改性缺位金红石型二氧化钛制备与光催化分解水性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能作为一种绿色新能源,得到越来越多的关注。利用太阳能光催化分解水制取氢气,可望使廉价制备氢气技术成为现实,具有广泛的应用前景。本论文较为详细地综述了光解水领域包括光催化材料的种类、光催化反应体系、可见光分解水等方面的研究进展。针对析氧半反应催化剂的析氧速率偏低,难于与析氢半反应析氢速率匹配的现状,本研究采用施主金属掺杂、稀土金属掺杂以及改善制备方法等多种手段对缺位金红石型TiO_2进行了改性,以Fe~(3+)为电子受体,在紫外光(或可见光)辐照下,研究了改性缺位金红石型TiO_2的光解水析氧性能。主要研究结果如下:
     1.分别用溶胶-凝胶法和低温水解法制得TiO_2,并比较了制备方法对TiO_2光解水析氧活性的影响。结果表明:在紫外光辐照下,Fe~(3+)的初始浓度为8.0mmol.L~(-1)、溶液的pH值为2.0时,锐钛矿型TiO_2析氧活性比金红石型TiO_2的析氧活性差,水解法所制得的金红石型TiO_2的析氧速率达93.2gmol.L~(-1).h~(-1),比溶胶凝胶法制备的金红石型TiO_2光解水析氧活性高10.6%.在Ar气氛中、煅烧温度为700℃时,超声强化低温水解法制得的缺位金红石型TiO_2在紫外光源下的析氧速率达113.81μmol.L ~(-1)h~(-1)在可见光源下的析氧速率达62.1μmol.L(-1)h~(-1),分别比未经超声强化处理的缺位金红石型TiO_2的析氧速率提高了6.75%和20.3%.超声波强化能够改善缺位金红石型TiO_2的光解水析氧活性。
     2.将低温水解法制备的TiO_2前驱物分别在空气、Ar和H_2气氛中,煅烧温度为700℃时制得金红石型TiO_2。结果表明,在Ar和H_2中制备的金红石型TiO_2分解水的析氧速率较高,在紫外光辐照下的析氧速率分别达106.6和103.2μmol.L ~(-1).h~(-1),与在空气中制备的金红石型TiO_2析氧速率(93.2μmol.L ~(-1)h~(-1))相比分别提高了14.3%和10.8%;在可见光辐照下,催化剂的析氧速率分别达5 1.6和33.8μmol.L ~(-1)h~(-1),与在空气中制备的金红石型TiO_2析氧速率(18.8μmol.L ~(-1)h~(-1))相比分别提高174.5%和79.7%.
     3.系统研究了(2.0%、)稀土金属La、Nd、Sm、Eu、Gd、Er、Yb掺杂改性对缺位金红石型TiO_2光解水析氧活性的影响。在Fe~(3+)的浓度为8.0mmol.L~(-1),在紫外光源辐照下,Yb、Eu、Er掺杂能够提高金红石型TiO_2分解水析氧速率,而La、Sm、Nd掺杂对金红石型TiO_2光解水析氧速率影响不显著,Gd掺杂金红石型TiO_2分解水析氧速率降低;在可见光辐照下,掺杂稀土金属后,只有Yb、Eu掺杂能够提高金红石型TiO_2分解水析氧速率,分别提高了31.2%和10.8%,其他稀土金属掺杂后催化剂的析氧速率略有降低。稀土金属的掺杂,导致氧缺位的形成,从而影响金红石型TiO_2的光解水析氧活性。
     4.将不同的施主金属离子(V、Nb、Ta、W)以不同的掺杂浓度对缺位金红石型TiO_2进行改性。结果表明,V、Nb、Ta、W的掺入能够改善和提高金红石型TiO_2的光解水析氧活性,尤其以V、W的改性效果显著。施主金属V、Nb、Ta、W都存在一个最佳的掺杂浓度,V、Nb、Ta、W最佳的掺杂浓度分别为1.0~2.0%、1.0%、1.0%、2.0%,V、Nb、Ta、W掺杂缺位金红石型TiO_2在紫外光条件下分解水的析氧速率分别为160.0umol.L~(-1).h~(-1)、138.1umol.L~(-1).h~(-1)、130.4umol.L~(-1).h~(-1)、148.8umol.L~(-1).h~(-1),在可见光条件下分解水的析氧速率分别为105.2umol.L~(-10.h~(-1)、80.4umol.L~(-1).h~(-1)、69.6umol.L~(-1).h~(-1)、102.9umol.L~(-1).h~(-1);在紫外光和可见光辐照条件下,V、Nb、Ta、W掺杂后催化剂的光解水析氧活性与催化剂的光致发光强度的变化趋势基本一致;在可见光条件下,施主金属V、Nb、W对缺位金红石型TiO_2掺杂改性后,改性催化剂的光解水析氧速率均超过文献或者专利报道的结果。
     5.采用第一性原理的计算方法,计算了施主金属V、Nb、Ta、W掺杂对金红石型TiO_2催化材料的能带结构和态密度的影响。计算结果表明:(1)金红石型TiO_2的带隙为1.9eV。(2)V、Nb、Ta、W的掺杂使得金红石型TiO_2的费米能级进入导带,带隙减小,分别为1.4eV、1.5 eV、1.7eV、1.5 eV,表面势垒变高,空间电荷区变窄,有利于低频光子的激发,光生电子与空穴得到了有效的分离。V、W的掺杂后TiO_2在原来的价带和导带之间出现新的定域能级,使得掺杂金红石型TiO_2更容易激发产生光生电荷。因此,V和W掺杂后的光催化析氧效果高于Nb、Ta掺杂效果。(3)计算的结果验证了V、Nb、Ta、W的掺入能够改善和提高金红石型TiO_2的光解水析氧活性。
As a new energy resource,More and more about the hydrogen energy has been attracted.The hydrogen production from water splitting by sunlight has been known as an economic and clean technology and a process with prominent prospect for application.The progress in studies about water photocatalytic splitting was reviewed involving photocatalysts species,photoreaction system and effective visible light harvest for water photolysis.Because of the low rate of oxygen evolution and difficult to match the rate of hydrogen evolution in photocatalytic splitting water system,modified rutile TiO_2 with oxygen vacancies was synthesised using donor metal doped,rare-earth doped and improving preparation method.With Fe~(3+) as electron acceptor under UV irradiation and visible radiation,the photocatalytic activities for oxygen evolution using modified rutile TiO_2 with oxygen vacancies were studied.Work has been done as follows:
     1.TiO_2 was prepared by sol-gel method and low-temperature ultrasonical hydrolysis method.The influence of preparation method on the activity of TiO_2 splitting water for oxygen evolution was studied.The results show that the photoactivity of anatase TiO_2 was poorer than that of rutile TiO_2.Under the ultraviolet irradiation,when the initial concentration of Fe~(3+) was 8.0 mmol·L~(-1) and the pH value of the solution was 2.0,the maximun speed of O_2 evolution for rutile TiO_2 prepared by hydrolysis method was 93.2μmol·L~(-1)·h~(-1).The oxygen evolution ratio of rutile TiO_2 prepared by hydrolysis method is 10.6%higher than that of rutile TiO_2 prepared by a sol-gel method.The oxygen production rate under ultraviolet irradiation and visible light irradiation was 113.8μmol·L~(-1)·h~(-1) and 62.1μmol·L~(-1)·h~(-1) when rutile TiO_2 with oxygen vacancies prepared by ultrasonical hydrolysis method and calcined at 700℃under Ar atmosphere,respectively.Ultrasonical treatment can improve the photocatalytic activity of TiO_2.
     2.The water photocatalytic splitting activity of rutile TiO_2 prepared by hydrolysis method under air,Ar and H_2 atmosphere The results show that rutile TiO_2 has higher photocatalytic activity for water splitting prepared under Ar and H_2 atmosphere than that prepared under air atmosphere.The oxygen production rates under ultraviolet irradiation were 106.6 and 103.2μmol·L~(-1)·h~(-1) when TiO_2 was prepared under Ar and H2 atmosphere as photocatalyst,respectively.And the oxygen production ratios compared to the rate of futile TiO_2 prepared under air atmosphere(93.2μmol·L~(-1)·h~(-1)).The oxygen production rates under visible light irradiation were 51.6 and 33.8μmol·L~(-1)·h~(-1) when TiO_2 was prepared under Ar and H_2 atmosphere as photocatalyst,respectively,compared to the rate of futile TiO_2 prepared under air atmosphere(18.8μmol·L~(-1)·h~(-1)).
     3.The effects of rare earth metal(2.0%)La,Nd,Sm,Eu,Gd,Er, Yb doping rutile TiO_2 on the photocatalytic activity of splitting water with oxygen evolution were investigated systematically.The results shows that under UV-light irradiation,Yb,Eu or Er doping rutile TiO_2 can improve the photocatalytic activity of rutile TiO_2,and La,Sm,Nd doping can not infuence the photocatalytic activity of rutile TiO_2 obviously,and Gd rutile TiO_2 doping can reduce the photocatalytic activity of rutile TiO_2.Under the visible-light irradiation only Yb and Eu rutile TiO_2 doping can improve the photocatalytic activity of rutile TiO_2. The rare earth metal doping rutile TiO_2 can cause oxygen vacancies,which can influence the photocatalytic activity of rutile TiO_2.
     4.The donor metals(V,Nb,Ta and W) were firstly used to modify rutile TiO_2 with oxygen vacancies.The results show that TiO_2 doped with V,Nb,Ta and W exhibites higher photocatalytic activity of splitting water for oxygen evolution.TiO_2 doped with V and W exhibites the highest photocatalytic activity of oxygen evolution.When the photocatalytic activity of rutile TiO_2 splitting water for oxygen evolution can be enhanced,there was an optimum doping concentration.The optimum doping concentration of V,Nb,Ta and W were 1.0~2.0%,1.0%,1.0%, 2.0%,respectively.The oxygen production rate of rutile TiO_2 with oxygen vacancies doped with V,Nb,Ta and W under ultraviolet irradiation were 160.0μmol·L~(-1)·h~(-1),138.1μmol·L~(-1)·h~(-1),130.4μmol·L~(-1)·h~(-1) and 148.8μmol·L~(-1)·h~(-1);and the oxygen production rate of rutile TiO_2 with oxygen vacancies were 105.2μmol·L~(-1)·h~(-1),80.4μmol·L~(-1)·h~(-1), 69.6μmol·L~(-1)·h~(-1) and 102.9μmol·L~(-1)·h~(-1),respectively.The trend of photocatalytic activity of V,Nb,Ta and W-doped TiO_2 splitting water for oxygen evolution was consistent with its photoluminescence strength. The oxygen production rates of rutile TiO_2 doped with donor elements V, Nb,and W under visible light irradiation were higher than that reported in the literatures.
     5.Rutile TiO_2 doped with the donor metals(V,Nb,Ta and W) have been analyzed by the first principles calculations with the density functional theory.The results show that:(1)The band gap of futile TiO_2 was 1.9eV.(2)The fermi energy level of rutile TiO_2 moved to the conduction bands when doping content of V,Nb,Ta and W was elevated.The band gap decreased,the surface barrier raised,space charge district narrowed.The E_g of rutile TiO_2 was reduced and photoproduced electrons and holes were easily excited with lower energy compare with the undoped rutile TiO_2,which was advantage to the excitation of low-frequency photons and the separation of photoproduced electrons and holes.New levels between the conduction and valence bands occured when TiO_2 was doped with V and W.Thus,the doped TiO_2 can easily excited photoproduced charges.The photocatalytic effects of oxygen evolution as TiO_2 doped with V and W were better than that doped with Nb and Ta.(3)The calculation results indicate that the photocatalytic activity of splitting water for oxygen evolution can improved after TiO_2 was doped with V,Nb,Ta and W,respectiely.
引文
[1] Mills A.,Hunte S.L., A overview of semiconductor photocatalysis,Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35.
    [2] Fujishim A., Honda K.,Eectrochemical photolysis of water at a semiconductor electrode, Nature,1972, 238:37-38.
    [3] Luo H.M.,Takata T.,Lee Y.,et al,Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine,Chemistry of Materials,2004,16(5):846-849.
    [4] Lee S.G.,Lee S.,Lee H.I.,Photocatalytic production of hydrogen from aqueous solution containing CN~ ˉas a hole scavenger, Applied Catalysis A:General, 2001,207(1-2):173-181.
    [5] Avudaithai M.,Kutty T.R.N.,Sacrificial photolysis of water on Ti_(1-x)Sn_xO_2 ultrafme powders,Materials Research Bulletin, 1989,24(9): 1163-1170.
    [6] Sayama K.,Arakawa H.,Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO_2 catalyst,the Journal of Chemical Society:Faraday Transactions, 1997,93 (8): 1647-1654.
    [7] Moon S.C.,Mametsuka H.,Suzuki E.,et al.Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water, Catalysis Today.1998,45(1-4):79-84.
    [8] Moon S.C.Mametsuka H.,Tabata S.,et al.Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2,Catalysis Today,2000,58(2):125-132.
    [9] Karakitson K.E..Verykios X.E.,Effect of altervalent cation doping of TiO_2 on its performance as a photocatalyst for water cleavage,the Journal of Physical Chemistry, 1993,97(6): 1184-1189.
    [10] Ashokkumar M., An overview on semiconductor particulate system for photoproduction of hydrogen, International Journal of Hydrogen Energy, 1998, 23(6): 427-438.
    [11] Yin S.,Wu J.H.,Aki M.,et al,Photocatalytic hydrogen evolution with fibrous titania prepared by the solvothermal reactions of protonic layered tetratitanate (H_4Ti_4O_9), the International Journal of Inorganic Materials, 2000,2 (4): 325-331.
    [12] Ohno T.,Tanigawa F.,Fujihara K.,et al,Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder, Journal of Photochemistry and Photobiology A:Chemistry,1999,127(1-3):107-110.
    [13]Takawa T.,Tanaka A.,Hara M.,et al,Recent progress of photocatalysts for overall water splitting,Catalyst Today,1998,44(1-4):17-26.
    [14]Domen K.,Natio S.,Soma M.,Study of photocatalytic decomposition of water into H_2 and O_2 over NiO-SrTiO_3 catalyst,the Journal of Physical Chemistry,1982,86:3657-3661.
    [15]Bamwenda G.R.,Arakawa H.,Cerium dioxide as a photocatalyst for water decomposition to O_2 in the presence of Ce_(aq)~(4+) and Fe_(aq)~(3+) species,Journal of Molecular Catalysis A:Chemical,2000,161(1-2):105-113.
    [16]Bamwenda G.R.,Uesigi T.,Abe Y.,et al,The photocatalytic oxidation of water to O_2 over pure CeO_2,WO_3,and TiO_2 using Fe~(3+) and Ce~(4+) as electron acceptors,Applied Catalysis A:General,2001,205(1-2):117-128.
    [17]Bamwenda G.R.,Arakawa H.,The photoinduced evolution of O_2 and H_2 from a WO_3 aqueous suspension in the presence of Ce~(4+)/Ce~(3+),Solar Energy Materials and Cells,2001,70(1):1-14.
    [18]高友良、陈启元、尹周澜等.氧空位对WO_3光解水析氧活性影响.无机化学学报,2005,21(10):1510-1514.
    [19]Sayama K.,Arakawa H.,Photocatalytic decomposition of water and photocatalytic of carbon dioxide over ZrO_2 catalyst,the Journal of Physical Chemistry,1993,97(3):531-533.
    [20]Gurunathan K.,Photocatalytic hydrogen production using transition met al ions-doped γ-Bi_2O_3 semiconductor particles,International Journal of Hydrogen Energy,2004,29(9):933-940.
    [21]Hara M.,Hasei H.,Yashima M.,et al,Mechano-catalytic overall water splitting(Ⅱ)nation-deposited Cu_2O,Applied Catalysis A:General,2000,190(1):35-42.
    [22]Domen K.,Ikeda S.,Takata T.,et al,Mechano-catalytic overall water-splitting into hydrogen and oxygen on some met al oxides Applied Energy,2000,67(1):159-179.
    [23]Takata T.,Ikeda S.,Tanaka A.,et al,Mechano-catalytic overall water splitting on some oxides(Ⅱ),Applied Catalysis A:General,2000,200(1):255-262.
    [24]Hara M.,Komoda M.,Hasei H.,et al,Study of mechano-catalysts for overall water splitting,the Journal of Physical Chemistry,2000,104(4):780-785.
    [25]Domen K.,Kondo J.N.,Hara M.,et al,Photo-and mechano-catalytic overall water splitting reactions to form hydrogen on heterogeneous catalysts,Bulletin Chemistry Society of the Japan,2000,73(6):1307-1331.
    [26]Linsebigler A L,Lu G Q,Yates J T Jr.Photocatalysis on TiO_2 Surfaces:principles,mechanisms,and selected results.Chem.Rev.1995,95(3):735-758.
    [27]Zhao W,Chen C,Li X,et al.Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation:influence of platinum as a functional co-catalyst.J.Phy.Chem.B.,2002,106:5022-5028.
    [28]]刘素文,TiO_2-ZrO_2体系纳米光催化材料的制备及其降解有机污染物的研究。博士学位论文。济南:山东大学,2004.
    [29]Choi W Y,Termin A,Hoffmann M R.The Role of met al ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics.J.Phys.Chem.,1994,98:13669-13679.
    [30]]Karakitsou K E,Verykios X E.Effects of altervalent cation doping of TiO2 on its performance as photocatalyst for water cleavage.J.Phys.Chem.,1993,106:1184-1189.
    [31]Yuan Z H,Jia J H,Zhang L D.Influence of co-doping of Zn(Ⅱ)+Fe(Ⅲ) on the photocatalytic activity of TiO_2 for phenol degradation.Mater.Chem.Phys.,2002,73:323-326.
    [32]Karakitson K.E.,Verykios X.E.,Effect of altervalent cation doping of TiO_2 on its performance as a photocatalyst for water cleavage,the Journal of Physical Chemistry,1993,97(6):1184-1189.
    [33]杜俊平,李洁,陈启元.低含量pr~(3+)掺杂WO_3的制备及其光催化分解水析氧活性.中国有色金属学报,2007,17(10):1695-1699.
    [34]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen doped titanium oxides.Science,2001,293:269-271.
    [35]Khan Sh U M,Al-Shahry M,Ingler Jr W B.Efficient photochemical water splitting by a chemically modified n-TiO_2.Science,2002,297:2243-2245.
    [36]陈崧哲,张彭义,祝万鹏等.可见光响应光催化剂研究进展。化学进展,2004,16(4):613-619.
    [37]Wu T X,Liu G M,Zhao J C.Photoassisted degradation of dye pollutants.V.self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO_2 dispersions.J.Phys.Chem.B,1998,102:5845-5851.
    [38]Hirano K,Suzuki E,Ishikawa A,et al.Sensitization of TiO_2 particles by dyes to achieve H_2 evolution by visible light.J.Photochem.Photobio.A,2000,136:157-161.
    [39]Hong A P,Bahnemann D W,Hoffmann M R.Cobalt(Ⅱ) tetrasultfophthalocyanine on titanium dioxide Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide. J. Phys. Chem. 1987,91: 6245-6251.
    [40] Ranjit K T, Willner I, Bossmann S, et al. Iron(Ⅲ) phthalocyanine-modified titanium dioxide: A novel photocatalyst for the enhanced photodegradation of organic pollutants. J. Phys. Chem. B, 1998,102:9397-9403.
    [41] Qu P, Zhao J C, Zhang L, et al. Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO_2 particles by addition of an anionic surfactant in acidic media. Coll. Surt. A, 1998, 138:39-50.
    [42] ]Zhang F L, Zhao J C, Shen T, et al. TiO_2-assisted photodegradation of dye pollutants. Ⅱ. Adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation. Appl. Catal. B, 1998, 15: 147-156.
    [43] Cherian S, Wamser C C. Adsorption and photoactivity of tetra (4-carbosyphenyl)-porphyrin (TCPP) on nanoparticulate TiO_2. J. Phys. Chem. B,2000,104:3624-3629.
    [44] Vinodgopal K, Wynkoop D E, Kamat P V. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange, on TiO_2 particles using visible light. Environ. Sci. Technol., 1996,30:1660-1666.
    [45] Koca A.,Sahin M.,Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution, International Journal of Hydrogen Energy,2002,27(4):363-367.
    [46] Fujii H., Ohtaki M, Eguchi K.. et al, Photocatalytic activities of CdS cry stallites embedded in TiO_2 gel as a stable semiconducting matrix. Journal of Materials Science Letters, 1997,16(13): 1086-1088.
    [47] Fujii H., Ohtaki M,Eguchi K., et al, Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO_2 gel as a stable oxide semiconducting matrix,Journal of Molecular Catalysis A: Chemical, 1998,129(1):61-68.
    [48] Ohno T.,Tanigawa F.,Fujihara K.,et al,Photocatalytic oxidation of water on TiO_2-coated WO_3 particles by visible light using iron(Ⅲ) ions as electron acceptor,Journal of Photochemistry Photobiology A: Chemistry, 1998,118(1):41-44.
    [49] Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem., 1994, 98:3183-3188.
    [50] Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles. J. Coll. Inter. Sci., 2001,244:262-265.
    [51] Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO_2/TiO_2 coupled semiconductor thin films. Enciron. Sci. Technol.,1995,29:841-845.
    [52] Wang C, Zhao J C, Wang X. M, et al. Preparation, charateration and phototocatalytic of nano-sized ZnO/SnO_2 coupled photocatalysts. Appl. Catal. B,2002, 39: 269-279.
    [53] Sato T.,Fukugami Y.,Synthesis and photocatalytic properties of TiO_2 and Pt pillared HCa_2Nb_3O_(10) doped with various rare earth ions, Solid State Ionics,2001,141-142:397-405.
    [54] Hara K.,Sayama K.,Arakawa H.,Photocatalytic hydrogen and oxygen formation over SiO_2-supported RuS_2 in the presence of sacrificial donor and acceptor,Applied Catalysis A:General, 1999,189(1): 127-137.
    [55] Tambwekar S.V.,Subrahmanyam M.,Enhanced photocatalytic H_2 production over CdS-ZnS supported on super basic oxides,International Journal of Hydrogen Energy,1998,23(9):741-744.
    [56]Tambwekar S.V.,Venugopal D., Subrahmanyam M., H_2 production of (CdS-ZnS)-TiO_2 supported photocatalytic system, International Journal of Hydrogen Energy, 1999,24 (10): 957-963.
    [57]Sinha A.S.K.,Sahu N.,Arora M.K.,et al,Preparation of egg-shell type Al_2O_3-supported CdS photocatalysts for reduction of H_2O to H_2,Catalysis Today,2001,69(1-4):297-305.
    [58]Kida T.,Guan G.Q..Yoshida A.,LaMnO_3/CdS nanocomposite:a new photocatalyst for hydrogen production from water under visible light irradiation,Chemical Physics Letters,2003,371(5):563-567.
    [59]Liu S.H.,Wang H.P.,Photocatalytic generation of hydrogen on Zr-MCM-41,International Journal of Hydrogen Energy,International Journal of Hydrogen Energy,2002,27(9):859-862.
    [60] Shangguan W.F.,Yoshida A.,Synthesis and photocatalytic properties of CdS-intercalated met al oxides, Solar Energy Materials and Solar Cells,2001,69(2):189-194.
    [61]Fujishiro Y.,Uchida S.,Sato T.,Synthesis and photochemical properties of semiconductor pillared layered compounds,International Journal of Inorganic Materials,1999,1(1):67-72.
    [62]Tawkaew S.,Fujishinobu Y.,Yin S.,et al,Synthesis of cadmium sulfide pillared layered compounds and photocataltic reduction of nitrate under visible light irradiation,Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,179(2-3):139-144.
    [63]Hyunwoong Park,Wonyong Choi.Photocatalytic conversion of benzene to phenol using modified TiO_2 and polyoxomet alates.Catalysis Today,2005,101(3-4):291-297.
    [64]Xiaodan Yu,Yingna Guo,Leilei Xu,et al.A novel preparation of mesoporous Cs_xH_(3-x)PW_(12)O_(40)/TiO_2 nanocomposites with enhanced photocatalytic activity.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,316(1-3):110-118.
    [65]Kudo A.,Sayama K.,Tanaka A.,et al,Nickel-loaded K_4Nb_6O_(17) photocatalyst in the decomposition of H_2O into H_2 and O_2:structure and reaction mechanism,Journal of Catalysis,1989,120:337-353.
    [66]Sayama K.,Tanaka A.,Domen K.,et al,Photocatalytic decomposition of water over platinum-intercalated K_4Nb_6O_(17),the Journal of Physical Chemistry,1991,95(3):1345-1348.
    [67]Ikeda S.,Tanaka A.,Shinohara K.,Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K_4Nb_6O_(17),Microporous Materials,1997,9(5-6):253-258.
    [68]Sayama K.,Yase K.,Arakawa H.,et al,Photocatalytic activity and reaction mechanism of Pt-intercalated K_4Nb_6O_(17) catalyst on the water splitting in carbonate salt aqueous solution,Journal of Photochemistry and Photobiology A:Chemistry,1998,114(2):125-135.
    [69]杨亚辉,陈启元,尹周澜等.Fe~(3+)和Cr~(3+)掺杂对K_4 Nb_6O_(17)光催化活性的影响.中国稀土学报,2004,22(5):647-649.
    [70]Chung K.H.,Park D.C.,Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts,Journal of Molecular Catalysis A:Chemical,1998,129(1):53-58.
    [71]Sayama K.,Arakawa H.,Domen K.,Photocatalytic water splitting on nickel intercalated A_4Ta_xNb_(6-x)O_(17)(A=K,Rb),Catalysis Today,1996,28(1-2):175-182.
    [72]Yoshimura J.,Ebina Y.,Kondo J.,et al,Visible light induced photocatalytic behavior of a layered perovskite type biobate,RbPb_2Nb_3O_(10),the Journal of Physical Chemistry,1993,97(9):1970-1973.
    [73]Shangguan W.F.,Yoshida A.,Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed met al oxides,International Journal of Hydrogen Energy,1999,24(5):425-431.
    [74]Ogura S.,Kohno M.,Sato K.,Photocatalytic activity for water decomposition of RuO_2-combined M_2Ti_6O_(13)(M=Na,K,Rb,Cs),Applied Surface Science,1997,121/122(2):521-524.
    [75]Inoue Y.,Kubokawa T.,Sato K.,Photocatalytic activity of alkali-met al titanates combined with Ru in the decomposition of water,the Journal of Physical Chemistry,1991,95(10):4059-4063.
    [76]Mizoguchi H.,Uedo K.,Orita M.,Decomposition of water by a CaTiO_3photocatalyst under UV light irradiation,Materials Research Bulletin,2002,37(15):2401-2406.
    [77]Takata T.,Shinohara K.,Tanaka A.,et al,A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure,Journal of Photochemistry and Photobiology A:Chemistry,1997,106(1-3):45-49.
    [78]杨亚辉,陈启元,尹周澜.K_2La_2Ti_3O_(10)的制备和光催化产氢性能.中国有色金属学报.2007,17(4):643-647.
    [79]Kato H.,Kudo A.,New tantalate photocatalysts for water decomposition into H_2and O_2,Chemical Physics Letters,1998,295(5-6):487-492.
    [80]Kato H.,Kudo A..Photocatalytic water splitting into H_2 and O_2 over various tantalate photocatalysts,Catalysis Today,2003,78(1-4):561-569.
    [81]Kato H.,Kudo A.,Water splitting into H_2 and O_2 on alkali tantalate photocatalysts ATaO_3(A=Li,Na,K).the Journal of Physical Chemistry:B,2001,105(19):4285-4292.
    [82]Machida M.,Yabunaka J.,Kijima T.,et al,Synthesis and photocatalytic property of layered perovskite tantalates,RbLnTa_2O_7(Ln=La,Pr,Nd,and Sm),Chemistry of Materials,2000,12(3):812-817.
    [83]Machida M.,Yabunaka J.,Kijima T.,et al,Electronic structure of layered tantalates photocatalysts,RbLnTa_2O_7(Ln=La,Pr,Nd,and Sm),International Journal of Inorganic Materials,2001,3(6):545-550.
    [84]Kudo A.,Kato H.,Effect of lanthanide-doping into NaTaO_3 photocatalysts for efficient water splitting,Chemical Physics Letters,2000,331(5-6):373-377.
    [85]Kato H.,Kudo A.,Energy structure and photocatalytic activity for water splitting of Sr_2(Ta_(1-x)Nb_x)_2O_7 solid solution,Journal of Photochemistry Photobiology A:Chemistry,2001,145(1):129-133.
    [86]Hwang D.W.,Kim H.G.,Kim J.,et al,Photocatalytic water splitting over highly donor doped(110) layered perovskite,Journal of Catalysis,2000,193(1):40-48.
    [87]Kim Y.,Salim S., Huq M.J.,et al,Visible light photolysis of hydrogen iodide using sensitized layered semiconductor particle,the Journal of America Chemistry Society, 1991,113(25):9561-9563.
    [88]Chen T.T.,Fitch R.M.,Visible light-induced hydrogen formation from water by various 1,1 prime-dialkyl-4,4 prime-bipyridinium salts (viologens),Journal of Molecular Catalysis, 1990,63(3):271 -277.
    [89]Abe R.,Sayama K.,Arakawa H.,Significant influence of solvent on hydrogen production from aqueous I_3/I redox solution using dye-sensitized Pt/TiO_2 photocatalyst under visible light irradiation,Chemical Physics Letters,2003,379(3):230-235.
    [90]Kawai T.,Sakata T.,Gratzel M.,Photocatalytic decomposition of water at semiconductor electrodes,Nature, 1980,286:474-479.
    [91]Regan B.O.,Gratzel M..A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films,Nature,1991,353(6346):737-739.
    [92]Dhanalakshmi K.B.Xatha S.,Anandan S.,et al,Dye sensitized hydrogen evolution from water,International Journal of Hydrogen Energy,2001,26(7):669-674.
    [93]Dutta P.K..Vaidyalingam A.S.,Zeolite-supported ruthenium oxide catalysts for photochemical reduction of water to hydrogen,Microporous and Mesoporous Materials,2003.62(1):107-120.
    [94]Saupe G.B.,Mallouk T.E..Visible light photolysis of hydrogen iodide using sensitized layered met al oxide semiconductors:the role of surface chemical modification in controlling back electron transfer reactions,the Journal of Physical Chemistry:B,1997,101(14):2508-2513.
    [95]Kim Y.,Atherton S.J.,Brigham E.S.,Sensitized layered met al oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors,the Journal of Physical Chemistry:B, 1993,97(45): 11802-11810.
    [96] Hara M.,Hitoki G.,Takata T.,TaON and Ta_3N_5 as new visible light driven photocatalyst,Catalysis Today,2003J8(1-4):555-560.
    [97]Hara M.,Takata Y.,Kondo J.N.,et al,Photocatalytic reduction of water by TaON under visible light irradiation,Catalysis Today,2004,90(3-4):313-317.
    [98]杨亚辉,陈启元,尹周澜.Cr掺杂对K_2La_2Ti_3O_(10)光催化活性的影响.无机化学学报,2007,23(5):772-777.
    [99]Zou Z.G.,Ye J.H.,Matsushita A.,A novel series of water splitting photocatalysts NiM_2O_6(M=Nb,Ta) active under visible light,International Journal of Hydrogen Energy,2003,28(6):651-655.
    [100]Yin J,Zou Z.G.,Ye J.H.,Photophysical and photocatalytic properties of new photocatalysts MCrO_4(M=Sr,Ba),Chemical Physics Letters,2003,378(1-2):24-28.
    [101]Wang D.F.,Zou Z.G.,Ye J.H.,A new spinel-type photocatalyst BaCrO_4 for H_2evolution under UV and visible light irradiation,Chemical Physics Letters,2003,373(1-2):191-196.
    [102]Zou Z.G,Ye J.H.,Sayama K.,et al,Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,Nature,2001,414(6864):625-627.
    [103]Zou Z.G.,Ye J.H.,Arakawa H.,et al,Structural properties of InNbO_4 and InTaO_4:correlation with photocatalytic and photophysical properties,Chemical Physics Letters,2000,332(3):271-277.
    [104]Zou Z.G.,Ye J.H.,Arakawa H.,et al,Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO_4(M=V~(5+),Nb~(5+),Ta~(5+)),Journal of Photochemistry Photobiology A:Chemistry,2002,148(1):79-83.
    [105]Zou Z.G.,Ye J.H.,Arakawa H.,et al,Photophysical and photocatalytic properties of InMO_4(M=Nb~(5+),Ta~(5+)) under visible light irradition,Materials Research Bulletin,2001,36(7-8):1185-1193.
    [106]Zou Z.G.,Ye J.H.,Sayama K.,et al,Photocatalytic hydrogen and oxygen formation under visible irradiation with M-doped InTaO_4(M=Mn,Fe,Co,Ni and Cu)photocatalysts,Journal of Photochemistry Photobiology A:Chemistry,2002,148(1):65-69
    [107]Zou Z.G.,Ye J.H.,Arakawa H.,et al,Photocatalytic water splitting into H_2 and/or O_2 under UV and visible light irradiation with a semiconductor photocatalyst,International Journal of Hydrogen Energy,2003,28(6):663-669
    [108]Zou Z.G.,Arakawa H.,Direct water splitting into H_2 and O_2 under visible irradiation with a new series of mixed oxide semiconductor photocatalysts, Journal of Photochemistry Photobiology A:Chemistry, 2003,158 (2-3): 145-162
    [109] Zou Z.G.,Ye J.H.,Arakawa H.,et al, Substitution effects of In~(3+) by Fe~(3+) on the photocatalytic and structural properties of Bi_2InNbO_7 photocatalysts,Journal of Molecular Catalysis A:Chemical,2002,168(1-2):289-297
    [110] Zou Z.G.,Ye J.H.,Arakawa H., Substitution effects of In~(3+) by Al~(3+) and Ga~(3+) on the photocatalytic and structural properties of Bi2lnNbC»7 photocatalysts, Chemistry of Materials, 2001, 13(5): 1765-1769
    [111] Zou Z.G.,Ye J.H., Arakawa H., Photocatalytic and photophysical properties of a novel series od solid photocatalysts,Bi_2MNbO_7(M=Al~(3+),Ga ~(3+) and In ~(3+)), Chemical Physics Letters, 2001, 333(1-2): 57-62
    [112] Zou Z.G.,Ye J.H.,Arakawa H., Photocatalytic water splitting into H_2 and/or O_2 under UV and visible light irradiation with a semiconductor photocatalyst, International Journal of Hydrogen Energy, 2003, 28(6): 663-669
    [113] Bessekhouad Y.,Trari M., Photocatalytic hydrogen production from suspension of spinel powders AMn_2O_4(A=Cu and Zn), International Journal of Hydrogen Energy, 2002,27(4):357-362
    [114] Bessekhouad Y, Trari M., Doumerc J P, CuMn_2O_4, a novel hydrogen photoevolution catalyst International Journal of Hydrogen Energy, 2003, 28(1):43-48
    [115] Hara M.,Hitoki G.,Takata T., TaON and Ta_3N_5 as new visible light driven photocatalyst, Catalysis Today, 2003,78(1-4):555-560
    [116] Sato J., Kobayashi H.,Saito N.. et al, Photocatalytic activities for water decomposition of RuO_2-loaded AInO_2(A=Li,Na) with d~(10) configuration,Journal of Photochemistry Photobiology A:Chemistry, 2003,158(2-3): 139-144
    [117] Sato J.,Saito N.,Nishiyama H.,et al. New photocatalyst group for water decomposition of RuO_2-loaded p-block metal(In,Sn and Sb)oxides with d~(10) configuration,the Journal of Physical Chemistry:B,2001,105(26):6061-6063
    [118] Sato J.,Saito N.,Nishiyama H,et al, Photocatalytic water decomposition by RuO_2-loaded antimonates,M_2Sb_2O_7(M=Ca,Sr),CaSb_2O_6 and NaSbO_3,with d~(10) configuration,Journal of Photochemistry Photobiology A:Chemistry,2002,148(1):85-89
    [119] Ishikawa A.,Takata T.,Kondo J.N.,et al, Oxysulfide Sm_2Ti_2S_2O_5. as a stable photocatalyst for water oxidation and reduction under visible light irradiation,the Journal of America Chemistry Society,2002,124(45): 13547-13553.
    [120] Ishikawa A.,Yamada Y.,Takata T.,et al, Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm_2Ti_2S_2O_5,Chemistry of Materials,2003,15(23): 4442 -4446.
    [121] Sayama K.,Yoshida R.,Kusama H.,et al, Photocatalytic decomposition of water into H_2 and O_2 by a two-step photoexcitation reaction using a WO_3 suspension catalyst and an Fe~(3+)/Fe~+ redox system,Chemical Physics Letters, 1997,277(4):387-391.
    [122] Bamwenda G.R.,Sayama K.,Arakawa H., The effect of selected reaction parameterson the photoproduction of oxygen and hydrogen from a WO_3-Fe~(2+)-Fe ~+aqueous suspension, Journal of Photochemistry Photobiology A:Chemistry,1999,122 (3):175-183.
    [123] Abe R.,Sayama K., Domen K.,et al, A new type of water splitting system composed of two different TiO_2 photocatalysts(anatase,rutile)and a IO_3/I shuttle redox mediator, Chemical Physics Letters, 2001,344(3-4):339-344.
    [124] Abe R., Sayama K.,Arakawa H., Significant effect of iodide addition on water splitting into H_2 and O_2 over Pt loaded TiO_2 photocatalyst: suppression of backward reaction,Chemical Physics Letters,2003,371(3-4):360-364.
    [125] Sayama K.,Mukasa K.,Abe R., et al, Stoichiometric water splitting into H_2 and O_2 using a mixture of two different photocatalysts and an IO_3/I shuttle redox mediator under visible light irradiation,Chemical Communications, 2001: 2416-2417.
    [126] Sayama K.Mukasa K..Abe R.,et al,A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,Journal of Photochemistry Photobiology A:Chemistry.2002,148(1-3):71-77.
    [127] Umebayashi T.,Yamaki T.,Sumita T.,et al,UV-ray photoelectron and ab initio band calculation studies on electronic structures of Cr- or Nb-ion implanted titanium dioxide,Nuclear Instruments and Methods in Physics Research B,2003,206: 264-267.
    [128] S.Karvinena , P.Hirvab , et al . J. Mole. Stru. (Theochem) ,2003 , 626 : 271-277.
    [129] T. Nishikawa, Y. Shinohara, et al. Chem. Lett. ,1999 ,1 :1133-1134.
    [130] CHEN Qi-li Ab Initio Band Calculations of Transition Met als Doped Rutile TiO_2 Journal of Materials Science & Engineering 2006 ,Vol 124:14-15.
    [131]张富春,邓周虎,阎军锋等.Ga,Al,In掺杂ZnO电子结构的第一性原理计算,电子元件与材料,2005,24(8):4-10.
    [132]张富春,邓周虎,阎军锋等.Ga掺杂ZnO电子结构的密度泛函计算,功能材料,2005,36(8):1268-1272.
    [133]杨亚辉.K_2La_2Ti_3O_(10)催化剂的制备与光催化分解水活性研究.博士学位论文,长沙,中南大学,2006
    [134]Matsushima S.,Obata K.,Nakamura H.,et al,First-principle energy band calculation for undoped and N-doped InTaO_4 with layered wolframite-type structure,Journal of Physics and Chemistry of Solids,2003,64(12):2417-2421.
    [135]Jeong Hoon Lee.,Yeong Seok Yang Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO_2 nanoparticles synthesized from aqueous TiCl_4 solution by precipitation.Materials Chemistry and Physics,2005,1(93):237-242.
    [136]张青红,高镰,郭景坤.四氯化钛水解法制备二氧化钦纳米晶的影响因素.无机材料学报.2000,6(15):992-997.
    [137]Teruhisa Ohno,Fumihiro Tanigawa,Kan Fujihara,Shinobu Izumi,Michio Matsumura Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder.Journal of Photochemistry and Photobiology_A:Chemistry,19991-3(127):107-110.
    [138]Chen,Y.X.,Wei,Z.B.,Chen,Y.X.,Lin,H.X.,Hong,Z.P.,Liu,H.Q.,Dong,Y.L.,Yu,C.Y.,Li,W.Z.,1983.Metal-semiconductor catalyst-photocatalytic and electrochemical behavior of Pt-TiO_2 for the water gas shift reaction.J.Mol.Catal.1983,21(10),275-289.
    [139]Howe,R.F.,Gr(?)tzel,M..Electron-paramagnetic-resobservation of trapped electrons in colloidal TiO_2.J.Phys.Chem.1985,89(21):4495-4499.
    [140]Qin,D.,Chang,W.,Chen,Y.,et al.Dynamic ESR study of oxygen chemisorption on TiO_2-based catalysts.J.Catal,1993,142(2):719-724.
    [141]Rekoske,J.E.,Barteau,et al.Isothermal reduction kinetics of titanium dioxide-based materials.J.Phys.Chem.B,1997,101(7):1113-1124.
    [142]H.Liu,H.T.Ma,X.Z.Li,et al.The enhancement of TiO_2 photocatalytic activity by hydrogen thermal treatment.Chemosphere,2003,50:39-46.
    [143]井立强,袁福龙,侯海鸽等.ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系.中国科学,B辑,2004,34(4):310-314.
    [144]郑怀礼等.掺镧TiO_2纳米薄膜材料的制备与光催化性能的研究.光谱学与 光谱分析,2003,23(2):246-248.
    [145]伍军 刘鹏 吴潘等.超声波场中硫酸氧钛的水解研究.四川有色金属,2003,3:22-26.
    [146]Fotini Kiriakidou,Dimitris I.Kondarides,Xenophon E.Verykios.The effect of operational parameters and TiO_2-doping on the photocatalytic degradation of azo-dyes Catalysis Today,19991,(54):119-130.
    [147]Pena M.A.,Fierro J.L.G.,Chemical Structures and performance of perovskite oxides,Chemical Reviews,2001,101(7):1981-2017.
    [148]桑丽霞,钟顺和,傅希贤,LaBO_3(B=Fe,Co)中氧的迁移与光催化反应活性,2003,24(2):320-323.
    [149]徐毓龙,氧化物与化合物半导体基础,西安:西安电子科技大学出版社,1991:49-50.
    [150]傅希贤,杨秋华,桑丽霞,钙钛矿型LaFe_(1-x)Cu_xO_3的光催化活性研究,高等学校化学学报,2002,23(2):283-286.
    [151]Wu N.L.,Lee M.S.,Pon Z.J.,et al,Effect of calcination atmosphere on TiO_2photocatalysis in hydrogen production from methanol/water solution,Journal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):277-280.
    [152]李萌,张志,崔作林.镧掺杂纳米TiO_2薄膜的制备及对甲醛的光催化降解.[J]青岛科技大学学报,2004,25(2):144-148.
    [153]陈俊涛,李新军,杨莹等.Sm掺杂对TiO_2薄膜光催化性能的影响.[J]催化学报,2004.25(5):397-402.
    [154]王承遇,钟萍,姜妍彦等.掺杂铈对玻璃表面TiO_2薄膜上油酸光催化降解的影响.[J].催化学报,2000.21(5):440-446.
    [155]张华星,张玉红.徐永熙等.铽(Ⅲ)掺杂TiO_2纳米材料相转移和光催化性质研究.[J].化学学报,2003.11(61):1813-1818.
    [156]李慧泉,李越湘.周新木等.La_2O_3掺杂TiO_2光催化剂的制备和性能.[J]分子催化,2004,18(4):304-309.
    [157]米纳切夫,霍达科夫,安托申等.稀土在催化中的应用[M],1987,北京:科学出版社.
    [158]稀土编写组,稀土[M],1978,北京:冶会工业出版社.
    [159]杨遇春,稀土漫谈[M].1999,北京:化学工业出版社.
    [160]中山大学金属系编,稀土物理化学常数[M],1978,北京:冶金工业出版社.
    [161]张立德,牟季美,纳米材料和纳米结构[M],2001,北京:科学出版社.
    [162]MackenzieK J D.Trans the.Calcination of Titania:Ⅳ the Effect of Additives on the A natase-Rutile Transformation[J].J Br Ceram.Soc.1975.74:29-34.
    [163]Rodriguez-TalaveraaR,Vargas S.Aarroyo-MurilloR et al.Modification of the Phase T ransition Temperaturesin Titania Doped with Various Cations[J].J.Mater.Res.,1997,12:439-442.
    [164]陈建军.纳米TiO_2光催化剂的制备、改性及其应用研究.博士学位论文,长沙,中南大学,2001.
    [165]徐光宪,黎乐民,王德民编著,量子化学基本原理和从头算法,北京:科学出版社,1985:82-104.
    [166]A.A.莱文编著,徐晓白翻译,固体量子化学,北京:科学出版社,1982:5-47.
    [167]赵成大编著,固体量子化学。北京:高等教育出版社,2003:128-142.
    [168]Towler M.,Caus(?) M.,Zupan A.,Density functional theory in periodic system using local Gaussian basis sets,Computer Physics Communications,1996,98:181-205.
    [169]Slater J.C.,A simplification of the hartree-fock method,Physical Reviews,1951,81(3):385-390.
    [170]Perdew T.P.,Zunger A.,Self-interaction correction to density-functional appro-ximations for many electron systems,Physical Reviews B,1981,23(10):5048-5079.
    [171]Langreth C.,Perdew J.P.,Analysis of the gradient approximation and a gener-alization that works.Physical Reviews B,1980,21(12):5469-5493.
    [172]Perdew J.P.,Burke K.,Ernzerhof M.,Generalized gradient approximation made simple,Physical Review Letters,1996,77(18):3865-3868.
    [173]Kohn W.,Meir,Y.,Makarov D.E.,Van der waals energies in density functional theory,Physical Review Letters.1998,80(19):4153-4156.
    [174]Bachelet G.B.,Hamann D.R.,Schl(u|¨)ter M.,Pseudopotentials that work:from H to Pu,Physical Reviews B,1982,26:4199-4228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700