment sludge, started at VLR of 8 kgCOD/m3·d, the biofilm-based expanded bed reactor performed well in 150 d operation, and the average hydrogen production rate was 0.71 L/L·h.
     Studies showed that hydrogen-producing granule formation is key factor to successful startup of granule-based expanded bed reactor. Inoculation source, the size and amount of the initial carrier, and VLR all affected microbial granulation. Mixture of anoxic sludge and anaerobic sludge was better choice for inoculation. VLR increase was favorable for granulation. It was also observed that quick decrease of HRT was effective in rapid granulation which increase of substrate concentration. The granulation period was shortened by 66.7 % using quick HRT decrease technique. Central composite design (CCD) using response surface methodology was applied to study the interactive effects of carrier size and amount on hydrogen producing bacteria granulation. The optimized results showed when granule size of 0.68 mm and inoculation ratio of 5.92 %, the predicted hydrogen production rate was 13.47 L/d, and the average biomass concentration was 15.82 g/L. According to the results of the statistical design, the verified tests were conducted in triplicate tests. The results showed that the excellent correlation between predicted and measured values verifies the model validation and existence of an optimal point.
     A granule-based expanded bed reactor was operated according to the optimized conditions obtained. Results showed that hydrogen-producing granule was observed at the 20 d from startup, and the maximum hydrogen production rate was 1.07 L/L·h with the average biomass concentration of 24.1 g/L. The settling velocity increased with granule size in the reactor. The granule size and the settling velocity was in an quadratic polynomial relationship, which could be expressed as Y = 33.93x2 - 8.453x + 16.58. The fitting index, R2 = 0.998, which suggested that the model was quite accurate to reflect the relationship of hydrogen producing granule size and the granule settling velocity.
     Glucose as substrate, startup at respectively optimized operating conditions, comparison tests were conducted to biofilm-based and granule-based expanded bed hydrogen-producing reactors. The results showed that when HRT of 1.0 h, the corresponding glucose concentration of 40 g/L, the biofilm-based expanded bed achieved maximum hydrogen production rate of 6.54 L/L·h; when HRT was 1.5 h, the corresponding glucose concentration of 60 g / L, the granule-based expanded bed reactor achieved maximum hydrogen production rate of 6.85 L/L·h. Moreover, when HRT of 1.0 h and the corresponding glucose concentration of 40 g/L, the two reactors obtained the maximum hydrogen yield of 1.69 mol/mol-glucose and 1.54 mol/mol-glucose, respectively. There was no significant difference observed in the average biomass in the two reactors. The average biomass concentration was all in a range of 25~29 g/L. The microbial communities were investigated by means of DGGE and Confocal Laser Scanning Microscope (CLSM) techniques. Results showed that the polysaccharide was unevenly distributed in the biofilm, and the concentration was less. However, in the hydrogen-producing granule, the polysaccharide was more evenly distributed with a high concentration. The microcosm was well established in the biofilm and the hydrogen-producing granule. There were more active hydrogen-producing bacteria detected in the outer section of the granule compared to the inner section, which was responsible for high effective hydrogen production.
     For long-term operation of the biofilm-based reactors, the regular supplement of the large amount of carrier should be taken into consideration. In contrast, the granule-based reactors would not to consider these shortcomings. As a result, based on the consideration of lower the operating costs and simplifying operational complexity, granule-based expanded bed reactor was recommended as better choice for a continuous flow reactor for large scale production of hydrogen.
引文
1 P. Hoffmann. Liquid Hydrogen Powers Third EQHHPP Demonstratin Bus. Hydrogen and Fuel Cell Letter. 1996, 11(5): 4~8
    2毛宗强.氢能及其近期应用前景.科技导报. 2005, 23(2): 34~38
    3 I. Dincer. Technical Environmental and Exegetic Aspects of Hydrogen Energy System. Int. J. Hydrogen Energy. 2002, 27(2): 265~285
    4 L. W. Jones. Liquid Hydrogen as a Fuel for the Future. Science. 1971, 174(10): 367~370
    5岳建芝,徐桂转,张杰等.制氢技术与工艺.可再生能源. 2003, 109(3): 33~35
    6 R. A. Hefner III. The Age of Energy Gases. Int. J. Hydrogen Energy. 2001, 26(9):909~915
    7 T. N. Veziroglu. Quarter Centry of Hydrogen Movement 1974-2000. Int. J. Hydrogen Energy. 2000, 25: 1143~1150
    8张明,史家梁.光合细菌光合产氢机理研究进展.应用与环境生物学报. 1999, 5: 25~29
    9王相晶.发酵产氢细菌B49生理特性及其固定化应用研究.哈尔滨工业大学博士学位论文. 2003
    10邢德峰.产氢-产乙醇细菌群落结构与功能研究.哈尔滨工业大学博士学位论文. 2006
    11 R. Nandi, S. Sengupta. Microbial Production of Hydrogen: An Overview. Critical Reviews in Microbiology. 1998, 24(1): 61~84
    12 N. Kumar, D. Das. Enhancement of Hydrogen Production by Enterobacter cloacae IIT-BT 08. Process Biochemistry. 2000, 35(6): 589~593
    13 D. W. Penfold, C. F. Forster, L. E. Macaskie. Increased Hydrogen Production by Escherichia coli strain HD701 in Comparison with the Wild-type Parent Strain MC4100. Enzyme and Microbial Technology. 2003, 33(2~3): 185~189
    14 S. Tanisho, Y. Ishiwata. Continuous from Molasses by Fermentation Using Urethane Foam as a Support of Flocks. Int. J. Hydrogen Energy. 1995, 20(7): 541~545
    15 H. Yokoi, T. Ohkawara, J. Hirose, S. Hayashi, Y. Takasaki. Characteristics ofHydrogen Production by Aciduric Enterobacter aerogenes strain HO-39. J Fermentation Bioengineering. 1995, 80(6): 571~574
    16 C. Collet, N. Adler, J. P. Schwitzguebel, P. Peringer. Hydrogen Production by Clostridium thermolacticum during continuous fermentation of lactose. Int. J. Hydrogen Energy. 2004, 29(14): 1479~1485
    17 D. Evvyernie, K. Morimoto, S. Karita, T. Kimura, K, Sakka, K. Ohmiya. Conversion of Chitinous Wastes to Hydrogen Gas by Clostridium paraputrificum M21. J Bioscience Bioengineering. 2001, 91(4): 339~343
    18 C. C. Wang, C. W. Chang, C. P. Chu, D. J. Lee, B. V. Chang, C. S. Liao. Producing of Hydrogen from Wastewater Sludge by Clostridium bifermentans. Journal of Biotechnology. 2003, 102(1): 83~92
    19 Y. Ahn, E. J. Park, Y. K. Oh, S. Park, G. Webster, A. J. Weightman. Biofilm Microbial Community of a Thermophilic Trickling Biofilter Used for Continuous Biohydrogen Production. Fems Microbiology Letter. 2005, 249(1): 31~38
    20 Y. Ueno, S. Haruta, M. Ishii, Y. Igarashi. Microbial Community in Anaerobic Hydrogen-producing Microflora Enriched from Sludge Compost. Applied Microbiology and Biotechnology. 2001, 57(4): 395~397
    21 T. Zhang, H. Liu, H. H. P. Fang. Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. Journal of Environmental Management. 2003, 69(2): 149~156
    22 V. C. Kalia, S. R. Jain, A. Kumar, A. P. Joshi. Fermentation of Biowaste to H2 by Bacillus Licheniformis. World Journal of Microbiology Biotechnology. 1994, 10(2): 224~227
    23 A. Kumar, S. R. Jain, C. B. Sharma, A. P. Joshi, V. C. Kalia. Increased H2 Production by Immobilized Microorganisms. World Journal of Microbiology Biotechnology. 1995, 11(2): 156~159
    24 H. S. Shin, J. H. Youn, S. H. Kim. Hydrogen Production from Food Waste in Anaerobic Mesophilic and Thermophilic Acidogenesis. Int. J. Hydrogen Energy. 2004, 29(13): 1355~1363
    25 Y. K. Oh, M. S. Park, E. H. Seol, S. J. Lee, S. Park. Isolation of Hydrogen-producing Bacteria from Granular Sludge of an Upflow Anaerobic Sludge Blanket Reactor. Biotechnology and Bioprocess Engineering. 2003, 8(1):54~57
    26 N. Kumar, D. Das. Continuous Hydrogen Production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic maerials as solid matrices. Enzyme and Microbial Technology. 2001, 29(4~5): 280~287
    27 M. A. Rachman, Y. Furutani, Y. Nakashimada, T. Kakizono, N. Nishio. Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes. J Fermentation Bioengineering. 1997, 83(4): 358~363
    28 P. Perego, B. Fabiano, G. P. Ponzano, E. Palazzi. Experimental Study of Hydrogen Kinetics from Agroindustrial By-product: Optimal Conditions for Production and Fuel Cell Feeding. Bioprocess Engineering. 1998, 19(3): 205~211
    29 E. Palazzi, B. Fabiano, P. Perego. Process Development of Continuous Hydrogen Production by Enterobacter aerogenes in a Packed Column Reactor. Bioprocess Engineering. 2000, 22(3): 205~213
    30 B. Fabiano, P. Perego. Thermodynamic Study and Optimization of Hydrogen Production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 2002, 27(2): 149~156
    31 H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi, Y. Takasaki. Hydrogen Production by Immobilized Cells of Enterobacter aerogenes strain HO-39. J Fermentation Bioengineering. 1997, 83(5): 481~484
    32 G. Chittibabu, K. Nath, D. Das. Feasibility Studies on the Fermentative Hydrogen Production by Recombinant Escherichia coli BL-21. Process Biochemistry. 2006, 41(3): 682~688
    33 L. Minnan, H. Jinli, W. Xiaobin, X. Huijuan, C. Jinzao, L. Chuannan, Z. F. Zhang, X. Liangshu. Isolation and Characterization of a High H2-producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology. 2005, 156(1): 76~81
    34 Y. K. Oh, E. H. Seol, J. R. Kim, S. Park. Fermentative Hydrogen Production by a New Chemoheterotrophic Bacterium Rhodopseudomonas Palustris. Int. J. Hydrogen Energy. 2002, 27(11~12): 1373~1379
    35 Y. K. Oh, E. H. Seol, E. Y. Lee, S. Park. Fermentative Hydrogen Production by a New Chemoheterotrophic Bacterium Citrobacter sp. Y19. Int. J.Hydrogen Energy. 2003, 28(12): 1353~1359
    36 N. Kataoka, A. Miya, K. Kiriyama. Studies on Hydrogen Production by Continuous Culture System of Hydrogen-producing Anaerobic Bacteria. Water Science and Technology. 1997, 36(6~7): 41~47
    37 H. Yokoi, Y. Maeda, J. Hirose, S. Hayashi, Y. Takasaki. H2 Production by Immobilized Cells of Clostridium butyricum on Porus Glass Beads. Biotechnology Techniques. 1997, 11(6): 431~433
    38 F. Taguchi, J. D. Chang, S. Takiguchi, M. Morimoto. Efficient Hydrogen Production from Starch by a Baterium Isolated from Termites. J Fermentation Bioengineering. 1992, 73(3): 244~245
    39 W. M. Chen, Z. J. Tseng, K. S. Lee, J. S. Chang. Fermentative Hydrogen Production with Clostridium butyricum CGS5 Isolated from Anaerobic Sewage Sludge. Int. J. Hydrogen Energy. 2005, 30(10): 1063~1070
    40 M. Ferchichi, E. Crabbe, W. Hintz, G. H. Gil, A. Almadidy. Influence of Culture Parameters on Biological Hydrogen Production by Clostridium saccharoperbutylacetonicum ATCC 27021. World Journal of Microbiology Biotechnology. 2005, 21(6~7): 855~862
    41 H. S. Zhang, M. A. Bruns, B. E. Logan. Biological Hydrogen Production by Clostridium acetobutylicum in an Unsaturated Flow Reactor. Water Research. 2006, 40(4): 728~734
    42 T. Kanai, H. Imanaka, A. Nakajima, K. Uwamori, Y. Omori, T. Fukui, H. Atomi, T. Imanaka. Continuous Hydrogen Production by the Hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology. 2005, 116(3): 271~282
    43 C. Schr?der, M. Selig, P. Sch?nheit. Glucose Fermentation to Acetate, CO2 and H2 in the Anaerobic Hyperthermophilic Eubacterium Thermotoga-maritima Involvement of the EMbden-Meyerhof Pathway. Archives of Microbiology. 1994, 161(6): 460~470
    44 Z. Kadar, T. De Vrijek, G. E. van Noorden, M. A. W. Budde, Z. Szengyel, K. Reczey, P. A. M. Claassen. Yields from Glucose, Xylose, and Paper Sludge Hydrolysate during Hydrogen Production by the Extreme Thermophile Caldicellulosiruptor saccharolyticus. Applied Biochemistry and Biotechnology. 2004, 113(16): 497~508
    45 E. W. J. Van Niel, M. A. W. Budde, G. G. de Haas, F. J. van der Wal, P. A. M. Claasen, A. J. M. Stams. Distinctive Properties of High Hydrogen Producing Extreme Thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrogen Energy. 2002, 27(11~12): 1391~1398
    46 S. A. Van Ooteghem, S. K. Beer, P. C. Yue. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana. Applied Biochemistry and Biotechnology. 2002, 98: 177~189
    47 S. A. Van Ooteghem, A. Jones, D. van der Lelie, B. Dong, D. Mahajan. H2 Production and Carbon Utilization by Thermotoga neapolitana under Anaerobic and Microaerobic Growth Conditions. Biotechnology Letters. 2004, 26(15): 1223~1232
    48 A. J. Wang, N. Q. Ren, Y. Shi, D. J. Lee. Bioaugmented Hydrogen Production from Microcrystlline Cellulose Using Co-culture--Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int. J. Hydrogen Energy. 2008, 33: 912~917
    49 H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi, Y. Takasaki. H2 Production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters. 1998, 20(2): 143~147
    50 H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi, Y. Takasaki. Microbial Hydrogen Production from Sweet Potato Starch Residue. Journal Bioscience Bioengineering. 2001, 91(1): 58~63
    51 H. Yokoi, R. Maki, J. Hirose, S. Hayashi. Microbial Production of Hydrogen from Starch-manufacturing Wastes. Biomass Bioenergy. 2002, 22(5): 389~395
    52林明.高效产氢发酵新菌种的产氢机理及生态学研究.哈尔滨工业大学博士学位论文. 2002
    53 D. F. Xing, N. Q. Ren, A. J. Wang, Q. B. Li, Y. J. Feng, F. Ma. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-
    3 under non-sterile condition. Int. J. Hydrogen Energy. 2008, 33: 1489~1495
    54 H. Zhu, T. Suzuki. Hydrogen Production from Tofu Wastewater by Rhodobacter sphaeroides immobilized in Agar Gels, Int. J. hydrogen. 1999, 24: 305~310
    55 N. Kumar, D. Das. Biological Hydrogen Production in a Packed Bed Reactorusing Agroresidues as Solid Matrices. Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China, June 12-15, 2000, pp.364~369
    56任南琪,马放,王爱杰.产酸发酵微生物生理生态学.北京:高等教育出版社. 2005
    57 P. M. Vignais, B. Billoud, J. Meyer. Classification and Phylogeny of Hydrogenases. FEMS Microbiology Reviews. 2001, 25: 455~501
    58 A. Volbeda, E. Garcin, C. Piras, A. L. de Lacey, V. M. Fernandez, E. C. Hatchikian, M. Frey, J. C. F. Camps. Structure of the [NiFe] Hydrogenase Active Site: Evidence for Biologically Uncommon Fe Ligands. J. Am. Chem. Soc. 1996, 118: 12989~12996
    59 Y. Higuchi, T. Yagi, N. Yasuoka. Unusual Ligand Structure in Ni-Fe Active Center and an Additional Mg Site in Hydrogenase Revealed by High Resolution X-ray Structure Analysis. Structure. 1997, 5(12): 1671~1680
    60 J. W. Peters, W. N. Lanzilotta, B. J. Lemon, L. C. Seefeldt. X-ray Crystal Structure of Fe-only Hydrogenase (CpI) from Clostridium pasteurianum to Angstrom Resolution. Science, 1998, 282(5395): 1853~1858
    61 M. W. W. Adams, S. Edward. Biological hydrogen production: Not so elementary. Science. 1998, 282 (4): 1842-1843
    62 P. Schoenheit, A. Brandis, R. K. Thauer. Ferredoxin Degradation in Growing Clostridium pasteurianum during Periods of Iron Deprivation. Arch. Microbiol. 1979, 120: 73~76
    63 J. S. Chen, L. E. Mortenson. Purification and Properties of Hydrogenase from Clostridium pasteurianum W5. Biochem. Biophys. Acta. 1974, 371: 283~298
    64刘敏.产氢-产甲烷两相厌氧工艺运行特性研究.哈尔滨工业大学博士学位论文. 2004
    65 I. W.道斯, I. W.萨瑟兰.微生物生理学.中国科学院上海植物生理研究所译.科学出版社. 1980: 131~139
    66何辰庆.微生物生理学.沈阳:辽宁大学出版社. 1994: 65~70
    67 A. Cohen, J. M. Gemert, R. J. Zoeremeyer, A. M. Breure. Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbohydrate Containing Wastewater. Process Biochem. 1984, 19(6): 228~232
    68任南琪,王宝贞.有机废水发酵法生物制氢技术.哈尔滨:黑龙江科学技术出版社. 1994: 32~33
    69 N. Q. Ren, H. Chua, S. Y. Chan, Y. F. Tsang, Y. J. Wang, N. Sin. AssessingOptimal Fermentation Type for Bio-hydrogen Production in Continuous Acidogenic Reactors. Bioresource Technol. 2007, 98: 1774~1780
    70 N. Q. Ren, B. Z. Wang, J. C. Huang. Ethanol-type Fermentation from Carbohydrate in High Rate Acidogenic Reactor. Biotechnol. Bioeng. 1997, 54: 428~433
    71 H. W.多伊尔,郭杰炎译.细菌的新陈代谢.北京:科学出版社. 1983: 63~67
    72 M. Dohányos, B. Kosová, J. Zábranská, P. Grau. Production and Utilization of Volatile Fatty Acids in Various Types of Anaerobic Reactors. Water Science Techonol. 1985, 17: 191~205
    73 G. Y. Jung, J. R. Kim, J. Y. Park, S. Park. Hydrogen Production by a New Chemoheterotrophic Bacterium Citrobacter sp.Y19. Int. J. Hydrogen Energy. 2002, 27: 601~610
    74 C. Y. Lin, R. C. Chang. Fermentative Hydrogen Production at Ambient Temperature. Int. J. Hydrogen Energy. 2004, 29: 715~720
    75 H. Q. Yu, Z. H. Zhu, W. R. Hu, H. S. Zhang. Hydrogen Production from Rice Winery Wastewater in an Upflow Anaerobic Reactor by Using Mixed Anaerobic Culture. Int. J. Hydrogen Energy. 2002, 27: 1359-1365
    76 S. Tanisho, Y. Suzuki, N. Wakao. Fermentative Hydrogen Evolution by Enterobacter aerogenes Strain E82005. Int. J. Hydrogen Energy. 1987, 12(9): 623~627
    77 M. Heyndricky, P. De Vos, B. Thibau, P. Stevens, J. De Ley. Effect of External Factors on the Fermentative Production of Hydrogen Gas from Glucose by Clostridium butyricum Strains in Batch Culture. System. Appl. Microbiol. 1987, 9: 163~168
    78 F. Taguchi, N. Mizukami, T. S. Taki, K. Hasgawa. Hydrogen Production from Continuous Fermentation of Xylose during Growth of Clostridium sp. Strain No2. Can. J. Microbiol. 1995, 41(6): 536~540
    79 D. Evvyernie, A. Y. amazaki, K. Morimoto, S. Karitab, T. Kimuraa, K. Sakkaa, K. Ohmiyaa. Identification and Characterization of Clostridium paraputrificum M-21, a Chitinolytic Mesophilic and Hydrogen-producing Bacterium. J. Biosci. Bioeng. 2000, 89(6): 596~601
    80 F. Monot, J. Engasser, H. Petitdemange. Influence of pH and Undissociated Butyric Acid on the Production of Acetone and Butanol in Batch Cultures of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 1984, 19: 422~426
    81 C. Y. Lin, R. C. Chang. Hydrogen Production during the AnanerobicAcidogenic Conversion of Glucose. J. Chem. Technol. Biotechnol. 1999, 74: 498~500
    82 J. J. Lay, Y. J. Lee, T. Noike. Feasibility of Biological Hydrogen Production from Organic Fraction of Municipal Solid Waste. Water Research. 1999, 33: 2579~2586
    83赵春芳,邝生鲁,奚强.以葡萄糖为基质的消化污泥厌氧发酵产氢的研究.化学工业与工程技术. 2001, 22(4): 4~6
    84 H. H. P. Fang, H. Liu. Effect of pH on Hydrogen Production from Glucose by a Mixed Culture. Bioresource Technology. 2002, 82: 87~93
    85 S. V. Mohan, Y. V. Bhaskar, P. M. Krishna, N. C. Rao, V. L. Babu, P. N. Sarma. Biohydrogen Production from Chemical Wastewater as Substrate by Selectively Enriched Anaerobic Mixed Consortia: Influence of Fermentation pH and Substrate Composition. Int. J. Hydrogen Energy. 2007, 32(13): 2286~2295
    86 D. Y. Cheong, C. L. Hansen, D. K. Stevens. Production of Bio-hydrogen by Mesophilic Anaerobic Fermentation in an Acid-phase Sequencing Batch Reactor. Biotechnol. Bioeng. 2007, 96: 421~432
    87 N. Q. Ren, B. Z. Wang, J. C. Huang. Ethanol-type fermentation from Carbohydrate in High Rate Acidogenic Reactor. Biotechnol Bioeng. 1997, 54: 428-433
    88 C. Y. Lin, C. H. Jo. Hydrogen Production from Sucrose Using an Aaerobic Sequencing Batch Reactor Process. J. Chem. Technol. Biotechnol. 2003, 78: 678~684
    89任南琪.有机废水处理生物产氢原理与工程控制对策研究.哈尔滨建筑大学博士论文. 1993, 85~96
    90赵丹.产酸相发酵类型控制对策研究.哈尔滨建筑大学硕士论文. 1998, 27~44
    91 J. Z. Li, B. K. Li, G. F. Zhu, N. Q. Ren, L. X. Bo, J. G.. He. Hydrogen Production from Diluted Molasses by Anaerobic Hydrogen Producing Bacteria in an Anaerobic Baffled Reactor (ABR). Int J Hydrogen Energy. 2007, 32(15): 3274~3283
    92 S. Roychowdhury, D. Cox, M. Levandowsky. Production of Hydrogen by Microbial Fementation. Int. J. Hydrogen Energy. 1988, 13(7): 407~410
    93 M. Okamoto, T. Miyahara, O. Mizuno, T. Noike. Biological Hydrogen Potential of Materials Characteristics of the Organic Fraction of Municipal Solid Wastes. Wat. Sci. Tech. 2000, 41(3-4):25~32
    94 J. J. Lay. Biohydrogen Generation by Mesophilic Anaerobic Fermentation of Microcrystalline Cellulose. Biotechnol. Bioeng., 2001, 74(4): 280~287
    95 S. van Ginkel, S. Sung, J. J. Lay. Biohydrogen production as a Function of pH and Substrate Concentration. Environ. Sci. Technol. 2001, 36: 4726~4730
    96 J. J. Lay. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng. 2000, 68: 269~278
    97 Y. T. Fan, Y. H. Zhang, S. F. Zhang, H. W. Hou, B. Z. Ren. Efficient Conversion of Wheat Straw Wastes into Biohydrogen Gas by Cow Dung Compost. Bioresource Technol. 2006, 97: 500~505
    98闵航,陈美慈,赵宇华等.厌氧微生物学.杭州:浙江大学出版社. 1993.155~157
    99 C. T. Gray, H. Gest. Biological Formation of Molecular Hydrogen. Science. 1964,148: 186~192
    100王勇.微生物最佳产氢发酵类型控制及高效产氢细菌研究.哈尔滨工业大学博士论文. 2002. 83~136
    101丁杰.金属离子和半胱氨酸对产氢能力的影响及调控对策研究.哈尔滨工业大学博士论文. 2005. 37~67
    102 Y. Ueno, S. Otsuka, M. Morimoto. Hydrogen Production from Industrial Wastewater by Anaerobic Microflora in Chemostat Culture. J. Ferment. Bioeng. 1996, 82(2): 194~197
    103 A Majizat, Y. Mitsunori, W. Mitsunori, N. Michimasa, M. Junichiro. Hydrogen Gas Production from Glucose and Its Microbial Kinetics in Anaerobic System. Wat. Sci. Tech. 1997, 36(6-7): 279~286
    104 J. J. Lay, Y. J. Lee, T. Noike. Modeling and Optimization of Anaerobic Digested Sludge Converting Starch to Hydrogen. Biotechnol. Bioeng. 2000, 68(3): 269~278
    105 H. H. P. Fang, H. Liu, T. Zhong. Characterization of a Hydrogen-producing Granular Sludge. Biotechnol. Bioeng., 2002,78(1): 44~51
    106 H. H. P. Fang, H. Liu. Hydrogen Production from Wastewater by Acidogenic Granular Sludge. Wat. Sci. Tech. 2003, 47(1): 153~158
    107 J. S. Chang, K. S. Lee, P. J. Lin. Biohydrogen Production with Fixed-bed Bioreactors. Int. J. Hydrogen Energy. 2002, 27: 1167~1174
    108 K. S. Lee, Y. S. Lo, Y. C. Lo, P. J. Lin, J. S. Chang. H2 Production with Anaerobic Sludge Using Activated-carbon Supported Packed-bed Bioreactors. Biotechnology Letters. 2003, 25: 133~138
    109 Z. P. Zhang, J. H. Tay, K. Y. Show, R. Yan, D. T. Liang, D. J. Lee, W. J. Jiang. Biohydrogen Production in a Granular Activated Carbon Anaerobic FluidizedBed Reactor. Int J Hydrogen Energy. 2007, 32: 185~191
    110 S. Y. Wu, C. H. Hung, C. N. Lin, H. W. Chen, A. S. Lee, J. S. Chang. Fermentative Hydrogen Production and Bacterial Community Structure in High-rate Anaerobic Bioreactors Containing Silicone-immobilized and Self-flocculated Sludge. Biotechnol Bioeng. 2006, 93(5): 934~946
    111 S. Y. Wu, C. N. Lin, J. S. Chang. Hydrogen Production with Immobilized Sewage Sludge in Three-phase Fluidized-bed Bioreactors. Biotechnol Prog. 2003,19(3): 828~832
    112 M. K. Tiwari, s. Guha, C. S. Harendranath, S. Tripathi. Influence of Extrinsic Factors on Granulation in UASB Reactor. Applied Microbiol Biotechnol. 2006, 71(2): 145~154
    113 P. L. McCarty, P. E. Mosey. Modeling of Anaerobic Diggestion Process (A Discussion of Concepts). Water Sci. Technol. 1991, 24(8): 17~33
    114 R. Kleerebezem, A. J. M. Stams. Kinetics of Syntrophic Cultures: A Theoretical Treatise on Butyrate Fermentation. Biotechnol. Bioeng. 2000, 67(5): 529~543
    115 S. E. Oh, S. Van Ginkel, B. E. Logan. The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production. Environmental Science & Technology. 2003, 37(22): 5186~5190
    116 G. Lettinga. Use of the Upflow Anaerobic Sludge Blanket Reactor Concept for Biological Wastewater Treatment, Especially for Anaerobic Treatment. Biotechnol. Bioeng. 1980, 21: 695~734
    117 I. Hussy, F. R. Hawkes, R. Dinsdale, D. L. Hawkes. Continuous Fermentative Hydrogen Production from a Wheat Starch Co-product by Mix Microflora. Biotechnol. Bioeng. 2003, 84(6): 619~626
    118 X. J. Wang, N. Q. Ren, W. S. Xiang, W. Q. Guo. Inffluence of Gaseous End-products Inhibition and Nutrient Limitationson the Growth and Hydrogen Production by Hydrogen-producing Fermentative Bacterial B49. Int. J. Hydrogen Energy. 2007, 32: 748~754
    119 T. M. Liang, S. S. Cheng, K. L. Wu. Behavioral Study on Hydrogen Fermentation Reactor Installed with Silicone Rubber Membrane. Int. J. Hydrogen Energy. 2002, 27: 1157~1165
    120 H. H. P. Fang, T. Chen, O. C. Chan. Toxic Effects of Phenolic Pollutants on Anaerobic Benzoate-degrading Granules. Biotechnology Letters.1995, 17(1): 117~120
    121 J. J. Lay, Y. Y. Li and T. Noike. The Influence of pH and Ammonia Concentration on the Methan Production in High-solids Digestion Processes. Wat. Environ. Res. 1998, 70(5): 1075~1082
    122 C. C. Chen, C. Y. Lin. Using Sucrose as a Substrate in an Anaerobic Hydrogen-producing Reactor. Adv Environ Res. 2003, 7(3): 695~699
    123 D. De Beer, P. Stooley, F. Roe, Z. Lewandowski. Effects of Biofilm Structures on Oxygen Distribution and Mass Transport. Biotechnol. Bioeng. 1994, 43: 1131~1138
    124 P. S. Stewart, R. Murga, R.S rinivasan, D. De Beer. Biofilm structural heterogeneity visualized by three microscopic methods. Water Research. 1995,29: 2006~2009
    125 J. E. Schmidt, B. K. Ahring. Granular Sludge Formation in Upflow Anaerobic Sludge Blanket (UASB) Reactors. Biotech. Bioeng. 1996, 49(3): 229~246
    126 J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott. Microbial Biofilms. Annual Review of Microbiology. 1995, 49: 711~745
    127 V. Lazarova, J. Manem. Biofilm Characterization and Activity Analysis in Water and Wastewater Treatment. Water Research. 1995,29: 2227~2245
    128郭养浩,孟春. UASB反应器中影响污泥颗粒化的工程因素.生物工程学报. 1997, 13(1): 76~82
    129刘双江,胡纪萃.厌氧颗粒污泥形成过程的微生物研究.中国环境科学. 1992, 12(6): 405~409
    130 J. E. Schmidt, B. K. Ahring. Granular Sludge Formation in Upflow Anaerobic Sludge Blanket (UASB) Reactors. Biotechnology and Bioengineering. 1996, 49(3): 229~246
    131 J. T. C. Grotenhuis, J. C. Kissel, C. M. Plugge, A. J. M. Stams, A. J. B. Zehnder. Role of Substrate Concentration in Particle Size Distribution of Methanogenic Granular Sludge in UASB Reactors. Water Research. 1991, 25(1): 21~27
    132陈坚,李春生.厌氧颗粒污泥的形成机制.中国环境科学. 1993, 13(5): 334~339
    133 L. W. Hulshoff Pol. 1989. The Phenomenon of Granulation of Anaerobic Sludge. Ph.D thesis from Agricultural University of Vageningen. Holland. 1989
    134 T. Imai, M. Ukita, J. Liu, M. Sekine, H. Nakanishi, M. Fukagawa. Advanced Start up of UASB reactors by adding of water absorbing polymer. Water Science Technol. 1997, 36: 399~406
    135 Y. Liu, H. L. Xu, S. F. Yang, J. H. Tay. Mechanisms and Models for Anaerobic Granulation in Upflow Anaerobic Sludge Blanket Reactor. Water Research. 2003, 37(3): 661~673
    136 J. W. Morgan, C. F. Forster, L. Evison. Comparative Study of the Nature of Biopolymers Extracted from Anaerobic and Activated Sludges. Water Research. 1990, 24(6): 743~750
    137 J. Quarmby, C. F. Forster. An Examination of the Structure of UASB Granules. Water Research. 1995, 29(11): 2449~2454
    138 M. C. Veiga, M. K. Jain, W. M. Wu, R. I. Hollingsworth, J. G. Zeikus. Composition and Role of Extracellular Polymers in Methanogenic Granules.Appl. Environ. Microbiol. 1997, 63(2): 403~407
    139 N. Q. Ren, B. Z. Wang, F. Ma. Hydrogen Bio-production of Carbohydrate Fermentation by Anaerobic Activated Sludge Process. In: Proceedings of the 68th water environment federation annual conference exposure. 1995, 145~153
    140 O. Mizuno, R. Dinsdale, F. R. Hawkes, D. L. Hawkes, T. Noike. Enhancement of Hydrogen Production from Glucose by Nitrogen Gas Sparging. Bioresour Technol. 2000, 73(1): 59~65
    141秦智.生物制氢反应器发酵类型控制对策及生物强化作用研究.哈尔滨工业大学博士论文. 2003, 12~13
    142 C. Y. Lin, C. H. Lay. Carbon/Nitrogen-ratio Effect on Fermentative Hydrogen Production by Mixed Microflora. Int. J. Hydrogen Energy. 2004, 29: 41~45
    143 S. H. Kim, S. K. Han, H. S. Shin. Effect of Substrate Concentration on Hydrogen Production and 16S rDNA-based Analysis of the Microbial Community in a Continuous Fermenter. Process Biochemistry. 2006, 41: 199~207
    144 N. H. Gavala, I. V. Skiadas, B. K. Ahring. Biological Hydrogen Production in Suspended and Attached Growth Anaerobic Reactor Systems. Int. J. Hydrogen Energy. 2006, 31: 1164~1175
    145 F. Y. Chang, C. Y. Lin. Biohydrogen Production Using an Up-flow Anaerobic Sludge Blanket Reactor. Int. J. Hydrogen Energy. 2004, 29: 33~39
    146 L. M. Alzate-Gaviria, P. J. Sebastian, A. Prez-Hernndez, D. Eapen. Comparison of Two Anaerobic Systems for Hydrogen Production from the Organic Fraction of Municipal Solid Waste and Sythetic Wastewater. Int. J. Hydrogen Energy. 2007, 32(15): 3141~3146
    147 C. N. Lin, S. Y. Wu, J, S. Chang. Fermentative Hydrogen Production with a Draft Tube Fluidized Bed Reactor Containing Silicone-gel-immobilized Anaerobic Sludge. Int. J. Hydrogen Energy. 2006, 31(15): 2200~2210
    148 K. S. Lee, Y. S. Lo, Y. C. Lo, P. J. Lin, J. S. Chang. Operation Strategies for Biohydrogen Production with a High-rate Anaerobic Granular Sludge Bed Bioreactor. Enzyme and Microbial Technology. 2004, 35: 605~612
    149 K. S. Lee, J. F. Wu, Y. S. Lo, Y. C. Lo, P. J. Lin, J. S. Chang. Anaerobic Hydrogen Production with an Efficient Carrier-induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering. 2004,87 (5): 648~657
    150 S. G. Wang, X. W. Liu, W. X. Gong, B. Y. Gao, D. H. Zhang, H. Q. Yu. Aerobic Granulation with Brewery Wastewater in a Sequencing Batch Reactor. Bioresource Technology. 2007, 98: 2142~2147
    151 K. J. Wu, J. S. Chang. Batch and Continuous Fermentative Production of Hydrogen with Anaerobic Sludge Entrapped in a Composite Polymeric Matrix. Process Biochem. 2007, 42: 279~284
    152 Y. K. Oh, S. H. Kim, M. S. Kim, S. Park. Thermophilic Biohydrogen Production from Glucose with Trickling Biofilter. Biotechnol. Bioeng. 2004,88(6): 690~698
    153 H. Q. Yu, Y. Mu. Biological Hydrogen Production in a UASB Reactor with Granules. II: Reactor Performance in 3-year Operation. Biotechnology and Bioengineering. 2006,94 (5): 988~995
    154国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.第三版.北京:中国环境科学出版社. 1989: 27~30
    155 American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed America, Washington D C. 1998.
    156 H. Zhu, M. Béland. Evaluation of Alternative Methods of Preparing Hydrogen Producing Seeds from Digested Wastewater Sludge. Int. J. Hydrogen Energy. 2006, 31: 1980~1988
    157 J. J. Lay, K. S. Fan, J. Chang, C. H. Ku. Influence of Chemical Nature of Organic Wastes on Their Conversion to Hydrogen by Heat-shock Digested Sludge. Int. J. Hydrogen Energy. 2003, 28: 1361~1367
    158 C. C. Wang, C. W. Chang, C. P. Chu, D. J. Lee, B. V. Chang, C. S. Liao. Producing Hydrogen from Wastewater Sludge by Clostridium bifermentans. J. Biotechnol. 2003, 102: 83~92
    159 Y. Mu, H. Q. Yu, G. Wang. Evaluation of Three Methods for Enriching H2-producing Cultures from Anaerobic Sludge. Enzyme and Microbial Technology. 2007, 40: 947~953
    160 G. Liang, X. M. Li, Q. Yang, G. M. Zeng, D. X. Liao, J. J. Liu. Impacts of Sterilization, Microwave and Ultrasonication Pretreatment on Hydrogen Producting Using Waste Sludge. Bioresource Technol. 2008, 99(9): 3651~3658
    161 C. C. Wang, C. W. Chang, C. P. Chu, D. J. Lee, B. V. Chang, C. S. Liao. Using Filtrate of Waste Biosolids to Effectively Produce Bio-hydrogen by Anaerobic Fermentation. Water Research. 2003, 37: 2789~2793
    162 S. Sung, L. Raskin, T. Duangmanee, S. Padmasiri, J. J. Simmons. Hydrogen Production by Anaerobic Microbial Communities Exposed to Repeated Heat Treatments. Proceeding of the 2002 US DOE hydrogen program review. 2002, 1~17
    163 H. Zhu, M. Béland. Evaluation of Alternative Methods of Preparing Hydrogen Producing Seeds from Digested Wastewater Sludge. Int. J. Hydrogen Energy. 2006, 31: 1980~1988
    164 C. C. Chen, C. Y. Lin, M. C. Lin. Acid-base Enrichment Enhances Anaerobic Hydrogen Production Process. Appl Microbiol Biotechnol. 2002, 58: 224~228
    165 K. Y. Show, Z. P. Zhang, J. H. Tay, D. T. Liang, D. J. Lee, W. J. Jiang. Production of Hydrogen in a Granular Sludge-based Anaerobic Continuous Stirred Tank Reactor. Int. J. Hydrogen Energy. 2007, 32: 4744~4753
    166 Z. P. Zhang, K. Y. Show, J. H. Tay, D. T. Liang, D. J. Lee, W. J. Jiang. Effect of Hydraulic Retention Time on Biohydrogen Production and Anaerobic Microbial Community. Process Biochemistry. 2006, 41:. 2118~2123
    167 Z. P. Zhang, K. Y. Show, J. H. Tay, D. T. Liang, D. J. Lee. Enhanced Continuous Biohydrogen Production by Immobilized Anaerobic Microflora. Energy & Fuels. 2008, 22: 87~92
    168 M. L. Cai, J. X. Liu, Y. S. Wei. Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment. Environ.Sci.Technol. 2004, 38: 3195~3202
    169 A. Terentiew, D. M. Bagley. Production of Hydrogen under Anaerobic Conditions: Effects of Pre-treatment and Operating conditions. Proceedings of 32nd annual WEAO technical symposium. March 31-April 2, Toronto, Ontario, Canada. 2003.
    170 J. Z. Li, N. Q. Ren, B. K. Li, Y. Wang, S. R. Liu. Biohydrogen Production from Molasses by Anaerobic Fermentation with a Pilot-scale Bioreactor System. Int. J. Hydrogen Energy 2006, 31: 2147~2157
    171 Y. Mu, H. Q. Yu, G. Wang. Evaluation of Three Methods for Enriching H2-producing Cultures from Anaerobic Sludge. Enzyme and Microbial Technology. 2007, 40: 947~953
    172 Y. Kawagoshi, N. Hino, A. Fujimoto, M. Nakao, Y. Fujita, S. Sugimura, K. Furukawa. Effect of Inoculum Conditioning on Hydrogen Production and pH Effect on Bacterial Community Relevant to Hydrogen Production. J. Biosci Bioeng. 2005, 100(5): 524~530
    173 D. F. Xing, N. Q. Ren, Q. B. Li, M. Lin, A. J. Wang, L. H. Zhao. Ethanoligenens harbinense gen. nov., sp nov., Isolated from Molasses Wastewater. International Journal of Systematic and Evolutionary Microbiology. 2006, 56: 755~760
    174 M. D. Farrar, K. M. Howson, J. E. Emmott, R. A. Bojar, K. T. Holland.Characterisation of Cryptic Plasmid pPG01 from Propionibacterium granulosum, The First Plasmid to Be Isolated from a Member of The Cutaneous Propionibacteria. Plasmid. 2007, 58(1): 68~75
    175 F. R. Hawkes, R. Dinsdale, D. L. Hawkes, I. Hussy. Sustainable Fermentative Hydrogen Production: Challenges for Process Optimization. Int. J. Hydrogen Energy. 2002, 27: 1339~1347
    176刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学博士论文. 2001: 35~52
    177宫曼丽.连续流生物制氢反应器的定向启动及群落生态演替规律.哈尔滨工业大学博士论文. 2006: 35~80
    178张顺泽.讨论废水碱度对活性污泥的影响.化工环保, 1994(1): 17 ~19
    179王爱杰,任南琪,甄卫东等.产酸脱硫反应器中限制性生态因子的定量化研究.环境科学学报. 2002, 22(2): 177~183
    180王宝泉,方正.厌氧酸化法的启动及控制因素的探讨.西安建筑科技大学学报. 1997, 29(2): 142~146
    181 S. W. Van Ginkel, B. Logan. Increased Biological Hydrogen Production with Reduced Organic Loading. Water Research. 2005, 39(16): 3819~3826
    182 G. Gottschalk. Bacterial metabolis. New York: Springer-Verlag. 1986: 242~249
    183 J. I. Horiuchi, T. Shimizu, K. Tada, et al. Selective Production of Organic Acids in Anaerobic Acid Reactor by pH Control. Bioresource Technology. 2002, 82: 209~213
    184 Khanal SK, Chen WH, Li L, Sung S. Biological Hydrogen Production: Effect of pH and Intermediate Products. Int J Hydrogen Energy 2004; 29:1123-31
    185 A. G. Moat. Microbial Physiology. John Wiley & Sons, New York. 1979, 123~189
    186 N. Q. Ren, D. Zhao, X. L. Chen, J. Z. Li. Mechanism and Controlling Strategy of the Production and Accumulation of Propionic Acid for Anaerobic Wastewater Treatment. Sci China (Series B). 2002, 45(3): 319~327
    187 M. H. Hwang, N. J. Jang, S. H. Hyun, I. S. Kim. Anaerobic Bio-hydrogen Production from Ethanol Fermentation: The Role of pH. J Biotechnol. 2004, 111: 297~309
    188郑平,冯效善.废物生物处理.北京:高等教育出版社. 2006
    189 R. E. Speece.工业废水的厌氧生物技术.北京:建筑工业出版社. 2001.
    190 J. E. Schmidt, B. K. Ahring. Granular Sludge Formation in Upflow Anaerobic Sludge Blanket (UASB) Reactors. Biotech. Bioeng. 1996, 49(3): 229~246
    191 L. Morvai, P. Mihaltz, L. Czako. The Kinetic Basis of a New Start-Up Method to Ensure the Rapid Granulation of Anaerobic Sludge. Water Scienceand Technology. 1992, 25(7): 113~122
    192贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社. 1998
    193 G. Letinga.第四届国际厌氧消化讨论会(中国,广州)论文集.1985, 150~159
    194刘洪山,尹石祥译. UASB厌氧废水处理技术的开发.国外环境科学与技术. 1993, 3: 51~54
    195苏玉民,杨云龙,王增长.脉冲上流式厌氧污泥床反应器的应用.环境科学. 1996, 17(1): 50~53
    196竺建荣,胡纪萃.颗粒污泥的产甲烷细菌及结构模型初探.微生物学报. 1993, 33(4): 304~308
    197赵一章,张辉.高活性厌氧颗粒污泥微生物特性和形成机理的研究.微生物学报. 1994, 34(1): 45~54
    198 Z. P. Zhang, K. Y. Show, J. H. Tay, D. T. Liang, D. J. Lee. Biohydrogen Production with Anaerobic Fluidized Bed Reactors-A Comparison of Biofilm-based and Granule-based Systems. Int. J. Hydrogen Energy. 2008, 33: 1559~1564

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700